*       $NetBSD: setox.sa,v 1.5 2014/09/01 08:21:26 matt Exp $

*       MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*       M68000 Hi-Performance Microprocessor Division
*       M68040 Software Package
*
*       M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*       All rights reserved.
*
*       THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*       To the maximum extent permitted by applicable law,
*       MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*       INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*       PARTICULAR PURPOSE and any warranty against infringement with
*       regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*       and any accompanying written materials.
*
*       To the maximum extent permitted by applicable law,
*       IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*       (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*       PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*       OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*       SOFTWARE.  Motorola assumes no responsibility for the maintenance
*       and support of the SOFTWARE.
*
*       You are hereby granted a copyright license to use, modify, and
*       distribute the SOFTWARE so long as this entire notice is retained
*       without alteration in any modified and/or redistributed versions,
*       and that such modified versions are clearly identified as such.
*       No licenses are granted by implication, estoppel or otherwise
*       under any patents or trademarks of Motorola, Inc.

*
*       setox.sa 3.1 12/10/90
*
*       The entry point setox computes the exponential of a value.
*       setoxd does the same except the input value is a denormalized
*       number. setoxm1 computes exp(X)-1, and setoxm1d computes
*       exp(X)-1 for denormalized X.
*
*       INPUT
*       -----
*       Double-extended value in memory location pointed to by address
*       register a0.
*
*       OUTPUT
*       ------
*       exp(X) or exp(X)-1 returned in floating-point register fp0.
*
*       ACCURACY and MONOTONICITY
*       -------------------------
*       The returned result is within 0.85 ulps in 64 significant bit, i.e.
*       within 0.5001 ulp to 53 bits if the result is subsequently rounded
*       to double precision. The result is provably monotonic in double
*       precision.
*
*       SPEED
*       -----
*       Two timings are measured, both in the copy-back mode. The
*       first one is measured when the function is invoked the first time
*       (so the instructions and data are not in cache), and the
*       second one is measured when the function is reinvoked at the same
*       input argument.
*
*       The program setox takes approximately 210/190 cycles for input
*       argument X whose magnitude is less than 16380 log2, which
*       is the usual situation. For the less common arguments,
*       depending on their values, the program may run faster or slower --
*       but no worse than 10% slower even in the extreme cases.
*
*       The program setoxm1 takes approximately ??? / ??? cycles for input
*       argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes
*       approximately ??? / ??? cycles. For the less common arguments,
*       depending on their values, the program may run faster or slower --
*       but no worse than 10% slower even in the extreme cases.
*
*       ALGORITHM and IMPLEMENTATION NOTES
*       ----------------------------------
*
*       setoxd
*       ------
*       Step 1. Set ans := 1.0
*
*       Step 2. Return  ans := ans + sign(X)*2^(-126). Exit.
*       Notes:  This will always generate one exception -- inexact.
*
*
*       setox
*       -----
*
*       Step 1. Filter out extreme cases of input argument.
*               1.1     If |X| >= 2^(-65), go to Step 1.3.
*               1.2     Go to Step 7.
*               1.3     If |X| < 16380 log(2), go to Step 2.
*               1.4     Go to Step 8.
*       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
*                To avoid the use of floating-point comparisons, a
*                compact representation of |X| is used. This format is a
*                32-bit integer, the upper (more significant) 16 bits are
*                the sign and biased exponent field of |X|; the lower 16
*                bits are the 16 most significant fraction (including the
*                explicit bit) bits of |X|. Consequently, the comparisons
*                in Steps 1.1 and 1.3 can be performed by integer comparison.
*                Note also that the constant 16380 log(2) used in Step 1.3
*                is also in the compact form. Thus taking the branch
*                to Step 2 guarantees |X| < 16380 log(2). There is no harm
*                to have a small number of cases where |X| is less than,
*                but close to, 16380 log(2) and the branch to Step 9 is
*                taken.
*
*       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
*               2.1     Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)
*               2.2     N := round-to-nearest-integer( X * 64/log2 ).
*               2.3     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
*               2.4     Calculate       M = (N - J)/64; so N = 64M + J.
*               2.5     Calculate the address of the stored value of 2^(J/64).
*               2.6     Create the value Scale = 2^M.
*       Notes:  The calculation in 2.2 is really performed by
*
*                       Z := X * constant
*                       N := round-to-nearest-integer(Z)
*
*                where
*
*                       constant := single-precision( 64/log 2 ).
*
*                Using a single-precision constant avoids memory access.
*                Another effect of using a single-precision "constant" is
*                that the calculated value Z is
*
*                       Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).
*
*                This error has to be considered later in Steps 3 and 4.
*
