*       $NetBSD: satan.sa,v 1.3 1994/10/26 07:49:31 cgd Exp $

*       MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*       M68000 Hi-Performance Microprocessor Division
*       M68040 Software Package
*
*       M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*       All rights reserved.
*
*       THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*       To the maximum extent permitted by applicable law,
*       MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*       INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*       PARTICULAR PURPOSE and any warranty against infringement with
*       regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*       and any accompanying written materials.
*
*       To the maximum extent permitted by applicable law,
*       IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*       (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*       PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*       OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*       SOFTWARE.  Motorola assumes no responsibility for the maintenance
*       and support of the SOFTWARE.
*
*       You are hereby granted a copyright license to use, modify, and
*       distribute the SOFTWARE so long as this entire notice is retained
*       without alteration in any modified and/or redistributed versions,
*       and that such modified versions are clearly identified as such.
*       No licenses are granted by implication, estoppel or otherwise
*       under any patents or trademarks of Motorola, Inc.

*
*       satan.sa 3.3 12/19/90
*
*       The entry point satan computes the arctagent of an
*       input value. satand does the same except the input value is a
*       denormalized number.
*
*       Input: Double-extended value in memory location pointed to by address
*               register a0.
*
*       Output: Arctan(X) returned in floating-point register Fp0.
*
*       Accuracy and Monotonicity: The returned result is within 2 ulps in
*               64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
*               result is subsequently rounded to double precision. The
*               result is provably monotonic in double precision.
*
*       Speed: The program satan takes approximately 160 cycles for input
*               argument X such that 1/16 < |X| < 16. For the other arguments,
*               the program will run no worse than 10% slower.
*
*       Algorithm:
*       Step 1. If |X| >= 16 or |X| < 1/16, go to Step 5.
*
*       Step 2. Let X = sgn * 2**k * 1.xxxxxxxx...x. Note that k = -4, -3,..., or 3.
*               Define F = sgn * 2**k * 1.xxxx1, i.e. the first 5 significant bits
*               of X with a bit-1 attached at the 6-th bit position. Define u
*               to be u = (X-F) / (1 + X*F).
*
*       Step 3. Approximate arctan(u) by a polynomial poly.
*
*       Step 4. Return arctan(F) + poly, arctan(F) is fetched from a table of values
*               calculated beforehand. Exit.
*
*       Step 5. If |X| >= 16, go to Step 7.
*
*       Step 6. Approximate arctan(X) by an odd polynomial in X. Exit.
*
*       Step 7. Define X' = -1/X. Approximate arctan(X') by an odd polynomial in X'.
*               Arctan(X) = sign(X)*Pi/2 + arctan(X'). Exit.
*

satan   IDNT    2,1 Motorola 040 Floating Point Software Package

       section 8

       include fpsp.h

BOUNDS1 DC.L $3FFB8000,$4002FFFF

ONE     DC.L $3F800000

       DC.L $00000000

ATANA3  DC.L $BFF6687E,$314987D8
ATANA2  DC.L $4002AC69,$34A26DB3

ATANA1  DC.L $BFC2476F,$4E1DA28E
ATANB6  DC.L $3FB34444,$7F876989

ATANB5  DC.L $BFB744EE,$7FAF45DB
ATANB4  DC.L $3FBC71C6,$46940220

ATANB3  DC.L $BFC24924,$921872F9
ATANB2  DC.L $3FC99999,$99998FA9

ATANB1  DC.L $BFD55555,$55555555
ATANC5  DC.L $BFB70BF3,$98539E6A

ATANC4  DC.L $3FBC7187,$962D1D7D
ATANC3  DC.L $BFC24924,$827107B8

ATANC2  DC.L $3FC99999,$9996263E
ATANC1  DC.L $BFD55555,$55555536

PPIBY2  DC.L $3FFF0000,$C90FDAA2,$2168C235,$00000000
NPIBY2  DC.L $BFFF0000,$C90FDAA2,$2168C235,$00000000
PTINY   DC.L $00010000,$80000000,$00000000,$00000000
NTINY   DC.L $80010000,$80000000,$00000000,$00000000

