/* $NetBSD: fcu.c,v 1.6 2025/07/01 14:13:13 macallan Exp $ */
/*-
* Copyright (c) 2018 Michael Lorenz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fcu.c,v 1.6 2025/07/01 14:13:13 macallan Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kthread.h>
#include <sys/sysctl.h>
#include <dev/i2c/i2cvar.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/ofw/openfirm.h>
#include <macppc/dev/fancontrolvar.h>
#include "opt_fcu.h"
#ifdef FCU_DEBUG
#define DPRINTF printf
#else
#define DPRINTF if (0) printf
#endif
/* FCU registers, from OpenBSD's fcu.c */
#define FCU_FAN_FAIL 0x0b /* fans states in bits 0<1-6>7 */
#define FCU_FAN_ACTIVE 0x0d
#define FCU_FANREAD(x) 0x11 + (x)*2
#define FCU_FANSET(x) 0x10 + (x)*2
#define FCU_PWM_FAIL 0x2b
#define FCU_PWM_ACTIVE 0x2d
#define FCU_PWMREAD(x) 0x30 + (x)*2
typedef struct _fcu_fan {
int target;
int reg;
int base_rpm, max_rpm;
int step;
int duty; /* for pwm fans */
} fcu_fan_t;
#define FCU_ZONE_CPU 0
#define FCU_ZONE_CASE 1
#define FCU_ZONE_DRIVEBAY 2
#define FCU_ZONE_COUNT 3
struct fcu_softc {
device_t sc_dev;
i2c_tag_t sc_i2c;
i2c_addr_t sc_addr;
struct sysctlnode *sc_sysctl_me;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sensors[32];
int sc_nsensors;
fancontrol_zone_t sc_zones[FCU_ZONE_COUNT];
fcu_fan_t sc_fans[FANCONTROL_MAX_FANS];
int sc_nfans;
lwp_t *sc_thread;
bool sc_dying, sc_pwm;
uint8_t sc_eeprom0[160];
uint8_t sc_eeprom1[160];
};
static int fcu_match(device_t, cfdata_t, void *);
static void fcu_attach(device_t, device_t, void *);
static void fcu_sensors_refresh(struct sysmon_envsys *, envsys_data_t *);
static void fcu_configure_sensor(struct fcu_softc *, envsys_data_t *);
static bool is_cpu(const envsys_data_t *);
static bool is_case(const envsys_data_t *);
static bool is_drive(const envsys_data_t *);
static int fcu_set_rpm(void *, int, int);
static int fcu_get_rpm(void *, int);
static void fcu_adjust(void *);
CFATTACH_DECL_NEW(fcu, sizeof(struct fcu_softc),
fcu_match, fcu_attach, NULL, NULL);
static const struct device_compatible_entry compat_data[] = {
{ .compat = "fcu" },
DEVICE_COMPAT_EOL
};
static int
fcu_match(device_t parent, cfdata_t match, void *aux)
{
struct i2c_attach_args *ia = aux;
int match_result;
if (iic_use_direct_match(ia, match, compat_data, &match_result))
return match_result;
if (ia->ia_addr == 0x2f)
return I2C_MATCH_ADDRESS_ONLY;
return 0;
}
static void
fcu_attach(device_t parent, device_t self, void *aux)
{
struct fcu_softc *sc = device_private(self);
struct i2c_attach_args *ia = aux;
int i;
sc->sc_dev = self;
sc->sc_i2c = ia->ia_tag;
sc->sc_addr = ia->ia_addr;
aprint_naive("\n");
aprint_normal(": Fan Control Unit\n");
sysctl_createv(NULL, 0, NULL, (void *) &sc->sc_sysctl_me,
CTLFLAG_READWRITE,
CTLTYPE_NODE, device_xname(sc->sc_dev), NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
if (get_cpuid(0, sc->sc_eeprom0) < 160) {
/*
* XXX this should never happen, we depend on the EEPROM for
* calibration data to make sense of temperature and voltage
* sensors elsewhere, and fan parameters here.