*       Step 3. Calculate X - N*log2/64.
*               3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
*               3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
*       Notes:  a) The way L1 and L2 are chosen ensures L1+L2 approximate
*                the value      -log2/64        to 88 bits of accuracy.
*                b) N*L1 is exact because N is no longer than 22 bits and
*                L1 is no longer than 24 bits.
*                c) The calculation X+N*L1 is also exact due to cancellation.
*                Thus, R is practically X+N(L1+L2) to full 64 bits.
*                d) It is important to estimate how large can |R| be after
*                Step 3.2.
*
*                       N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)
*                       X*64/log2 (1+eps)       =       N + f,  |f| <= 0.5
*                       X*64/log2 - N   =       f - eps*X 64/log2
*                       X - N*log2/64   =       f*log2/64 - eps*X
*
*
*                Now |X| <= 16446 log2, thus
*
*                       |X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64
*                                       <= 0.57 log2/64.
*                This bound will be used in Step 4.
*
*       Step 4. Approximate exp(R)-1 by a polynomial
*                       p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
*       Notes:  a) In order to reduce memory access, the coefficients are
*                made as "short" as possible: A1 (which is 1/2), A4 and A5
*                are single precision; A2 and A3 are double precision.
*                b) Even with the restrictions above,
*                       |p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.
*                Note that 0.0062 is slightly bigger than 0.57 log2/64.
*                c) To fully use the pipeline, p is separated into
*                two independent pieces of roughly equal complexities
*                       p = [ R + R*S*(A2 + S*A4) ]     +
*                               [ S*(A1 + S*(A3 + S*A5)) ]
*                where S = R*R.
*
*       Step 5. Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by
*                               ans := T + ( T*p + t)
*                where T and t are the stored values for 2^(J/64).
*       Notes:  2^(J/64) is stored as T and t where T+t approximates
*                2^(J/64) to roughly 85 bits; T is in extended precision
*                and t is in single precision. Note also that T is rounded
*                to 62 bits so that the last two bits of T are zero. The
*                reason for such a special form is that T-1, T-2, and T-8
*                will all be exact --- a property that will give much
*                more accurate computation of the function EXPM1.
*
*       Step 6. Reconstruction of exp(X)
*                       exp(X) = 2^M * 2^(J/64) * exp(R).
*               6.1     If AdjFlag = 0, go to 6.3
*               6.2     ans := ans * AdjScale
*               6.3     Restore the user FPCR
*               6.4     Return ans := ans * Scale. Exit.
*       Notes:  If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,
*                |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will
*                neither overflow nor underflow. If AdjFlag = 1, that
*                means that
*                       X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.
*                Hence, exp(X) may overflow or underflow or neither.
*                When that is the case, AdjScale = 2^(M1) where M1 is
*                approximately M. Thus 6.2 will never cause over/underflow.
*                Possible exception in 6.4 is overflow or underflow.
*                The inexact exception is not generated in 6.4. Although
*                one can argue that the inexact flag should always be
*                raised, to simulate that exception cost to much than the
*                flag is worth in practical uses.
*
*       Step 7. Return 1 + X.
*               7.1     ans := X
*               7.2     Restore user FPCR.
*               7.3     Return ans := 1 + ans. Exit
*       Notes:  For non-zero X, the inexact exception will always be
*                raised by 7.3. That is the only exception raised by 7.3.
*                Note also that we use the FMOVEM instruction to move X
*                in Step 7.1 to avoid unnecessary trapping. (Although
*                the FMOVEM may not seem relevant since X is normalized,
*                the precaution will be useful in the library version of
*                this code where the separate entry for denormalized inputs
*                will be done away with.)
*
*       Step 8. Handle exp(X) where |X| >= 16380log2.
*               8.1     If |X| > 16480 log2, go to Step 9.
*               (mimic 2.2 - 2.6)
*               8.2     N := round-to-integer( X * 64/log2 )
*               8.3     Calculate J = N mod 64, J = 0,1,...,63
*               8.4     K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.
*               8.5     Calculate the address of the stored value 2^(J/64).
*               8.6     Create the values Scale = 2^M, AdjScale = 2^M1.
*               8.7     Go to Step 3.
*       Notes:  Refer to notes for 2.2 - 2.6.
*
*       Step 9. Handle exp(X), |X| > 16480 log2.
*               9.1     If X < 0, go to 9.3
*               9.2     ans := Huge, go to 9.4
*               9.3     ans := Tiny.
*               9.4     Restore user FPCR.
*               9.5     Return ans := ans * ans. Exit.
*       Notes:  Exp(X) will surely overflow or underflow, depending on
*                X's sign. "Huge" and "Tiny" are respectively large/tiny
*                extended-precision numbers whose square over/underflow
*                with an inexact result. Thus, 9.5 always raises the
*                inexact together with either overflow or underflow.
*
*
*       setoxm1d
*       --------
*
*       Step 1. Set ans := 0
*
*       Step 2. Return  ans := X + ans. Exit.
*       Notes:  This will return X with the appropriate rounding
*                precision prescribed by the user FPCR.