ATANTBL:
       DC.L    $3FFB0000,$83D152C5,$060B7A51,$00000000
       DC.L    $3FFB0000,$8BC85445,$65498B8B,$00000000
       DC.L    $3FFB0000,$93BE4060,$17626B0D,$00000000
       DC.L    $3FFB0000,$9BB3078D,$35AEC202,$00000000
       DC.L    $3FFB0000,$A3A69A52,$5DDCE7DE,$00000000
       DC.L    $3FFB0000,$AB98E943,$62765619,$00000000
       DC.L    $3FFB0000,$B389E502,$F9C59862,$00000000
       DC.L    $3FFB0000,$BB797E43,$6B09E6FB,$00000000
       DC.L    $3FFB0000,$C367A5C7,$39E5F446,$00000000
       DC.L    $3FFB0000,$CB544C61,$CFF7D5C6,$00000000
       DC.L    $3FFB0000,$D33F62F8,$2488533E,$00000000
       DC.L    $3FFB0000,$DB28DA81,$62404C77,$00000000
       DC.L    $3FFB0000,$E310A407,$8AD34F18,$00000000
       DC.L    $3FFB0000,$EAF6B0A8,$188EE1EB,$00000000
       DC.L    $3FFB0000,$F2DAF194,$9DBE79D5,$00000000
       DC.L    $3FFB0000,$FABD5813,$61D47E3E,$00000000
       DC.L    $3FFC0000,$8346AC21,$0959ECC4,$00000000
       DC.L    $3FFC0000,$8B232A08,$304282D8,$00000000
       DC.L    $3FFC0000,$92FB70B8,$D29AE2F9,$00000000
       DC.L    $3FFC0000,$9ACF476F,$5CCD1CB4,$00000000
       DC.L    $3FFC0000,$A29E7630,$4954F23F,$00000000
       DC.L    $3FFC0000,$AA68C5D0,$8AB85230,$00000000
       DC.L    $3FFC0000,$B22DFFFD,$9D539F83,$00000000
       DC.L    $3FFC0000,$B9EDEF45,$3E900EA5,$00000000
       DC.L    $3FFC0000,$C1A85F1C,$C75E3EA5,$00000000
       DC.L    $3FFC0000,$C95D1BE8,$28138DE6,$00000000
       DC.L    $3FFC0000,$D10BF300,$840D2DE4,$00000000
       DC.L    $3FFC0000,$D8B4B2BA,$6BC05E7A,$00000000
       DC.L    $3FFC0000,$E0572A6B,$B42335F6,$00000000
       DC.L    $3FFC0000,$E7F32A70,$EA9CAA8F,$00000000
       DC.L    $3FFC0000,$EF888432,$64ECEFAA,$00000000
       DC.L    $3FFC0000,$F7170A28,$ECC06666,$00000000
       DC.L    $3FFD0000,$812FD288,$332DAD32,$00000000
       DC.L    $3FFD0000,$88A8D1B1,$218E4D64,$00000000
       DC.L    $3FFD0000,$9012AB3F,$23E4AEE8,$00000000
       DC.L    $3FFD0000,$976CC3D4,$11E7F1B9,$00000000
       DC.L    $3FFD0000,$9EB68949,$3889A227,$00000000
       DC.L    $3FFD0000,$A5EF72C3,$4487361B,$00000000
       DC.L    $3FFD0000,$AD1700BA,$F07A7227,$00000000
       DC.L    $3FFD0000,$B42CBCFA,$FD37EFB7,$00000000
       DC.L    $3FFD0000,$BB303A94,$0BA80F89,$00000000
       DC.L    $3FFD0000,$C22115C6,$FCAEBBAF,$00000000
       DC.L    $3FFD0000,$C8FEF3E6,$86331221,$00000000
