*       $NetBSD: stan.sa,v 1.4 2000/03/13 23:52:32 soren Exp $

*       MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*       M68000 Hi-Performance Microprocessor Division
*       M68040 Software Package
*
*       M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*       All rights reserved.
*
*       THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*       To the maximum extent permitted by applicable law,
*       MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*       INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*       PARTICULAR PURPOSE and any warranty against infringement with
*       regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*       and any accompanying written materials.
*
*       To the maximum extent permitted by applicable law,
*       IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*       (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*       PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*       OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*       SOFTWARE.  Motorola assumes no responsibility for the maintenance
*       and support of the SOFTWARE.
*
*       You are hereby granted a copyright license to use, modify, and
*       distribute the SOFTWARE so long as this entire notice is retained
*       without alteration in any modified and/or redistributed versions,
*       and that such modified versions are clearly identified as such.
*       No licenses are granted by implication, estoppel or otherwise
*       under any patents or trademarks of Motorola, Inc.

*
*       stan.sa 3.3 7/29/91
*
*       The entry point stan computes the tangent of
*       an input argument;
*       stand does the same except for denormalized input.
*
*       Input: Double-extended number X in location pointed to
*               by address register a0.
*
*       Output: The value tan(X) returned in floating-point register Fp0.
*
*       Accuracy and Monotonicity: The returned result is within 3 ulp in
*               64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
*               result is subsequently rounded to double precision. The
*               result is provably monotonic in double precision.
*
*       Speed: The program sTAN takes approximately 170 cycles for
*               input argument X such that |X| < 15Pi, which is the usual
*               situation.
*
*       Algorithm:
*
*       1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
*
*       2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
*               k = N mod 2, so in particular, k = 0 or 1.
*
*       3. If k is odd, go to 5.
*
*       4. (k is even) Tan(X) = tan(r) and tan(r) is approximated by a
*               rational function U/V where
*               U = r + r*s*(P1 + s*(P2 + s*P3)), and
*               V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))),  s = r*r.
*               Exit.
*
*       4. (k is odd) Tan(X) = -cot(r). Since tan(r) is approximated by a
*               rational function U/V where
*               U = r + r*s*(P1 + s*(P2 + s*P3)), and
*               V = 1 + s*(Q1 + s*(Q2 + s*(Q3 + s*Q4))), s = r*r,
*               -Cot(r) = -V/U. Exit.
*
*       6. If |X| > 1, go to 8.
*
*       7. (|X|<2**(-40)) Tan(X) = X. Exit.
*
*       8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
*