*
*       setoxm1
*       -------
*
*       Step 1. Check |X|
*               1.1     If |X| >= 1/4, go to Step 1.3.
*               1.2     Go to Step 7.
*               1.3     If |X| < 70 log(2), go to Step 2.
*               1.4     Go to Step 10.
*       Notes:  The usual case should take the branches 1.1 -> 1.3 -> 2.
*                However, it is conceivable |X| can be small very often
*                because EXPM1 is intended to evaluate exp(X)-1 accurately
*                when |X| is small. For further details on the comparisons,
*                see the notes on Step 1 of setox.
*
*       Step 2. Calculate N = round-to-nearest-int( X * 64/log2 ).
*               2.1     N := round-to-nearest-integer( X * 64/log2 ).
*               2.2     Calculate       J = N mod 64; so J = 0,1,2,..., or 63.
*               2.3     Calculate       M = (N - J)/64; so N = 64M + J.
*               2.4     Calculate the address of the stored value of 2^(J/64).
*               2.5     Create the values Sc = 2^M and OnebySc := -2^(-M).
*       Notes:  See the notes on Step 2 of setox.
*
*       Step 3. Calculate X - N*log2/64.
*               3.1     R := X + N*L1, where L1 := single-precision(-log2/64).
*               3.2     R := R + N*L2, L2 := extended-precision(-log2/64 - L1).
*       Notes:  Applying the analysis of Step 3 of setox in this case
*                shows that |R| <= 0.0055 (note that |X| <= 70 log2 in
*                this case).
*
*       Step 4. Approximate exp(R)-1 by a polynomial
*                       p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))
*       Notes:  a) In order to reduce memory access, the coefficients are
*                made as "short" as possible: A1 (which is 1/2), A5 and A6
*                are single precision; A2, A3 and A4 are double precision.
*                b) Even with the restriction above,
*                       |p - (exp(R)-1)| <      |R| * 2^(-72.7)
*                for all |R| <= 0.0055.
*                c) To fully use the pipeline, p is separated into
*                two independent pieces of roughly equal complexity
*                       p = [ R*S*(A2 + S*(A4 + S*A6)) ]        +
*                               [ R + S*(A1 + S*(A3 + S*A5)) ]
*                where S = R*R.
*
*       Step 5. Compute 2^(J/64)*p by
*                               p := T*p
*                where T and t are the stored values for 2^(J/64).
*       Notes:  2^(J/64) is stored as T and t where T+t approximates
*                2^(J/64) to roughly 85 bits; T is in extended precision
*                and t is in single precision. Note also that T is rounded
*                to 62 bits so that the last two bits of T are zero. The
*                reason for such a special form is that T-1, T-2, and T-8
*                will all be exact --- a property that will be exploited
*                in Step 6 below. The total relative error in p is no
*                bigger than 2^(-67.7) compared to the final result.
*
*       Step 6. Reconstruction of exp(X)-1
*                       exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).
*               6.1     If M <= 63, go to Step 6.3.
*               6.2     ans := T + (p + (t + OnebySc)). Go to 6.6
*               6.3     If M >= -3, go to 6.5.
*               6.4     ans := (T + (p + t)) + OnebySc. Go to 6.6
*               6.5     ans := (T + OnebySc) + (p + t).
*               6.6     Restore user FPCR.
*               6.7     Return ans := Sc * ans. Exit.
*       Notes:  The various arrangements of the expressions give accurate
*                evaluations.
*
*       Step 7. exp(X)-1 for |X| < 1/4.
*               7.1     If |X| >= 2^(-65), go to Step 9.
*               7.2     Go to Step 8.
*
*       Step 8. Calculate exp(X)-1, |X| < 2^(-65).
*               8.1     If |X| < 2^(-16312), goto 8.3
*               8.2     Restore FPCR; return ans := X - 2^(-16382). Exit.
*               8.3     X := X * 2^(140).
*               8.4     Restore FPCR; ans := ans - 2^(-16382).
*                Return ans := ans*2^(140). Exit
*       Notes:  The idea is to return "X - tiny" under the user
*                precision and rounding modes. To avoid unnecessary
*                inefficiency, we stay away from denormalized numbers the
*                best we can. For |X| >= 2^(-16312), the straightforward
*                8.2 generates the inexact exception as the case warrants.
*
*       Step 9. Calculate exp(X)-1, |X| < 1/4, by a polynomial
*                       p = X + X*X*(B1 + X*(B2 + ... + X*B12))
*       Notes:  a) In order to reduce memory access, the coefficients are
*                made as "short" as possible: B1 (which is 1/2), B9 to B12
*                are single precision; B3 to B8 are double precision; and
*                B2 is double extended.
*                b) Even with the restriction above,
*                       |p - (exp(X)-1)| < |X| 2^(-70.6)
*                for all |X| <= 0.251.
*                Note that 0.251 is slightly bigger than 1/4.
*                c) To fully preserve accuracy, the polynomial is computed
*                as     X + ( S*B1 +    Q ) where S = X*X and
*                       Q       =       X*S*(B2 + X*(B3 + ... + X*B12))
*                d) To fully use the pipeline, Q is separated into
*                two independent pieces of roughly equal complexity
*                       Q = [ X*S*(B2 + S*(B4 + ... + S*B12)) ] +
*                               [ S*S*(B3 + S*(B5 + ... + S*B11)) ]
*
*       Step 10.        Calculate exp(X)-1 for |X| >= 70 log 2.
*               10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical
*                purposes. Therefore, go to Step 1 of setox.
*               10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.
*                ans := -1
*                Restore user FPCR
*                Return ans := ans + 2^(-126). Exit.
*       Notes:  10.2 will always create an inexact and return -1 + tiny
*                in the user rounding precision and mode.
*

