* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
* M68000 Hi-Performance Microprocessor Division
* M68040 Software Package
*
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
* All rights reserved.
*
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
* To the maximum extent permitted by applicable law,
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
* PARTICULAR PURPOSE and any warranty against infringement with
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
* and any accompanying written materials.
*
* To the maximum extent permitted by applicable law,
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
* SOFTWARE. Motorola assumes no responsibility for the maintenance
* and support of the SOFTWARE.
*
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is retained
* without alteration in any modified and/or redistributed versions,
* and that such modified versions are clearly identified as such.
* No licenses are granted by implication, estoppel or otherwise
* under any patents or trademarks of Motorola, Inc.
*
* ssinh.sa 3.1 12/10/90
*
* The entry point sSinh computes the hyperbolic sine of
* an input argument; sSinhd does the same except for denormalized
* input.
*
* Input: Double-extended number X in location pointed to
* by address register a0.
*
* Output: The value sinh(X) returned in floating-point register Fp0.
*
* Accuracy and Monotonicity: The returned result is within 3 ulps in
* 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
* result is subsequently rounded to double precision. The
* result is provably monotonic in double precision.
*
* Speed: The program sSINH takes approximately 280 cycles.
*
* Algorithm:
*
* SINH
* 1. If |X| > 16380 log2, go to 3.
*
* 2. (|X| <= 16380 log2) Sinh(X) is obtained by the formulae
* y = |X|, sgn = sign(X), and z = expm1(Y),
* sinh(X) = sgn*(1/2)*( z + z/(1+z) ).
* Exit.
*
* 3. If |X| > 16480 log2, go to 5.
*
* 4. (16380 log2 < |X| <= 16480 log2)
* sinh(X) = sign(X) * exp(|X|)/2.
* However, invoking exp(|X|) may cause premature overflow.
* Thus, we calculate sinh(X) as follows:
* Y := |X|
* sgn := sign(X)
* sgnFact := sgn * 2**(16380)
* Y' := Y - 16381 log2
* sinh(X) := sgnFact * exp(Y').
* Exit.
*
* 5. (|X| > 16480 log2) sinh(X) must overflow. Return
* sign(X)*Huge*Huge to generate overflow and an infinity with
* the appropriate sign. Huge is the largest finite number in
* extended format. Exit.
*
SSINH IDNT 2,1 Motorola 040 Floating Point Software Package