STAN    IDNT    2,1 Motorola 040 Floating Point Software Package

       section 8

       include fpsp.h

BOUNDS1 DC.L $3FD78000,$4004BC7E
TWOBYPI DC.L $3FE45F30,$6DC9C883

TANQ4   DC.L $3EA0B759,$F50F8688
TANP3   DC.L $BEF2BAA5,$A8924F04

TANQ3   DC.L $BF346F59,$B39BA65F,$00000000,$00000000

TANP2   DC.L $3FF60000,$E073D3FC,$199C4A00,$00000000

TANQ2   DC.L $3FF90000,$D23CD684,$15D95FA1,$00000000

TANP1   DC.L $BFFC0000,$8895A6C5,$FB423BCA,$00000000

TANQ1   DC.L $BFFD0000,$EEF57E0D,$A84BC8CE,$00000000

INVTWOPI DC.L $3FFC0000,$A2F9836E,$4E44152A,$00000000

TWOPI1  DC.L $40010000,$C90FDAA2,$00000000,$00000000
TWOPI2  DC.L $3FDF0000,$85A308D4,$00000000,$00000000

*--N*PI/2, -32 <= N <= 32, IN A LEADING TERM IN EXT. AND TRAILING
*--TERM IN SGL. NOTE THAT PI IS 64-BIT LONG, THUS N*PI/2 IS AT
*--MOST 69 BITS LONG.
       xdef    PITBL
PITBL:
 DC.L  $C0040000,$C90FDAA2,$2168C235,$21800000
 DC.L  $C0040000,$C2C75BCD,$105D7C23,$A0D00000
 DC.L  $C0040000,$BC7EDCF7,$FF523611,$A1E80000
 DC.L  $C0040000,$B6365E22,$EE46F000,$21480000
 DC.L  $C0040000,$AFEDDF4D,$DD3BA9EE,$A1200000
 DC.L  $C0040000,$A9A56078,$CC3063DD,$21FC0000
 DC.L  $C0040000,$A35CE1A3,$BB251DCB,$21100000
 DC.L  $C0040000,$9D1462CE,$AA19D7B9,$A1580000
 DC.L  $C0040000,$96CBE3F9,$990E91A8,$21E00000
 DC.L  $C0040000,$90836524,$88034B96,$20B00000
 DC.L  $C0040000,$8A3AE64F,$76F80584,$A1880000
 DC.L  $C0040000,$83F2677A,$65ECBF73,$21C40000
 DC.L  $C0030000,$FB53D14A,$A9C2F2C2,$20000000
 DC.L  $C0030000,$EEC2D3A0,$87AC669F,$21380000
 DC.L  $C0030000,$E231D5F6,$6595DA7B,$A1300000
 DC.L  $C0030000,$D5A0D84C,$437F4E58,$9FC00000
 DC.L  $C0030000,$C90FDAA2,$2168C235,$21000000
 DC.L  $C0030000,$BC7EDCF7,$FF523611,$A1680000
 DC.L  $C0030000,$AFEDDF4D,$DD3BA9EE,$A0A00000
 DC.L  $C0030000,$A35CE1A3,$BB251DCB,$20900000
 DC.L  $C0030000,$96CBE3F9,$990E91A8,$21600000
 DC.L  $C0030000,$8A3AE64F,$76F80584,$A1080000
 DC.L  $C0020000,$FB53D14A,$A9C2F2C2,$1F800000
 DC.L  $C0020000,$E231D5F6,$6595DA7B,$A0B00000
 DC.L  $C0020000,$C90FDAA2,$2168C235,$20800000
 DC.L  $C0020000,$AFEDDF4D,$DD3BA9EE,$A0200000
 DC.L  $C0020000,$96CBE3F9,$990E91A8,$20E00000
 DC.L  $C0010000,$FB53D14A,$A9C2F2C2,$1F000000
 DC.L  $C0010000,$C90FDAA2,$2168C235,$20000000
 DC.L  $C0010000,$96CBE3F9,$990E91A8,$20600000
 DC.L  $C0000000,$C90FDAA2,$2168C235,$1F800000
 DC.L  $BFFF0000,$C90FDAA2,$2168C235,$1F000000
 DC.L  $00000000,$00000000,$00000000,$00000000
 DC.L  $3FFF0000,$C90FDAA2,$2168C235,$9F000000
 DC.L  $40000000,$C90FDAA2,$2168C235,$9F800000
 DC.L  $40010000,$96CBE3F9,$990E91A8,$A0600000
 DC.L  $40010000,$C90FDAA2,$2168C235,$A0000000
 DC.L  $40010000,$FB53D14A,$A9C2F2C2,$9F000000
 DC.L  $40020000,$96CBE3F9,$990E91A8,$A0E00000
 DC.L  $40020000,$AFEDDF4D,$DD3BA9EE,$20200000
 DC.L  $40020000,$C90FDAA2,$2168C235,$A0800000
 DC.L  $40020000,$E231D5F6,$6595DA7B,$20B00000
 DC.L  $40020000,$FB53D14A,$A9C2F2C2,$9F800000
 DC.L  $40030000,$8A3AE64F,$76F80584,$21080000
 DC.L  $40030000,$96CBE3F9,$990E91A8,$A1600000
 DC.L  $40030000,$A35CE1A3,$BB251DCB,$A0900000
 DC.L  $40030000,$AFEDDF4D,$DD3BA9EE,$20A00000
 DC.L  $40030000,$BC7EDCF7,$FF523611,$21680000
 DC.L  $40030000,$C90FDAA2,$2168C235,$A1000000
 DC.L  $40030000,$D5A0D84C,$437F4E58,$1FC00000
 DC.L  $40030000,$E231D5F6,$6595DA7B,$21300000
 DC.L  $40030000,$EEC2D3A0,$87AC669F,$A1380000
 DC.L  $40030000,$FB53D14A,$A9C2F2C2,$A0000000
 DC.L  $40040000,$83F2677A,$65ECBF73,$A1C40000
 DC.L  $40040000,$8A3AE64F,$76F80584,$21880000
 DC.L  $40040000,$90836524,$88034B96,$A0B00000
 DC.L  $40040000,$96CBE3F9,$990E91A8,$A1E00000
 DC.L  $40040000,$9D1462CE,$AA19D7B9,$21580000
 DC.L  $40040000,$A35CE1A3,$BB251DCB,$A1100000
 DC.L  $40040000,$A9A56078,$CC3063DD,$A1FC0000
 DC.L  $40040000,$AFEDDF4D,$DD3BA9EE,$21200000
 DC.L  $40040000,$B6365E22,$EE46F000,$A1480000
 DC.L  $40040000,$BC7EDCF7,$FF523611,$21E80000
 DC.L  $40040000,$C2C75BCD,$105D7C23,$20D00000
 DC.L  $40040000,$C90FDAA2,$2168C235,$A1800000