setox   IDNT    2,1 Motorola 040 Floating Point Software Package

       section 8

       include fpsp.h

L2      DC.L    $3FDC0000,$82E30865,$4361C4C6,$00000000

EXPA3   DC.L    $3FA55555,$55554431
EXPA2   DC.L    $3FC55555,$55554018

HUGE    DC.L    $7FFE0000,$FFFFFFFF,$FFFFFFFF,$00000000
TINY    DC.L    $00010000,$FFFFFFFF,$FFFFFFFF,$00000000

EM1A4   DC.L    $3F811111,$11174385
EM1A3   DC.L    $3FA55555,$55554F5A

EM1A2   DC.L    $3FC55555,$55555555,$00000000,$00000000

EM1B8   DC.L    $3EC71DE3,$A5774682
EM1B7   DC.L    $3EFA01A0,$19D7CB68

EM1B6   DC.L    $3F2A01A0,$1A019DF3
EM1B5   DC.L    $3F56C16C,$16C170E2

EM1B4   DC.L    $3F811111,$11111111
EM1B3   DC.L    $3FA55555,$55555555

EM1B2   DC.L    $3FFC0000,$AAAAAAAA,$AAAAAAAB
       DC.L    $00000000

TWO140  DC.L    $48B00000,$00000000
TWON140 DC.L    $37300000,$00000000

EXPTBL
       DC.L    $3FFF0000,$80000000,$00000000,$00000000
       DC.L    $3FFF0000,$8164D1F3,$BC030774,$9F841A9B
       DC.L    $3FFF0000,$82CD8698,$AC2BA1D8,$9FC1D5B9
       DC.L    $3FFF0000,$843A28C3,$ACDE4048,$A0728369
       DC.L    $3FFF0000,$85AAC367,$CC487B14,$1FC5C95C
       DC.L    $3FFF0000,$871F6196,$9E8D1010,$1EE85C9F
       DC.L    $3FFF0000,$88980E80,$92DA8528,$9FA20729
       DC.L    $3FFF0000,$8A14D575,$496EFD9C,$A07BF9AF
       DC.L    $3FFF0000,$8B95C1E3,$EA8BD6E8,$A0020DCF
       DC.L    $3FFF0000,$8D1ADF5B,$7E5BA9E4,$205A63DA
       DC.L    $3FFF0000,$8EA4398B,$45CD53C0,$1EB70051
       DC.L    $3FFF0000,$9031DC43,$1466B1DC,$1F6EB029
       DC.L    $3FFF0000,$91C3D373,$AB11C338,$A0781494
       DC.L    $3FFF0000,$935A2B2F,$13E6E92C,$9EB319B0
       DC.L    $3FFF0000,$94F4EFA8,$FEF70960,$2017457D
       DC.L    $3FFF0000,$96942D37,$20185A00,$1F11D537
       DC.L    $3FFF0000,$9837F051,$8DB8A970,$9FB952DD
       DC.L    $3FFF0000,$99E04593,$20B7FA64,$1FE43087
       DC.L    $3FFF0000,$9B8D39B9,$D54E5538,$1FA2A818
       DC.L    $3FFF0000,$9D3ED9A7,$2CFFB750,$1FDE494D
       DC.L    $3FFF0000,$9EF53260,$91A111AC,$20504890
       DC.L    $3FFF0000,$A0B0510F,$B9714FC4,$A073691C
       DC.L    $3FFF0000,$A2704303,$0C496818,$1F9B7A05
       DC.L    $3FFF0000,$A43515AE,$09E680A0,$A0797126
       DC.L    $3FFF0000,$A5FED6A9,$B15138EC,$A071A140
       DC.L    $3FFF0000,$A7CD93B4,$E9653568,$204F62DA
       DC.L    $3FFF0000,$A9A15AB4,$EA7C0EF8,$1F283C4A
       DC.L    $3FFF0000,$AB7A39B5,$A93ED338,$9F9A7FDC
       DC.L    $3FFF0000,$AD583EEA,$42A14AC8,$A05B3FAC
       DC.L    $3FFF0000,$AF3B78AD,$690A4374,$1FDF2610
       DC.L    $3FFF0000,$B123F581,$D2AC2590,$9F705F90
       DC.L    $3FFF0000,$B311C412,$A9112488,$201F678A
       DC.L    $3FFF0000,$B504F333,$F9DE6484,$1F32FB13
       DC.L    $3FFF0000,$B6FD91E3,$28D17790,$20038B30
       DC.L    $3FFF0000,$B8FBAF47,$62FB9EE8,$200DC3CC
       DC.L    $3FFF0000,$BAFF5AB2,$133E45FC,$9F8B2AE6
       DC.L    $3FFF0000,$BD08A39F,$580C36C0,$A02BBF70
       DC.L    $3FFF0000,$BF1799B6,$7A731084,$A00BF518
       DC.L    $3FFF0000,$C12C4CCA,$66709458,$A041DD41
       DC.L    $3FFF0000,$C346CCDA,$24976408,$9FDF137B
       DC.L    $3FFF0000,$C5672A11,$5506DADC,$201F1568
       DC.L    $3FFF0000,$C78D74C8,$ABB9B15C,$1FC13A2E
       DC.L    $3FFF0000,$C9B9BD86,$6E2F27A4,$A03F8F03
       DC.L    $3FFF0000,$CBEC14FE,$F2727C5C,$1FF4907D
       DC.L    $3FFF0000,$CE248C15,$1F8480E4,$9E6E53E4
       DC.L    $3FFF0000,$D06333DA,$EF2B2594,$1FD6D45C
       DC.L    $3FFF0000,$D2A81D91,$F12AE45C,$A076EDB9
       DC.L    $3FFF0000,$D4F35AAB,$CFEDFA20,$9FA6DE21
       DC.L    $3FFF0000,$D744FCCA,$D69D6AF4,$1EE69A2F
       DC.L    $3FFF0000,$D99D15C2,$78AFD7B4,$207F439F
       DC.L    $3FFF0000,$DBFBB797,$DAF23754,$201EC207
       DC.L    $3FFF0000,$DE60F482,$5E0E9124,$9E8BE175
       DC.L    $3FFF0000,$E0CCDEEC,$2A94E110,$20032C4B
       DC.L    $3FFF0000,$E33F8972,$BE8A5A50,$2004DFF5
       DC.L    $3FFF0000,$E5B906E7,$7C8348A8,$1E72F47A
       DC.L    $3FFF0000,$E8396A50,$3C4BDC68,$1F722F22
       DC.L    $3FFF0000,$EAC0C6E7,$DD243930,$A017E945
       DC.L    $3FFF0000,$ED4F301E,$D9942B84,$1F401A5B
       DC.L    $3FFF0000,$EFE4B99B,$DCDAF5CC,$9FB9A9E3
       DC.L    $3FFF0000,$F281773C,$59FFB138,$20744C05
       DC.L    $3FFF0000,$F5257D15,$2486CC2C,$1F773A19
       DC.L    $3FFF0000,$F7D0DF73,$0AD13BB8,$1FFE90D5
       DC.L    $3FFF0000,$FA83B2DB,$722A033C,$A041ED22
       DC.L    $3FFF0000,$FD3E0C0C,$F486C174,$1F853F3A