       DC.L    $3FFD0000,$CFC98330,$B4000C70,$00000000
       DC.L    $3FFD0000,$D6807AA1,$102C5BF9,$00000000
       DC.L    $3FFD0000,$DD2399BC,$31252AA3,$00000000
       DC.L    $3FFD0000,$E3B2A855,$6B8FC517,$00000000
       DC.L    $3FFD0000,$EA2D764F,$64315989,$00000000
       DC.L    $3FFD0000,$F3BF5BF8,$BAD1A21D,$00000000
       DC.L    $3FFE0000,$801CE39E,$0D205C9A,$00000000
       DC.L    $3FFE0000,$8630A2DA,$DA1ED066,$00000000
       DC.L    $3FFE0000,$8C1AD445,$F3E09B8C,$00000000
       DC.L    $3FFE0000,$91DB8F16,$64F350E2,$00000000
       DC.L    $3FFE0000,$97731420,$365E538C,$00000000
       DC.L    $3FFE0000,$9CE1C8E6,$A0B8CDBA,$00000000
       DC.L    $3FFE0000,$A22832DB,$CADAAE09,$00000000
       DC.L    $3FFE0000,$A746F2DD,$B7602294,$00000000
       DC.L    $3FFE0000,$AC3EC0FB,$997DD6A2,$00000000
       DC.L    $3FFE0000,$B110688A,$EBDC6F6A,$00000000
       DC.L    $3FFE0000,$B5BCC490,$59ECC4B0,$00000000
       DC.L    $3FFE0000,$BA44BC7D,$D470782F,$00000000
       DC.L    $3FFE0000,$BEA94144,$FD049AAC,$00000000
       DC.L    $3FFE0000,$C2EB4ABB,$661628B6,$00000000
       DC.L    $3FFE0000,$C70BD54C,$E602EE14,$00000000
       DC.L    $3FFE0000,$CD000549,$ADEC7159,$00000000
       DC.L    $3FFE0000,$D48457D2,$D8EA4EA3,$00000000
       DC.L    $3FFE0000,$DB948DA7,$12DECE3B,$00000000
       DC.L    $3FFE0000,$E23855F9,$69E8096A,$00000000
       DC.L    $3FFE0000,$E8771129,$C4353259,$00000000
       DC.L    $3FFE0000,$EE57C16E,$0D379C0D,$00000000
       DC.L    $3FFE0000,$F3E10211,$A87C3779,$00000000
       DC.L    $3FFE0000,$F919039D,$758B8D41,$00000000
       DC.L    $3FFE0000,$FE058B8F,$64935FB3,$00000000
       DC.L    $3FFF0000,$8155FB49,$7B685D04,$00000000
       DC.L    $3FFF0000,$83889E35,$49D108E1,$00000000
       DC.L    $3FFF0000,$859CFA76,$511D724B,$00000000
       DC.L    $3FFF0000,$87952ECF,$FF8131E7,$00000000
       DC.L    $3FFF0000,$89732FD1,$9557641B,$00000000
       DC.L    $3FFF0000,$8B38CAD1,$01932A35,$00000000
       DC.L    $3FFF0000,$8CE7A8D8,$301EE6B5,$00000000
       DC.L    $3FFF0000,$8F46A39E,$2EAE5281,$00000000
       DC.L    $3FFF0000,$922DA7D7,$91888487,$00000000
       DC.L    $3FFF0000,$94D19FCB,$DEDF5241,$00000000
       DC.L    $3FFF0000,$973AB944,$19D2A08B,$00000000
       DC.L    $3FFF0000,$996FF00E,$08E10B96,$00000000
