*       $NetBSD: ssinh.sa,v 1.3 1994/10/26 07:50:05 cgd Exp $

*       MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*       M68000 Hi-Performance Microprocessor Division
*       M68040 Software Package
*
*       M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*       All rights reserved.
*
*       THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*       To the maximum extent permitted by applicable law,
*       MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*       INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*       PARTICULAR PURPOSE and any warranty against infringement with
*       regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*       and any accompanying written materials.
*
*       To the maximum extent permitted by applicable law,
*       IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*       (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*       PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*       OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*       SOFTWARE.  Motorola assumes no responsibility for the maintenance
*       and support of the SOFTWARE.
*
*       You are hereby granted a copyright license to use, modify, and
*       distribute the SOFTWARE so long as this entire notice is retained
*       without alteration in any modified and/or redistributed versions,
*       and that such modified versions are clearly identified as such.
*       No licenses are granted by implication, estoppel or otherwise
*       under any patents or trademarks of Motorola, Inc.

*
*       ssinh.sa 3.1 12/10/90
*
*       The entry point sSinh computes the hyperbolic sine of
*       an input argument; sSinhd does the same except for denormalized
*       input.
*
*       Input: Double-extended number X in location pointed to
*               by address register a0.
*
*       Output: The value sinh(X) returned in floating-point register Fp0.
*
*       Accuracy and Monotonicity: The returned result is within 3 ulps in
*               64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
*               result is subsequently rounded to double precision. The
*               result is provably monotonic in double precision.
*
*       Speed: The program sSINH takes approximately 280 cycles.
*
*       Algorithm:
*
*       SINH
*       1. If |X| > 16380 log2, go to 3.
*
*       2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
*               y = |X|, sgn = sign(X), and z = expm1(Y),
*               sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
*          Exit.
*
*       3. If |X| > 16480 log2, go to 5.
*
*       4. (16380 log2 < |X| <= 16480 log2)
*               sinh(X) = sign(X) * exp(|X|)/2.
*          However, invoking exp(|X|) may cause premature overflow.
*          Thus, we calculate sinh(X) as follows:
*             Y       := |X|
*             sgn     := sign(X)
*             sgnFact := sgn * 2**(16380)
*             Y'      := Y - 16381 log2
*             sinh(X) := sgnFact * exp(Y').
*          Exit.
*
*       5. (|X| > 16480 log2) sinh(X) must overflow. Return
*          sign(X)*Huge*Huge to generate overflow and an infinity with
*          the appropriate sign. Huge is the largest finite number in
*          extended format. Exit.
*

SSINH   IDNT    2,1 Motorola 040 Floating Point Software Package

       section 8

T1      DC.L $40C62D38,$D3D64634 ... 16381 LOG2 LEAD
T2      DC.L $3D6F90AE,$B1E75CC7 ... 16381 LOG2 TRAIL

       xref    t_frcinx
       xref    t_ovfl
       xref    t_extdnrm
       xref    setox
       xref    setoxm1

       xdef    ssinhd
ssinhd:
*--SINH(X) = X FOR DENORMALIZED X

       bra     t_extdnrm

       xdef    ssinh
ssinh:
       FMOVE.x (a0),FP0        ...LOAD INPUT

       move.l  (a0),d0
       move.w  4(a0),d0
       move.l  d0,a1           save a copy of original (compacted) operand
       AND.L   #$7FFFFFFF,D0
       CMP.L   #$400CB167,D0
       BGT.B   SINHBIG

*--THIS IS THE USUAL CASE, |X| < 16380 LOG2
*--Y = |X|, Z = EXPM1(Y), SINH(X) = SIGN(X)*(1/2)*( Z + Z/(1+Z) )

       FABS.X  FP0             ...Y = |X|

       movem.l a1/d1,-(sp)
       fmovem.x fp0,(a0)
       clr.l   d1
       bsr     setoxm1         ...FP0 IS Z = EXPM1(Y)
       fmove.l #0,fpcr
       movem.l (sp)+,a1/d1

       FMOVE.X FP0,FP1
       FADD.S  #:3F800000,FP1  ...1+Z
       FMOVE.X FP0,-(sp)
       FDIV.X  FP1,FP0         ...Z/(1+Z)
       MOVE.L  a1,d0
       AND.L   #$80000000,D0
       OR.L    #$3F000000,D0
       FADD.X  (sp)+,FP0
       MOVE.L  D0,-(sp)

       fmove.l d1,fpcr
       fmul.s  (sp)+,fp0       ;last fp inst - possible exceptions set

       bra     t_frcinx

SINHBIG:
       cmp.l   #$400CB2B3,D0
       bgt     t_ovfl
       FABS.X  FP0
       FSUB.D  T1(pc),FP0      ...(|X|-16381LOG2_LEAD)
       clr.l   -(sp)
       move.l  #$80000000,-(sp)
       move.l  a1,d0
       AND.L   #$80000000,D0
       OR.L    #$7FFB0000,D0
       MOVE.L  D0,-(sp)        ...EXTENDED FMT
       FSUB.D  T2(pc),FP0      ...|X| - 16381 LOG2, ACCURATE

       move.l  d1,-(sp)
       clr.l   d1
       fmovem.x fp0,(a0)
       bsr     setox
       fmove.l (sp)+,fpcr

       fmul.x  (sp)+,fp0       ;possible exception
       bra     t_frcinx

       end