ADJFLAG equ L_SCR2
SCALE   equ FP_SCR1
ADJSCALE equ FP_SCR2
SC      equ FP_SCR3
ONEBYSC equ FP_SCR4

       xref    t_frcinx
       xref    t_extdnrm
       xref    t_unfl
       xref    t_ovfl

       xdef    setoxd
setoxd:
*--entry point for EXP(X), X is denormalized
       MOVE.L          (a0),d0
       ANDI.L          #$80000000,d0
       ORI.L           #$00800000,d0           ...sign(X)*2^(-126)
       MOVE.L          d0,-(sp)
       FMOVE.S         #:3F800000,fp0
       fmove.l         d1,fpcr
       FADD.S          (sp)+,fp0
       bra             t_frcinx

       xdef    setox
setox:
*--entry point for EXP(X), here X is finite, non-zero, and not NaN's

*--Step 1.
       MOVE.L          (a0),d0  ...load part of input X
       ANDI.L          #$7FFF0000,d0   ...biased expo. of X
       CMPI.L          #$3FBE0000,d0   ...2^(-65)
       BGE.B           EXPC1           ...normal case
       BRA.W           EXPSM

EXPC1:
*--The case |X| >= 2^(-65)
       MOVE.W          4(a0),d0        ...expo. and partial sig. of |X|
       CMPI.L          #$400CB167,d0   ...16380 log2 trunc. 16 bits
       BLT.B           EXPMAIN  ...normal case
       BRA.W           EXPBIG

EXPMAIN:
*--Step 2.
*--This is the normal branch:   2^(-65) <= |X| < 16380 log2.
       FMOVE.X         (a0),fp0        ...load input from (a0)

       FMOVE.X         fp0,fp1
       FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
       fmovem.x        fp2/fp3,-(a7)           ...save fp2
       CLR.L           ADJFLAG(a6)
       FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
       LEA             EXPTBL,a1
       FMOVE.L         d0,fp0          ...convert to floating-format

       MOVE.L          d0,L_SCR1(a6)   ...save N temporarily
       ANDI.L          #$3F,d0         ...D0 is J = N mod 64
       LSL.L           #4,d0
       ADDA.L          d0,a1           ...address of 2^(J/64)
       MOVE.L          L_SCR1(a6),d0
       ASR.L           #6,d0           ...D0 is M
       ADDI.W          #$3FFF,d0       ...biased expo. of 2^(M)
       MOVE.W          L2,L_SCR1(a6)   ...prefetch L2, no need in CB

EXPCONT1:
*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 is biased expo. of 2^(M)
       FMOVE.X         fp0,fp2
       FMUL.S          #:BC317218,fp0  ...N * L1, L1 = lead(-log2/64)
       FMUL.X          L2,fp2          ...N * L2, L1+L2 = -log2/64
       FADD.X          fp1,fp0         ...X + N*L1
       FADD.X          fp2,fp0         ...fp0 is R, reduced arg.
*       MOVE.W          #$3FA5,EXPA3    ...load EXPA3 in cache

*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))
*--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
*--[R+R*S*(A2+S*A4)] + [S*(A1+S*(A3+S*A5))]

       FMOVE.X         fp0,fp1
       FMUL.X          fp1,fp1         ...fp1 IS S = R*R

       FMOVE.S         #:3AB60B70,fp2  ...fp2 IS A5
*       CLR.W           2(a1)           ...load 2^(J/64) in cache

       FMUL.X          fp1,fp2         ...fp2 IS S*A5
       FMOVE.X         fp1,fp3
       FMUL.S          #:3C088895,fp3  ...fp3 IS S*A4