*/
aprint_error_dev(self, "no EEPROM data for CPU 0\n");
return;
}
/* init zones */
sc->sc_zones[FCU_ZONE_CPU].name = "CPUs";
sc->sc_zones[FCU_ZONE_CPU].filter = is_cpu;
sc->sc_zones[FCU_ZONE_CPU].cookie = sc;
sc->sc_zones[FCU_ZONE_CPU].get_rpm = fcu_get_rpm;
sc->sc_zones[FCU_ZONE_CPU].set_rpm = fcu_set_rpm;
sc->sc_zones[FCU_ZONE_CPU].Tmin = 50;
sc->sc_zones[FCU_ZONE_CPU].Tmax = 85;
sc->sc_zones[FCU_ZONE_CPU].nfans = 0;
sc->sc_zones[FCU_ZONE_CASE].name = "Slots";
sc->sc_zones[FCU_ZONE_CASE].filter = is_case;
sc->sc_zones[FCU_ZONE_CASE].cookie = sc;
sc->sc_zones[FCU_ZONE_CASE].Tmin = 50;
sc->sc_zones[FCU_ZONE_CASE].Tmax = 75;
sc->sc_zones[FCU_ZONE_CASE].nfans = 0;
sc->sc_zones[FCU_ZONE_CASE].get_rpm = fcu_get_rpm;
sc->sc_zones[FCU_ZONE_CASE].set_rpm = fcu_set_rpm;
sc->sc_zones[FCU_ZONE_DRIVEBAY].name = "Drivebays";
sc->sc_zones[FCU_ZONE_DRIVEBAY].filter = is_drive;
sc->sc_zones[FCU_ZONE_DRIVEBAY].cookie = sc;
sc->sc_zones[FCU_ZONE_DRIVEBAY].get_rpm = fcu_get_rpm;
sc->sc_zones[FCU_ZONE_DRIVEBAY].set_rpm = fcu_set_rpm;
sc->sc_zones[FCU_ZONE_DRIVEBAY].Tmin = 30;
sc->sc_zones[FCU_ZONE_DRIVEBAY].Tmax = 50;
sc->sc_zones[FCU_ZONE_DRIVEBAY].nfans = 0;
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = device_xname(self);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = fcu_sensors_refresh;
sc->sc_sensors[0].units = ENVSYS_SFANRPM;
sc->sc_sensors[1].state = ENVSYS_SINVALID;
sc->sc_nfans = 0;
/* round up sensors */
int ch;
sc->sc_nsensors = 0;
ch = OF_child(ia->ia_cookie);
if (ch == 0) {
/* old style data, no individual nodes for fans, annoying */
char loc[256], tp[256], descr[32], type[32];
uint32_t reg_rpm = 0x10, reg_pwm = 0x32, reg;
uint32_t id[16];
int num, lidx = 0, tidx = 0;
num = OF_getprop(ia->ia_cookie, "hwctrl-id", id, 64);
OF_getprop(ia->ia_cookie, "hwctrl-location", loc, 1024);
OF_getprop(ia->ia_cookie, "hwctrl-type", tp, 1024);
while (num > 0) {
envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors];
s->state = ENVSYS_SINVALID;
strcpy(descr, &loc[lidx]);
strcpy(type, &tp[tidx]);
if (strstr(type, "rpm") != NULL) {
s->units = ENVSYS_SFANRPM;
reg = reg_rpm;
reg_rpm += 2;
} else if (strstr(type, "pwm") != NULL) {
s->units = ENVSYS_SFANRPM;
reg = reg_pwm;
reg_pwm += 2;
} else goto skip;
s->private = reg;
strcpy(s->desc, descr);
fcu_configure_sensor(sc, s);
sysmon_envsys_sensor_attach(sc->sc_sme, s);
sc->sc_nsensors++;
skip:
lidx += strlen(descr) + 1;
tidx += strlen(type) + 1;
num -= 4;
}
} else {
/* new style, with individual nodes */
while (ch != 0) {
char type[32], descr[32];
uint32_t reg;
envsys_data_t *s = &sc->sc_sensors[sc->sc_nsensors];
s->state = ENVSYS_SINVALID;
if (OF_getprop(ch, "device_type", type, 32) <= 0)
goto next;
if (strcmp(type, "fan-rpm-control") == 0) {
s->units = ENVSYS_SFANRPM;
} else if (strcmp(type, "fan-pwm-control") == 0) {
/* XXX we get the type from the register number */
s->units = ENVSYS_SFANRPM;
/* skip those for now since we don't really know how to interpret them */
#if 0
} else if (strcmp(type, "power-sensor") == 0) {
s->units = ENVSYS_SVOLTS_DC;
#endif
} else if (strcmp(type, "gpi-sensor") == 0) {
s->units = ENVSYS_INDICATOR;
} else {
/* ignore other types for now */
goto next;
}
if (OF_getprop(ch, "reg", ®, sizeof(reg)) <= 0)