       DC.L    $3FFF0000,$9B773F95,$12321DA7,$00000000
       DC.L    $3FFF0000,$9D55CC32,$0F935624,$00000000
       DC.L    $3FFF0000,$9F100575,$006CC571,$00000000
       DC.L    $3FFF0000,$A0A9C290,$D97CC06C,$00000000
       DC.L    $3FFF0000,$A22659EB,$EBC0630A,$00000000
       DC.L    $3FFF0000,$A388B4AF,$F6EF0EC9,$00000000
       DC.L    $3FFF0000,$A4D35F10,$61D292C4,$00000000
       DC.L    $3FFF0000,$A60895DC,$FBE3187E,$00000000
       DC.L    $3FFF0000,$A72A51DC,$7367BEAC,$00000000
       DC.L    $3FFF0000,$A83A5153,$0956168F,$00000000
       DC.L    $3FFF0000,$A93A2007,$7539546E,$00000000
       DC.L    $3FFF0000,$AA9E7245,$023B2605,$00000000
       DC.L    $3FFF0000,$AC4C84BA,$6FE4D58F,$00000000
       DC.L    $3FFF0000,$ADCE4A4A,$606B9712,$00000000
       DC.L    $3FFF0000,$AF2A2DCD,$8D263C9C,$00000000
       DC.L    $3FFF0000,$B0656F81,$F22265C7,$00000000
       DC.L    $3FFF0000,$B1846515,$0F71496A,$00000000
       DC.L    $3FFF0000,$B28AAA15,$6F9ADA35,$00000000
       DC.L    $3FFF0000,$B37B44FF,$3766B895,$00000000
       DC.L    $3FFF0000,$B458C3DC,$E9630433,$00000000
       DC.L    $3FFF0000,$B525529D,$562246BD,$00000000
       DC.L    $3FFF0000,$B5E2CCA9,$5F9D88CC,$00000000
       DC.L    $3FFF0000,$B692CADA,$7ACA1ADA,$00000000
       DC.L    $3FFF0000,$B736AEA7,$A6925838,$00000000
       DC.L    $3FFF0000,$B7CFAB28,$7E9F7B36,$00000000
       DC.L    $3FFF0000,$B85ECC66,$CB219835,$00000000
       DC.L    $3FFF0000,$B8E4FD5A,$20A593DA,$00000000
       DC.L    $3FFF0000,$B99F41F6,$4AFF9BB5,$00000000
       DC.L    $3FFF0000,$BA7F1E17,$842BBE7B,$00000000
       DC.L    $3FFF0000,$BB471285,$7637E17D,$00000000
       DC.L    $3FFF0000,$BBFABE8A,$4788DF6F,$00000000
       DC.L    $3FFF0000,$BC9D0FAD,$2B689D79,$00000000
       DC.L    $3FFF0000,$BD306A39,$471ECD86,$00000000
       DC.L    $3FFF0000,$BDB6C731,$856AF18A,$00000000
       DC.L    $3FFF0000,$BE31CAC5,$02E80D70,$00000000
       DC.L    $3FFF0000,$BEA2D55C,$E33194E2,$00000000
       DC.L    $3FFF0000,$BF0B10B7,$C03128F0,$00000000
       DC.L    $3FFF0000,$BF6B7A18,$DACB778D,$00000000
       DC.L    $3FFF0000,$BFC4EA46,$63FA18F6,$00000000
       DC.L    $3FFF0000,$C0181BDE,$8B89A454,$00000000
       DC.L    $3FFF0000,$C065B066,$CFBF6439,$00000000
       DC.L    $3FFF0000,$C0AE345F,$56340AE6,$00000000
       DC.L    $3FFF0000,$C0F22291,$9CB9E6A7,$00000000