       FADD.D          EXPA3,fp2       ...fp2 IS A3+S*A5
       FADD.D          EXPA2,fp3       ...fp3 IS A2+S*A4

       FMUL.X          fp1,fp2         ...fp2 IS S*(A3+S*A5)
       MOVE.W          d0,SCALE(a6)    ...SCALE is 2^(M) in extended
       clr.w           SCALE+2(a6)
       move.l          #$80000000,SCALE+4(a6)
       clr.l           SCALE+8(a6)

       FMUL.X          fp1,fp3         ...fp3 IS S*(A2+S*A4)

       FADD.S          #:3F000000,fp2  ...fp2 IS A1+S*(A3+S*A5)
       FMUL.X          fp0,fp3         ...fp3 IS R*S*(A2+S*A4)

       FMUL.X          fp1,fp2         ...fp2 IS S*(A1+S*(A3+S*A5))
       FADD.X          fp3,fp0         ...fp0 IS R+R*S*(A2+S*A4),
*                                       ...fp3 released

       FMOVE.X         (a1)+,fp1       ...fp1 is lead. pt. of 2^(J/64)
       FADD.X          fp2,fp0         ...fp0 is EXP(R) - 1
*                                       ...fp2 released

*--Step 5
*--final reconstruction process
*--EXP(X) = 2^M * ( 2^(J/64) + 2^(J/64)*(EXP(R)-1) )

       FMUL.X          fp1,fp0         ...2^(J/64)*(Exp(R)-1)
       fmovem.x        (a7)+,fp2/fp3   ...fp2 restored
       FADD.S          (a1),fp0        ...accurate 2^(J/64)

       FADD.X          fp1,fp0         ...2^(J/64) + 2^(J/64)*...
       MOVE.L          ADJFLAG(a6),d0

*--Step 6
       TST.L           D0
       BEQ.B           NORMAL
ADJUST:
       FMUL.X          ADJSCALE(a6),fp0
NORMAL:
       FMOVE.L         d1,FPCR         ...restore user FPCR
       FMUL.X          SCALE(a6),fp0   ...multiply 2^(M)
       bra             t_frcinx

EXPSM:
*--Step 7
       FMOVEM.X        (a0),fp0        ...in case X is denormalized
       FMOVE.L         d1,FPCR
       FADD.S          #:3F800000,fp0  ...1+X in user mode
       bra             t_frcinx

EXPBIG:
*--Step 8
       CMPI.L          #$400CB27C,d0   ...16480 log2
       BGT.B           EXP2BIG
*--Steps 8.2 -- 8.6
       FMOVE.X         (a0),fp0        ...load input from (a0)

       FMOVE.X         fp0,fp1
       FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
       fmovem.x         fp2/fp3,-(a7)          ...save fp2
       MOVE.L          #1,ADJFLAG(a6)
       FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
       LEA             EXPTBL,a1
       FMOVE.L         d0,fp0          ...convert to floating-format
       MOVE.L          d0,L_SCR1(a6)                   ...save N temporarily
       ANDI.L          #$3F,d0          ...D0 is J = N mod 64
       LSL.L           #4,d0
       ADDA.L          d0,a1                   ...address of 2^(J/64)
       MOVE.L          L_SCR1(a6),d0
       ASR.L           #6,d0                   ...D0 is K
       MOVE.L          d0,L_SCR1(a6)                   ...save K temporarily
       ASR.L           #1,d0                   ...D0 is M1
       SUB.L           d0,L_SCR1(a6)                   ...a1 is M
       ADDI.W          #$3FFF,d0               ...biased expo. of 2^(M1)
       MOVE.W          d0,ADJSCALE(a6)         ...ADJSCALE := 2^(M1)
       clr.w           ADJSCALE+2(a6)
       move.l          #$80000000,ADJSCALE+4(a6)
       clr.l           ADJSCALE+8(a6)
       MOVE.L          L_SCR1(a6),d0                   ...D0 is M
       ADDI.W          #$3FFF,d0               ...biased expo. of 2^(M)
       BRA.W           EXPCONT1                ...go back to Step 3

EXP2BIG:
*--Step 9
       FMOVE.L         d1,FPCR
       MOVE.L          (a0),d0
       bclr.b          #sign_bit,(a0)          ...setox always returns positive
       TST.L           d0
       BLT             t_unfl
       BRA             t_ovfl

       xdef    setoxm1d
setoxm1d:
*--entry point for EXPM1(X), here X is denormalized
*--Step 0.
       bra             t_extdnrm


       xdef    setoxm1
setoxm1:
*--entry point for EXPM1(X), here X is finite, non-zero, non-NaN

*--Step 1.
*--Step 1.1
       MOVE.L          (a0),d0  ...load part of input X
       ANDI.L          #$7FFF0000,d0   ...biased expo. of X
       CMPI.L          #$3FFD0000,d0   ...1/4
       BGE.B           EM1CON1  ...|X| >= 1/4
       BRA.W           EM1SM

EM1CON1:
*--Step 1.3
*--The case |X| >= 1/4
       MOVE.W          4(a0),d0        ...expo. and partial sig. of |X|
       CMPI.L          #$4004C215,d0   ...70log2 rounded up to 16 bits
       BLE.B           EM1MAIN  ...1/4 <= |X| <= 70log2
       BRA.W           EM1BIG