INARG   equ     FP_SCR4

TWOTO63 equ     L_SCR1
ENDFLAG equ     L_SCR2
N       equ     L_SCR3

       xref    t_frcinx
       xref    t_extdnrm

       xdef    stand
stand:
*--TAN(X) = X FOR DENORMALIZED X

       bra             t_extdnrm

       xdef    stan
stan:
       FMOVE.X         (a0),FP0        ...LOAD INPUT

       MOVE.L          (A0),D0
       MOVE.W          4(A0),D0
       ANDI.L          #$7FFFFFFF,D0

       CMPI.L          #$3FD78000,D0           ...|X| >= 2**(-40)?
       BGE.B           TANOK1
       BRA.W           TANSM
TANOK1:
       CMPI.L          #$4004BC7E,D0           ...|X| < 15 PI?
       BLT.B           TANMAIN
       BRA.W           REDUCEX


TANMAIN:
*--THIS IS THE USUAL CASE, |X| <= 15 PI.
*--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
       FMOVE.X         FP0,FP1
       FMUL.D          TWOBYPI,FP1     ...X*2/PI

*--HIDE THE NEXT TWO INSTRUCTIONS
       lea.l           PITBL+$200,a1 ...TABLE OF N*PI/2, N = -32,...,32

*--FP1 IS NOW READY
       FMOVE.L         FP1,D0          ...CONVERT TO INTEGER

       ASL.L           #4,D0
       ADDA.L          D0,a1           ...ADDRESS N*PIBY2 IN Y1, Y2

       FSUB.X          (a1)+,FP0       ...X-Y1
*--HIDE THE NEXT ONE

       FSUB.S          (a1),FP0        ...FP0 IS R = (X-Y1)-Y2

       ROR.L           #5,D0
       ANDI.L          #$80000000,D0   ...D0 WAS ODD IFF D0 < 0

TANCONT:

       TST.L           D0
       BLT.W           NODD

       FMOVE.X         FP0,FP1
       FMUL.X          FP1,FP1         ...S = R*R

       FMOVE.D         TANQ4,FP3
       FMOVE.D         TANP3,FP2

       FMUL.X          FP1,FP3         ...SQ4
       FMUL.X          FP1,FP2         ...SP3

       FADD.D          TANQ3,FP3       ...Q3+SQ4
       FADD.X          TANP2,FP2       ...P2+SP3

       FMUL.X          FP1,FP3         ...S(Q3+SQ4)
       FMUL.X          FP1,FP2         ...S(P2+SP3)

       FADD.X          TANQ2,FP3       ...Q2+S(Q3+SQ4)
       FADD.X          TANP1,FP2       ...P1+S(P2+SP3)

       FMUL.X          FP1,FP3         ...S(Q2+S(Q3+SQ4))
       FMUL.X          FP1,FP2         ...S(P1+S(P2+SP3))

       FADD.X          TANQ1,FP3       ...Q1+S(Q2+S(Q3+SQ4))
       FMUL.X          FP0,FP2         ...RS(P1+S(P2+SP3))

       FMUL.X          FP3,FP1         ...S(Q1+S(Q2+S(Q3+SQ4)))


       FADD.X          FP2,FP0         ...R+RS(P1+S(P2+SP3))


       FADD.S          #:3F800000,FP1  ...1+S(Q1+...)