X       equ     FP_SCR1
XDCARE  equ     X+2
XFRAC   equ     X+4
XFRACLO equ     X+8

ATANF   equ     FP_SCR2
ATANFHI equ     ATANF+4
ATANFLO equ     ATANF+8


       xref    t_frcinx
       xref    t_extdnrm

       xdef    satand
satand:
*--ENTRY POINT FOR ATAN(X) FOR DENORMALIZED ARGUMENT

       bra             t_extdnrm

       xdef    satan
satan:
*--ENTRY POINT FOR ATAN(X), HERE X IS FINITE, NON-ZERO, AND NOT NAN'S

       FMOVE.X         (A0),FP0        ...LOAD INPUT

       MOVE.L          (A0),D0
       MOVE.W          4(A0),D0
       FMOVE.X         FP0,X(a6)
       ANDI.L          #$7FFFFFFF,D0

       CMPI.L          #$3FFB8000,D0           ...|X| >= 1/16?
       BGE.B           ATANOK1
       BRA.W           ATANSM

ATANOK1:
       CMPI.L          #$4002FFFF,D0           ...|X| < 16 ?
       BLE.B           ATANMAIN
       BRA.W           ATANBIG


*--THE MOST LIKELY CASE, |X| IN [1/16, 16). WE USE TABLE TECHNIQUE
*--THE IDEA IS ATAN(X) = ATAN(F) + ATAN( [X-F] / [1+XF] ).
*--SO IF F IS CHOSEN TO BE CLOSE TO X AND ATAN(F) IS STORED IN
*--A TABLE, ALL WE NEED IS TO APPROXIMATE ATAN(U) WHERE
*--U = (X-F)/(1+XF) IS SMALL (REMEMBER F IS CLOSE TO X). IT IS
*--TRUE THAT A DIVIDE IS NOW NEEDED, BUT THE APPROXIMATION FOR
*--ATAN(U) IS A VERY SHORT POLYNOMIAL AND THE INDEXING TO
*--FETCH F AND SAVING OF REGISTERS CAN BE ALL HIDED UNDER THE
*--DIVIDE. IN THE END THIS METHOD IS MUCH FASTER THAN A TRADITIONAL
*--ONE. NOTE ALSO THAT THE TRADITIONAL SCHEME THAT APPROXIMATE
*--ATAN(X) DIRECTLY WILL NEED TO USE A RATIONAL APPROXIMATION
*--(DIVISION NEEDED) ANYWAY BECAUSE A POLYNOMIAL APPROXIMATION
*--WILL INVOLVE A VERY LONG POLYNOMIAL.

*--NOW WE SEE X AS +-2^K * 1.BBBBBBB....B <- 1. + 63 BITS
*--WE CHOSE F TO BE +-2^K * 1.BBBB1
*--THAT IS IT MATCHES THE EXPONENT AND FIRST 5 BITS OF X, THE
*--SIXTH BITS IS SET TO BE 1. SINCE K = -4, -3, ..., 3, THERE
*--ARE ONLY 8 TIMES 16 = 2^7 = 128 |F|'S. SINCE ATAN(-|F|) IS
*-- -ATAN(|F|), WE NEED TO STORE ONLY ATAN(|F|).

ATANMAIN:

       CLR.W           XDCARE(a6)              ...CLEAN UP X JUST IN CASE
       ANDI.L          #$F8000000,XFRAC(a6)    ...FIRST 5 BITS
       ORI.L           #$04000000,XFRAC(a6)    ...SET 6-TH BIT TO 1
       CLR.L           XFRACLO(a6)             ...LOCATION OF X IS NOW F

       FMOVE.X         FP0,FP1                 ...FP1 IS X
       FMUL.X          X(a6),FP1               ...FP1 IS X*F, NOTE THAT X*F > 0
       FSUB.X          X(a6),FP0               ...FP0 IS X-F
       FADD.S          #:3F800000,FP1          ...FP1 IS 1 + X*F
       FDIV.X          FP1,FP0                 ...FP0 IS U = (X-F)/(1+X*F)

*--WHILE THE DIVISION IS TAKING ITS TIME, WE FETCH ATAN(|F|)
*--CREATE ATAN(F) AND STORE IT IN ATANF, AND
*--SAVE REGISTERS FP2.

       MOVE.L          d2,-(a7)        ...SAVE d2 TEMPORARILY
       MOVE.L          d0,d2           ...THE EXPO AND 16 BITS OF X
       ANDI.L          #$00007800,d0   ...4 VARYING BITS OF F'S FRACTION
       ANDI.L          #$7FFF0000,d2   ...EXPONENT OF F
       SUBI.L          #$3FFB0000,d2   ...K+4
       ASR.L           #1,d2
       ADD.L           d2,d0           ...THE 7 BITS IDENTIFYING F
       ASR.L           #7,d0           ...INDEX INTO TBL OF ATAN(|F|)
       LEA             ATANTBL,a1
       ADDA.L          d0,a1           ...ADDRESS OF ATAN(|F|)
       MOVE.L          (a1)+,ATANF(a6)
       MOVE.L          (a1)+,ATANFHI(a6)
       MOVE.L          (a1)+,ATANFLO(a6)       ...ATANF IS NOW ATAN(|F|)
       MOVE.L          X(a6),d0                ...LOAD SIGN AND EXPO. AGAIN
       ANDI.L          #$80000000,d0   ...SIGN(F)
       OR.L            d0,ATANF(a6)    ...ATANF IS NOW SIGN(F)*ATAN(|F|)
       MOVE.L          (a7)+,d2        ...RESTORE d2