EM1MAIN:
*--Step 2.
*--This is the case:    1/4 <= |X| <= 70 log2.
       FMOVE.X         (a0),fp0        ...load input from (a0)

       FMOVE.X         fp0,fp1
       FMUL.S          #:42B8AA3B,fp0  ...64/log2 * X
       fmovem.x        fp2/fp3,-(a7)           ...save fp2
*       MOVE.W          #$3F81,EM1A4            ...prefetch in CB mode
       FMOVE.L         fp0,d0          ...N = int( X * 64/log2 )
       LEA             EXPTBL,a1
       FMOVE.L         d0,fp0          ...convert to floating-format

       MOVE.L          d0,L_SCR1(a6)                   ...save N temporarily
       ANDI.L          #$3F,d0          ...D0 is J = N mod 64
       LSL.L           #4,d0
       ADDA.L          d0,a1                   ...address of 2^(J/64)
       MOVE.L          L_SCR1(a6),d0
       ASR.L           #6,d0                   ...D0 is M
       MOVE.L          d0,L_SCR1(a6)                   ...save a copy of M
*       MOVE.W          #$3FDC,L2               ...prefetch L2 in CB mode

*--Step 3.
*--fp1,fp2 saved on the stack. fp0 is N, fp1 is X,
*--a0 points to 2^(J/64), D0 and a1 both contain M
       FMOVE.X         fp0,fp2
       FMUL.S          #:BC317218,fp0  ...N * L1, L1 = lead(-log2/64)
       FMUL.X          L2,fp2          ...N * L2, L1+L2 = -log2/64
       FADD.X          fp1,fp0  ...X + N*L1
       FADD.X          fp2,fp0  ...fp0 is R, reduced arg.
*       MOVE.W          #$3FC5,EM1A2            ...load EM1A2 in cache
       ADDI.W          #$3FFF,d0               ...D0 is biased expo. of 2^M

*--Step 4.
*--WE NOW COMPUTE EXP(R)-1 BY A POLYNOMIAL
*-- R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*(A5 + R*A6)))))
*--TO FULLY USE THE PIPELINE, WE COMPUTE S = R*R
*--[R*S*(A2+S*(A4+S*A6))] + [R+S*(A1+S*(A3+S*A5))]

       FMOVE.X         fp0,fp1
       FMUL.X          fp1,fp1         ...fp1 IS S = R*R

       FMOVE.S         #:3950097B,fp2  ...fp2 IS a6
*       CLR.W           2(a1)           ...load 2^(J/64) in cache

       FMUL.X          fp1,fp2         ...fp2 IS S*A6
       FMOVE.X         fp1,fp3
       FMUL.S          #:3AB60B6A,fp3  ...fp3 IS S*A5

       FADD.D          EM1A4,fp2       ...fp2 IS A4+S*A6
       FADD.D          EM1A3,fp3       ...fp3 IS A3+S*A5
       MOVE.W          d0,SC(a6)               ...SC is 2^(M) in extended
       clr.w           SC+2(a6)
       move.l          #$80000000,SC+4(a6)
       clr.l           SC+8(a6)

       FMUL.X          fp1,fp2         ...fp2 IS S*(A4+S*A6)
       MOVE.L          L_SCR1(a6),d0           ...D0 is        M
       NEG.W           D0              ...D0 is -M
       FMUL.X          fp1,fp3         ...fp3 IS S*(A3+S*A5)
       ADDI.W          #$3FFF,d0       ...biased expo. of 2^(-M)
       FADD.D          EM1A2,fp2       ...fp2 IS A2+S*(A4+S*A6)
       FADD.S          #:3F000000,fp3  ...fp3 IS A1+S*(A3+S*A5)

       FMUL.X          fp1,fp2         ...fp2 IS S*(A2+S*(A4+S*A6))
       ORI.W           #$8000,d0       ...signed/expo. of -2^(-M)
       MOVE.W          d0,ONEBYSC(a6)  ...OnebySc is -2^(-M)
       clr.w           ONEBYSC+2(a6)
       move.l          #$80000000,ONEBYSC+4(a6)
       clr.l           ONEBYSC+8(a6)
       FMUL.X          fp3,fp1         ...fp1 IS S*(A1+S*(A3+S*A5))
*                                       ...fp3 released

       FMUL.X          fp0,fp2         ...fp2 IS R*S*(A2+S*(A4+S*A6))
       FADD.X          fp1,fp0         ...fp0 IS R+S*(A1+S*(A3+S*A5))
*                                       ...fp1 released

       FADD.X          fp2,fp0         ...fp0 IS EXP(R)-1
*                                       ...fp2 released
       fmovem.x        (a7)+,fp2/fp3   ...fp2 restored

*--Step 5
*--Compute 2^(J/64)*p

       FMUL.X          (a1),fp0        ...2^(J/64)*(Exp(R)-1)