       FMOVE.L         d1,fpcr         ;restore users exceptions
       FDIV.X          FP1,FP0         ;last inst - possible exception set

       bra             t_frcinx

NODD:
       FMOVE.X         FP0,FP1
       FMUL.X          FP0,FP0         ...S = R*R

       FMOVE.D         TANQ4,FP3
       FMOVE.D         TANP3,FP2

       FMUL.X          FP0,FP3         ...SQ4
       FMUL.X          FP0,FP2         ...SP3

       FADD.D          TANQ3,FP3       ...Q3+SQ4
       FADD.X          TANP2,FP2       ...P2+SP3

       FMUL.X          FP0,FP3         ...S(Q3+SQ4)
       FMUL.X          FP0,FP2         ...S(P2+SP3)

       FADD.X          TANQ2,FP3       ...Q2+S(Q3+SQ4)
       FADD.X          TANP1,FP2       ...P1+S(P2+SP3)

       FMUL.X          FP0,FP3         ...S(Q2+S(Q3+SQ4))
       FMUL.X          FP0,FP2         ...S(P1+S(P2+SP3))

       FADD.X          TANQ1,FP3       ...Q1+S(Q2+S(Q3+SQ4))
       FMUL.X          FP1,FP2         ...RS(P1+S(P2+SP3))

       FMUL.X          FP3,FP0         ...S(Q1+S(Q2+S(Q3+SQ4)))


       FADD.X          FP2,FP1         ...R+RS(P1+S(P2+SP3))
       FADD.S          #:3F800000,FP0  ...1+S(Q1+...)


       FMOVE.X         FP1,-(sp)
       EORI.L          #$80000000,(sp)

       FMOVE.L         d1,fpcr         ;restore users exceptions
       FDIV.X          (sp)+,FP0       ;last inst - possible exception set

       bra             t_frcinx

TANBORS:
*--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
*--IF |X| < 2**(-40), RETURN X OR 1.
       CMPI.L          #$3FFF8000,D0
       BGT.B           REDUCEX

TANSM:

       FMOVE.X         FP0,-(sp)
       FMOVE.L         d1,fpcr          ;restore users exceptions
       FMOVE.X         (sp)+,FP0       ;last inst - posibble exception set

       bra             t_frcinx


REDUCEX:
*--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
*--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
*--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.

       FMOVEM.X        FP2-FP5,-(A7)   ...save FP2 through FP5
       MOVE.L          D2,-(A7)
       FMOVE.S         #:00000000,FP1

*--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
*--there is a danger of unwanted overflow in first LOOP iteration.  In this
*--case, reduce argument by one remainder step to make subsequent reduction
*--safe.
       cmpi.l  #$7ffeffff,d0           ;is argument dangerously large?
       bne.b   LOOP
       move.l  #$7ffe0000,FP_SCR2(a6)  ;yes
*                                       ;create 2**16383*PI/2
       move.l  #$c90fdaa2,FP_SCR2+4(a6)
       clr.l   FP_SCR2+8(a6)
       ftst.x  fp0                     ;test sign of argument
       move.l  #$7fdc0000,FP_SCR3(a6)  ;create low half of 2**16383*
*                                       ;PI/2 at FP_SCR3
       move.l  #$85a308d3,FP_SCR3+4(a6)
       clr.l   FP_SCR3+8(a6)
       fblt.w  red_neg
       or.w    #$8000,FP_SCR2(a6)      ;positive arg
       or.w    #$8000,FP_SCR3(a6)
red_neg:
       fadd.x  FP_SCR2(a6),fp0         ;high part of reduction is exact
       fmove.x  fp0,fp1                ;save high result in fp1
       fadd.x  FP_SCR3(a6),fp0         ;low part of reduction
       fsub.x  fp0,fp1                 ;determine low component of result
       fadd.x  FP_SCR3(a6),fp1         ;fp0/fp1 are reduced argument.

*--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
*--integer quotient will be stored in N
*--Intermeditate remainder is 66-bit long; (R,r) in (FP0,FP1)

LOOP:
       FMOVE.X         FP0,INARG(a6)   ...+-2**K * F, 1 <= F < 2
       MOVE.W          INARG(a6),D0
       MOVE.L          D0,A1           ...save a copy of D0
       ANDI.L          #$00007FFF,D0
       SUBI.L          #$00003FFF,D0   ...D0 IS K
       CMPI.L          #28,D0
       BLE.B           LASTLOOP
CONTLOOP:
       SUBI.L          #27,D0   ...D0 IS L := K-27
       CLR.L           ENDFLAG(a6)
       BRA.B           WORK
LASTLOOP:
       CLR.L           D0              ...D0 IS L := 0
       MOVE.L          #1,ENDFLAG(a6)

WORK:
*--FIND THE REMAINDER OF (R,r) W.R.T.   2**L * (PI/2). L IS SO CHOSEN
*--THAT INT( X * (2/PI) / 2**(L) ) < 2**29.