goto next;
s->private = reg;
if (OF_getprop(ch, "location", descr, 32) <= 0)
goto next;
strcpy(s->desc, descr);
fcu_configure_sensor(sc, s);
sysmon_envsys_sensor_attach(sc->sc_sme, s);
sc->sc_nsensors++;
next:
ch = OF_peer(ch);
}
}
sysmon_envsys_register(sc->sc_sme);
/* setup sysctls for our zones etc. */
for (i = 0; i < FCU_ZONE_COUNT; i++) {
fancontrol_init_zone(&sc->sc_zones[i], sc->sc_sysctl_me);
}
sc->sc_dying = FALSE;
kthread_create(PRI_NONE, 0, curcpu(), fcu_adjust, sc, &sc->sc_thread,
"fan control");
}
static void
fcu_configure_sensor(struct fcu_softc *sc, envsys_data_t *s)
{
int have_eeprom1 = 1;
if (get_cpuid(1, sc->sc_eeprom1) < 160)
have_eeprom1 = 0;
if (s->units == ENVSYS_SFANRPM) {
fcu_fan_t *fan = &sc->sc_fans[sc->sc_nfans];
uint8_t *eeprom = NULL;
uint16_t rmin, rmax;
if (strstr(s->desc, "CPU A") != NULL)
eeprom = sc->sc_eeprom0;
if (strstr(s->desc, "CPU B") != NULL) {
/*
* XXX
* this should never happen
*/
if (have_eeprom1 == 0) {
eeprom = sc->sc_eeprom0;
} else
eeprom = sc->sc_eeprom1;
}
fan->reg = s->private;
fan->target = 0;
fan->duty = 0x80;
/* speed settings from EEPROM */
if (strstr(s->desc, "PUMP") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x54], 2);
memcpy(&rmax, &eeprom[0x56], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(s->desc, "INTAKE") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x4c], 2);
memcpy(&rmax, &eeprom[0x4e], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(s->desc, "EXHAUST") != NULL) {
KASSERT(eeprom != NULL);
memcpy(&rmin, &eeprom[0x50], 2);
memcpy(&rmax, &eeprom[0x52], 2);
fan->base_rpm = rmin;
fan->max_rpm = rmax;
fan->step = (rmax - rmin) / 30;
} else if (strstr(s->desc, "DRIVE") != NULL ) {
fan->base_rpm = 1000;
fan->max_rpm = 3000;
fan->step = 100;
} else {
fan->base_rpm = 1000;
fan->max_rpm = 3000;
fan->step = 100;
}
DPRINTF("fan %s: %d - %d rpm, step %d\n",
s->desc, fan->base_rpm, fan->max_rpm, fan->step);
/* now stuff them into zones */
if (strstr(s->desc, "CPU") != NULL) {
fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_CPU];
z->fans[z->nfans].num = sc->sc_nfans;
z->fans[z->nfans].min_rpm = fan->base_rpm;
z->fans[z->nfans].max_rpm = fan->max_rpm;
z->fans[z->nfans].name = s->desc;
z->nfans++;
} else if ((strstr(s->desc, "BACKSIDE") != NULL) ||
(strstr(s->desc, "SLOT") != NULL)) {
fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_CASE];
z->fans[z->nfans].num = sc->sc_nfans;
z->fans[z->nfans].min_rpm = fan->base_rpm;
z->fans[z->nfans].max_rpm = fan->max_rpm;
z->fans[z->nfans].name = s->desc;
z->nfans++;
} else if (strstr(s->desc, "DRIVE") != NULL) {
fancontrol_zone_t *z = &sc->sc_zones[FCU_ZONE_DRIVEBAY];
z->fans[z->nfans].num = sc->sc_nfans;
z->fans[z->nfans].min_rpm = fan->base_rpm;
z->fans[z->nfans].max_rpm = fan->max_rpm;
z->fans[z->nfans].name = s->desc;
z->nfans++;
}
sc->sc_nfans++;
}
}
static void
fcu_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct fcu_softc *sc = sme->sme_cookie;
uint8_t cmd;
uint16_t data = 0;
int error;
if (edata->units == ENVSYS_SFANRPM) {
cmd = edata->private + 1;
} else
cmd = edata->private;
/* fcu is a macppc only thing so we can safely assume big endian */
iic_acquire_bus(sc->sc_i2c, 0);
error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