*--Step 6
*--Step 6.1
       MOVE.L          L_SCR1(a6),d0           ...retrieve M
       CMPI.L          #63,d0
       BLE.B           MLE63
*--Step 6.2     M >= 64
       FMOVE.S         12(a1),fp1      ...fp1 is t
       FADD.X          ONEBYSC(a6),fp1 ...fp1 is t+OnebySc
       FADD.X          fp1,fp0         ...p+(t+OnebySc), fp1 released
       FADD.X          (a1),fp0        ...T+(p+(t+OnebySc))
       BRA.B           EM1SCALE
MLE63:
*--Step 6.3     M <= 63
       CMPI.L          #-3,d0
       BGE.B           MGEN3
MLTN3:
*--Step 6.4     M <= -4
       FADD.S          12(a1),fp0      ...p+t
       FADD.X          (a1),fp0        ...T+(p+t)
       FADD.X          ONEBYSC(a6),fp0 ...OnebySc + (T+(p+t))
       BRA.B           EM1SCALE
MGEN3:
*--Step 6.5     -3 <= M <= 63
       FMOVE.X         (a1)+,fp1       ...fp1 is T
       FADD.S          (a1),fp0        ...fp0 is p+t
       FADD.X          ONEBYSC(a6),fp1 ...fp1 is T+OnebySc
       FADD.X          fp1,fp0         ...(T+OnebySc)+(p+t)

EM1SCALE:
*--Step 6.6
       FMOVE.L         d1,FPCR
       FMUL.X          SC(a6),fp0

       bra             t_frcinx

EM1SM:
*--Step 7       |X| < 1/4.
       CMPI.L          #$3FBE0000,d0   ...2^(-65)
       BGE.B           EM1POLY

EM1TINY:
*--Step 8       |X| < 2^(-65)
       CMPI.L          #$00330000,d0   ...2^(-16312)
       BLT.B           EM12TINY
*--Step 8.2
       MOVE.L          #$80010000,SC(a6)       ...SC is -2^(-16382)
       move.l          #$80000000,SC+4(a6)
       clr.l           SC+8(a6)
       FMOVE.X         (a0),fp0
       FMOVE.L         d1,FPCR
       FADD.X          SC(a6),fp0

       bra             t_frcinx

EM12TINY:
*--Step 8.3
       FMOVE.X         (a0),fp0
       FMUL.D          TWO140,fp0
       MOVE.L          #$80010000,SC(a6)
       move.l          #$80000000,SC+4(a6)
       clr.l           SC+8(a6)
       FADD.X          SC(a6),fp0
       FMOVE.L         d1,FPCR
       FMUL.D          TWON140,fp0

       bra             t_frcinx

EM1POLY:
*--Step 9       exp(X)-1 by a simple polynomial
       FMOVE.X         (a0),fp0        ...fp0 is X
       FMUL.X          fp0,fp0         ...fp0 is S := X*X
       fmovem.x        fp2/fp3,-(a7)   ...save fp2
       FMOVE.S         #:2F30CAA8,fp1  ...fp1 is B12
       FMUL.X          fp0,fp1         ...fp1 is S*B12
       FMOVE.S         #:310F8290,fp2  ...fp2 is B11
       FADD.S          #:32D73220,fp1  ...fp1 is B10+S*B12

       FMUL.X          fp0,fp2         ...fp2 is S*B11
       FMUL.X          fp0,fp1         ...fp1 is S*(B10 + ...

       FADD.S          #:3493F281,fp2  ...fp2 is B9+S*...
       FADD.D          EM1B8,fp1       ...fp1 is B8+S*...

       FMUL.X          fp0,fp2         ...fp2 is S*(B9+...
       FMUL.X          fp0,fp1         ...fp1 is S*(B8+...

       FADD.D          EM1B7,fp2       ...fp2 is B7+S*...
       FADD.D          EM1B6,fp1       ...fp1 is B6+S*...

       FMUL.X          fp0,fp2         ...fp2 is S*(B7+...
       FMUL.X          fp0,fp1         ...fp1 is S*(B6+...

       FADD.D          EM1B5,fp2       ...fp2 is B5+S*...
       FADD.D          EM1B4,fp1       ...fp1 is B4+S*...

       FMUL.X          fp0,fp2         ...fp2 is S*(B5+...
       FMUL.X          fp0,fp1         ...fp1 is S*(B4+...

       FADD.D          EM1B3,fp2       ...fp2 is B3+S*...
       FADD.X          EM1B2,fp1       ...fp1 is B2+S*...

       FMUL.X          fp0,fp2         ...fp2 is S*(B3+...
       FMUL.X          fp0,fp1         ...fp1 is S*(B2+...

       FMUL.X          fp0,fp2         ...fp2 is S*S*(B3+...)
       FMUL.X          (a0),fp1        ...fp1 is X*S*(B2...

       FMUL.S          #:3F000000,fp0  ...fp0 is S*B1
       FADD.X          fp2,fp1         ...fp1 is Q
*                                       ...fp2 released

       fmovem.x        (a7)+,fp2/fp3   ...fp2 restored

       FADD.X          fp1,fp0         ...fp0 is S*B1+Q
*                                       ...fp1 released

       FMOVE.L         d1,FPCR
       FADD.X          (a0),fp0

       bra             t_frcinx

EM1BIG:
*--Step 10      |X| > 70 log2
       MOVE.L          (a0),d0
       TST.L           d0
       BGT.W           EXPC1
*--Step 10.2
       FMOVE.S         #:BF800000,fp0  ...fp0 is -1
       FMOVE.L         d1,FPCR
       FADD.S          #:00800000,fp0  ...-1 + 2^(-126)

       bra             t_frcinx

       end