*--THAT'S ALL I HAVE TO DO FOR NOW,
*--BUT ALAS, THE DIVIDE IS STILL CRANKING!

*--U IN FP0, WE ARE NOW READY TO COMPUTE ATAN(U) AS
*--U + A1*U*V*(A2 + V*(A3 + V)), V = U*U
*--THE POLYNOMIAL MAY LOOK STRANGE, BUT IS NEVERTHELESS CORRECT.
*--THE NATURAL FORM IS U + U*V*(A1 + V*(A2 + V*A3))
*--WHAT WE HAVE HERE IS MERELY  A1 = A3, A2 = A1/A3, A3 = A2/A3.
*--THE REASON FOR THIS REARRANGEMENT IS TO MAKE THE INDEPENDENT
*--PARTS A1*U*V AND (A2 + ... STUFF) MORE LOAD-BALANCED


       FMOVE.X         FP0,FP1
       FMUL.X          FP1,FP1
       FMOVE.D         ATANA3,FP2
       FADD.X          FP1,FP2         ...A3+V
       FMUL.X          FP1,FP2         ...V*(A3+V)
       FMUL.X          FP0,FP1         ...U*V
       FADD.D          ATANA2,FP2      ...A2+V*(A3+V)
       FMUL.D          ATANA1,FP1      ...A1*U*V
       FMUL.X          FP2,FP1         ...A1*U*V*(A2+V*(A3+V))

       FADD.X          FP1,FP0         ...ATAN(U), FP1 RELEASED
       FMOVE.L         d1,FPCR         ;restore users exceptions
       FADD.X          ATANF(a6),FP0   ...ATAN(X)
       bra             t_frcinx

ATANBORS:
*--|X| IS IN d0 IN COMPACT FORM. FP1, d0 SAVED.
*--FP0 IS X AND |X| <= 1/16 OR |X| >= 16.
       CMPI.L          #$3FFF8000,d0
       BGT.W           ATANBIG ...I.E. |X| >= 16

ATANSM:
*--|X| <= 1/16
*--IF |X| < 2^(-40), RETURN X AS ANSWER. OTHERWISE, APPROXIMATE
*--ATAN(X) BY X + X*Y*(B1+Y*(B2+Y*(B3+Y*(B4+Y*(B5+Y*B6)))))
*--WHICH IS X + X*Y*( [B1+Z*(B3+Z*B5)] + [Y*(B2+Z*(B4+Z*B6)] )
*--WHERE Y = X*X, AND Z = Y*Y.

       CMPI.L          #$3FD78000,d0
       BLT.W           ATANTINY
*--COMPUTE POLYNOMIAL
       FMUL.X          FP0,FP0 ...FP0 IS Y = X*X


       CLR.W           XDCARE(a6)

       FMOVE.X         FP0,FP1
       FMUL.X          FP1,FP1         ...FP1 IS Z = Y*Y

       FMOVE.D         ATANB6,FP2
       FMOVE.D         ATANB5,FP3

       FMUL.X          FP1,FP2         ...Z*B6
       FMUL.X          FP1,FP3         ...Z*B5

       FADD.D          ATANB4,FP2      ...B4+Z*B6
       FADD.D          ATANB3,FP3      ...B3+Z*B5

       FMUL.X          FP1,FP2         ...Z*(B4+Z*B6)
       FMUL.X          FP3,FP1         ...Z*(B3+Z*B5)

       FADD.D          ATANB2,FP2      ...B2+Z*(B4+Z*B6)
       FADD.D          ATANB1,FP1      ...B1+Z*(B3+Z*B5)