iic_release_bus(sc->sc_i2c, 0);
if (error) {
edata->state = ENVSYS_SINVALID;
return;
}
edata->state = ENVSYS_SVALID;
switch (edata->units) {
case ENVSYS_SFANRPM:
edata->value_cur = data >> 3;
break;
case ENVSYS_SVOLTS_DC:
/* XXX this reads bogus */
edata->value_cur = data * 1000;
break;
case ENVSYS_INDICATOR:
/* guesswork for now */
edata->value_cur = data >> 8;
break;
default:
edata->state = ENVSYS_SINVALID;
}
}
static bool
is_cpu(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "CPU") != NULL)
return TRUE;
return false;
}
static bool
is_case(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if ((strstr(edata->desc, "MLB") != NULL) ||
(strstr(edata->desc, "BACKSIDE") != NULL) ||
(strstr(edata->desc, "U3") != NULL))
return TRUE;
return false;
}
static bool
is_drive(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "DRIVE") != NULL)
return TRUE;
return false;
}
static int
fcu_get_rpm(void *cookie, int which)
{
struct fcu_softc *sc = cookie;
fcu_fan_t *f = &sc->sc_fans[which];
int error;
uint16_t data = 0;
uint8_t cmd;
iic_acquire_bus(sc->sc_i2c, 0);
cmd = f->reg + 1;
error = iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
iic_release_bus(sc->sc_i2c, 0);
if (error != 0) return 0;
data = data >> 3;
return data;
}
static int
fcu_set_rpm(void *cookie, int which, int speed)
{
struct fcu_softc *sc = cookie;
fcu_fan_t *f = &sc->sc_fans[which];
int error = 0;
uint8_t cmd;
if (speed > f->max_rpm) speed = f->max_rpm;
if (speed < f->base_rpm) speed = f->base_rpm;
if (f->reg < 0x30) {
uint16_t data;
/* simple rpm fan, just poke the register */
if (f->target == speed) return 0;
iic_acquire_bus(sc->sc_i2c, 0);
cmd = f->reg;
data = (speed << 3);
error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 2, 0);
iic_release_bus(sc->sc_i2c, 0);
} else {
int diff;
int nduty = f->duty;
int current_speed;
/* pwm fan, measure speed, then adjust duty cycle */
DPRINTF("pwm fan ");
current_speed = fcu_get_rpm(sc, which);
diff = current_speed - speed;
DPRINTF("d %d s %d t %d diff %d ", f->duty, current_speed, speed, diff);
if (diff > 100) {
nduty = uimax(20, nduty - 1);
}
if (diff < -100) {
nduty = uimin(0xd0, nduty + 1);
}
cmd = f->reg;
DPRINTF("%s nduty %d", __func__, nduty);
if (nduty != f->duty) {
uint8_t arg = nduty;
iic_acquire_bus(sc->sc_i2c, 0);
error = iic_exec(sc->sc_i2c, I2C_OP_WRITE_WITH_STOP,
sc->sc_addr, &cmd, 1, &arg, 1, 0);
iic_release_bus(sc->sc_i2c, 0);
f->duty = nduty;
sc->sc_pwm = TRUE;
}
DPRINTF("ok\n");
}
if (error) printf("boo\n");
f->target = speed;
return 0;
}
static void
fcu_adjust(void *cookie)
{
struct fcu_softc *sc = cookie;
int i;
uint8_t cmd, data;
while (!sc->sc_dying) {
/* poke the FCU so we don't go 747 */
iic_acquire_bus(sc->sc_i2c, 0);
cmd = FCU_FAN_ACTIVE;
iic_exec(sc->sc_i2c, I2C_OP_READ_WITH_STOP,
sc->sc_addr, &cmd, 1, &data, 1, 0);
iic_release_bus(sc->sc_i2c, 0);
sc->sc_pwm = FALSE;
for (i = 0; i < FCU_ZONE_COUNT; i++)
fancontrol_adjust_zone(&sc->sc_zones[i]);
/*
* take a shorter nap if we're in the process of adjusting a
* PWM fan, which relies on measuring speed and then changing
* its duty cycle until we're reasonable close to the target
* speed
*/
kpause("fanctrl", true, mstohz(sc->sc_pwm ? 1000 : 2000), NULL);
}
kthread_exit(0);
}