*--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
*--2**L * (PIby2_1), 2**L * (PIby2_2)

       MOVE.L          #$00003FFE,D2   ...BIASED EXPO OF 2/PI
       SUB.L           D0,D2           ...BIASED EXPO OF 2**(-L)*(2/PI)

       MOVE.L          #$A2F9836E,FP_SCR1+4(a6)
       MOVE.L          #$4E44152A,FP_SCR1+8(a6)
       MOVE.W          D2,FP_SCR1(a6)  ...FP_SCR1 is 2**(-L)*(2/PI)

       FMOVE.X         FP0,FP2
       FMUL.X          FP_SCR1(a6),FP2
*--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
*--FLOATING POINT FORMAT, THE TWO FMOVE'S       FMOVE.L FP <--> N
*--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
*--(SIGN(INARG)*2**63   +       FP2) - SIGN(INARG)*2**63 WILL GIVE
*--US THE DESIRED VALUE IN FLOATING POINT.

*--HIDE SIX CYCLES OF INSTRUCTION
       MOVE.L          A1,D2
       SWAP            D2
       ANDI.L          #$80000000,D2
       ORI.L           #$5F000000,D2   ...D2 IS SIGN(INARG)*2**63 IN SGL
       MOVE.L          D2,TWOTO63(a6)

       MOVE.L          D0,D2
       ADDI.L          #$00003FFF,D2   ...BIASED EXPO OF 2**L * (PI/2)

*--FP2 IS READY
       FADD.S          TWOTO63(a6),FP2 ...THE FRACTIONAL PART OF FP1 IS ROUNDED

*--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
       MOVE.W          D2,FP_SCR2(a6)
       CLR.W           FP_SCR2+2(a6)
       MOVE.L          #$C90FDAA2,FP_SCR2+4(a6)
       CLR.L           FP_SCR2+8(a6)           ...FP_SCR2 is  2**(L) * Piby2_1

*--FP2 IS READY
       FSUB.S          TWOTO63(a6),FP2         ...FP2 is N

       ADDI.L          #$00003FDD,D0
       MOVE.W          D0,FP_SCR3(a6)
       CLR.W           FP_SCR3+2(a6)
       MOVE.L          #$85A308D3,FP_SCR3+4(a6)
       CLR.L           FP_SCR3+8(a6)           ...FP_SCR3 is 2**(L) * Piby2_2

       MOVE.L          ENDFLAG(a6),D0

*--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
*--P2 = 2**(L) * Piby2_2
       FMOVE.X         FP2,FP4
       FMul.X          FP_SCR2(a6),FP4         ...W = N*P1
       FMove.X         FP2,FP5
       FMul.X          FP_SCR3(a6),FP5         ...w = N*P2
       FMove.X         FP4,FP3
*--we want P+p = W+w  but  |p| <= half ulp of P
*--Then, we need to compute  A := R-P   and  a := r-p
       FAdd.X          FP5,FP3                 ...FP3 is P
       FSub.X          FP3,FP4                 ...W-P

       FSub.X          FP3,FP0                 ...FP0 is A := R - P
       FAdd.X          FP5,FP4                 ...FP4 is p = (W-P)+w

       FMove.X         FP0,FP3                 ...FP3 A
       FSub.X          FP4,FP1                 ...FP1 is a := r - p

*--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
*--|r| <= half ulp of R.
       FAdd.X          FP1,FP0                 ...FP0 is R := A+a
*--No need to calculate r if this is the last loop
       TST.L           D0
       BGT.W           RESTORE

*--Need to calculate r
       FSub.X          FP0,FP3                 ...A-R
       FAdd.X          FP3,FP1                 ...FP1 is r := (A-R)+a
       BRA.W           LOOP

RESTORE:
       FMOVE.L         FP2,N(a6)
       MOVE.L          (A7)+,D2
       FMOVEM.X        (A7)+,FP2-FP5


       MOVE.L          N(a6),D0
       ROR.L           #1,D0


       BRA.W           TANCONT

       end