       FMUL.X          FP0,FP2         ...Y*(B2+Z*(B4+Z*B6))
       FMUL.X          X(a6),FP0               ...X*Y

       FADD.X          FP2,FP1         ...[B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))]


       FMUL.X          FP1,FP0 ...X*Y*([B1+Z*(B3+Z*B5)]+[Y*(B2+Z*(B4+Z*B6))])

       FMOVE.L         d1,FPCR         ;restore users exceptions
       FADD.X          X(a6),FP0

       bra             t_frcinx

ATANTINY:
*--|X| < 2^(-40), ATAN(X) = X
       CLR.W           XDCARE(a6)

       FMOVE.L         d1,FPCR         ;restore users exceptions
       FMOVE.X         X(a6),FP0       ;last inst - possible exception set

       bra             t_frcinx

ATANBIG:
*--IF |X| > 2^(100), RETURN     SIGN(X)*(PI/2 - TINY). OTHERWISE,
*--RETURN SIGN(X)*PI/2 + ATAN(-1/X).
       CMPI.L          #$40638000,d0
       BGT.W           ATANHUGE

*--APPROXIMATE ATAN(-1/X) BY
*--X'+X'*Y*(C1+Y*(C2+Y*(C3+Y*(C4+Y*C5)))), X' = -1/X, Y = X'*X'
*--THIS CAN BE RE-WRITTEN AS
*--X'+X'*Y*( [C1+Z*(C3+Z*C5)] + [Y*(C2+Z*C4)] ), Z = Y*Y.

       FMOVE.S         #:BF800000,FP1  ...LOAD -1
       FDIV.X          FP0,FP1         ...FP1 IS -1/X


*--DIVIDE IS STILL CRANKING

       FMOVE.X         FP1,FP0         ...FP0 IS X'
       FMUL.X          FP0,FP0         ...FP0 IS Y = X'*X'
       FMOVE.X         FP1,X(a6)               ...X IS REALLY X'

       FMOVE.X         FP0,FP1
       FMUL.X          FP1,FP1         ...FP1 IS Z = Y*Y

       FMOVE.D         ATANC5,FP3
       FMOVE.D         ATANC4,FP2

       FMUL.X          FP1,FP3         ...Z*C5
       FMUL.X          FP1,FP2         ...Z*B4

       FADD.D          ATANC3,FP3      ...C3+Z*C5
       FADD.D          ATANC2,FP2      ...C2+Z*C4

       FMUL.X          FP3,FP1         ...Z*(C3+Z*C5), FP3 RELEASED
       FMUL.X          FP0,FP2         ...Y*(C2+Z*C4)

       FADD.D          ATANC1,FP1      ...C1+Z*(C3+Z*C5)
       FMUL.X          X(a6),FP0               ...X'*Y

       FADD.X          FP2,FP1         ...[Y*(C2+Z*C4)]+[C1+Z*(C3+Z*C5)]


       FMUL.X          FP1,FP0         ...X'*Y*([B1+Z*(B3+Z*B5)]
*                                       ...     +[Y*(B2+Z*(B4+Z*B6))])
       FADD.X          X(a6),FP0

       FMOVE.L         d1,FPCR         ;restore users exceptions

       btst.b          #7,(a0)
       beq.b           pos_big

neg_big:
       FADD.X          NPIBY2,FP0
       bra             t_frcinx

pos_big:
       FADD.X          PPIBY2,FP0
       bra             t_frcinx

ATANHUGE:
*--RETURN SIGN(X)*(PIBY2 - TINY) = SIGN(X)*PIBY2 - SIGN(X)*TINY
       btst.b          #7,(a0)
       beq.b           pos_huge

neg_huge:
       FMOVE.X         NPIBY2,fp0
       fmove.l         d1,fpcr
       fsub.x          NTINY,fp0
       bra             t_frcinx

pos_huge:
       FMOVE.X         PPIBY2,fp0
       fmove.l         d1,fpcr
       fsub.x          PTINY,fp0
       bra             t_frcinx

       end