*       $NetBSD: bugfix.sa,v 1.3 1994/10/26 07:48:55 cgd Exp $

*       MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
*       M68000 Hi-Performance Microprocessor Division
*       M68040 Software Package
*
*       M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
*       All rights reserved.
*
*       THE SOFTWARE is provided on an "AS IS" basis and without warranty.
*       To the maximum extent permitted by applicable law,
*       MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
*       INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
*       PARTICULAR PURPOSE and any warranty against infringement with
*       regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
*       and any accompanying written materials.
*
*       To the maximum extent permitted by applicable law,
*       IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
*       (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
*       PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
*       OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
*       SOFTWARE.  Motorola assumes no responsibility for the maintenance
*       and support of the SOFTWARE.
*
*       You are hereby granted a copyright license to use, modify, and
*       distribute the SOFTWARE so long as this entire notice is retained
*       without alteration in any modified and/or redistributed versions,
*       and that such modified versions are clearly identified as such.
*       No licenses are granted by implication, estoppel or otherwise
*       under any patents or trademarks of Motorola, Inc.

*
*       bugfix.sa 3.2 1/31/91
*
*
*       This file contains workarounds for bugs in the 040
*       relating to the Floating-Point Software Package (FPSP)
*
*       Fixes for bugs: 1238
*
*       Bug: 1238
*
*
*    /* The following dirty_bit clear should be left in
*     * the handler permanently to improve throughput.
*     * The dirty_bits are located at bits [23:16] in
*     * longword $08 in the busy frame $4x60.  Bit 16
*     * corresponds to FP0, bit 17 corresponds to FP1,
*     * and so on.
*     */
*    if  (E3_exception_just_serviced)   {
*         dirty_bit[cmdreg3b[9:7]] = 0;
*         }
*
*    if  (fsave_format_version != $40)  {goto NOFIX}
*
*    if !(E3_exception_just_serviced)   {goto NOFIX}
*    if  (cupc == 0000000)              {goto NOFIX}
*    if  ((cmdreg1b[15:13] != 000) &&
*         (cmdreg1b[15:10] != 010001))  {goto NOFIX}
*    if (((cmdreg1b[15:13] != 000) || ((cmdreg1b[12:10] != cmdreg2b[9:7]) &&
*                                     (cmdreg1b[12:10] != cmdreg3b[9:7]))  ) &&
*        ((cmdreg1b[ 9: 7] != cmdreg2b[9:7]) &&
*         (cmdreg1b[ 9: 7] != cmdreg3b[9:7])) )  {goto NOFIX}
*
*    /* Note: for 6d43b or 8d43b, you may want to add the following code
*     * to get better coverage.  (If you do not insert this code, the part
*     * won't lock up; it will simply get the wrong answer.)
*     * Do NOT insert this code for 10d43b or later parts.
*     *
*     *  if (fpiarcu == integer stack return address) {
*     *       cupc = 0000000;
*     *       goto NOFIX;
*     *       }
*     */
*
*    if (cmdreg1b[15:13] != 000)   {goto FIX_OPCLASS2}
*    FIX_OPCLASS0:
*    if (((cmdreg1b[12:10] == cmdreg2b[9:7]) ||
*        (cmdreg1b[ 9: 7] == cmdreg2b[9:7])) &&
*       (cmdreg1b[12:10] != cmdreg3b[9:7]) &&
*       (cmdreg1b[ 9: 7] != cmdreg3b[9:7]))  {  /* xu conflict only */
*       /* We execute the following code if there is an
*          xu conflict and NOT an nu conflict */
*
*       /* first save some values on the fsave frame */
*       stag_temp     = STAG[fsave_frame];
*       cmdreg1b_temp = CMDREG1B[fsave_frame];
*       dtag_temp     = DTAG[fsave_frame];
*       ete15_temp    = ETE15[fsave_frame];
*
*       CUPC[fsave_frame] = 0000000;
*       FRESTORE
*       FSAVE
*
*       /* If the xu instruction is exceptional, we punt.
*        * Otherwise, we would have to include OVFL/UNFL handler
*        * code here to get the correct answer.
*        */
*       if (fsave_frame_format == $4060) {goto KILL_PROCESS}
*
*       fsave_frame = /* build a long frame of all zeros */
*       fsave_frame_format = $4060;  /* label it as long frame */
*
*       /* load it with the temps we saved */
*       STAG[fsave_frame]     =  stag_temp;
*       CMDREG1B[fsave_frame] =  cmdreg1b_temp;
*       DTAG[fsave_frame]     =  dtag_temp;
*       ETE15[fsave_frame]    =  ete15_temp;
*
*       /* Make sure that the cmdreg3b dest reg is not going to
*        * be destroyed by a FMOVEM at the end of all this code.
*        * If it is, you should move the current value of the reg
*        * onto the stack so that the reg will loaded with that value.
*        */
*
*       /* All done.  Proceed with the code below */
*    }
*
*    etemp  = FP_reg_[cmdreg1b[12:10]];
*    ete15  = ~ete14;
*    cmdreg1b[15:10] = 010010;
*    clear(bug_flag_procIDxxxx);
*    FRESTORE and return;
*
*
*    FIX_OPCLASS2:
*    if ((cmdreg1b[9:7] == cmdreg2b[9:7]) &&
*       (cmdreg1b[9:7] != cmdreg3b[9:7]))  {  /* xu conflict only */
*       /* We execute the following code if there is an
*          xu conflict and NOT an nu conflict */
*
*       /* first save some values on the fsave frame */
*       stag_temp     = STAG[fsave_frame];
*       cmdreg1b_temp = CMDREG1B[fsave_frame];
*       dtag_temp     = DTAG[fsave_frame];
*       ete15_temp    = ETE15[fsave_frame];
*       etemp_temp    = ETEMP[fsave_frame];
*
*       CUPC[fsave_frame] = 0000000;
*       FRESTORE
*       FSAVE
*
*
*       /* If the xu instruction is exceptional, we punt.
*        * Otherwise, we would have to include OVFL/UNFL handler
*        * code here to get the correct answer.
*        */
*       if (fsave_frame_format == $4060) {goto KILL_PROCESS}
*
*       fsave_frame = /* build a long frame of all zeros */
*       fsave_frame_format = $4060;  /* label it as long frame */
*
*       /* load it with the temps we saved */
*       STAG[fsave_frame]     =  stag_temp;
*       CMDREG1B[fsave_frame] =  cmdreg1b_temp;
*       DTAG[fsave_frame]     =  dtag_temp;
*       ETE15[fsave_frame]    =  ete15_temp;
*       ETEMP[fsave_frame]    =  etemp_temp;
*
*       /* Make sure that the cmdreg3b dest reg is not going to
*        * be destroyed by a FMOVEM at the end of all this code.
*        * If it is, you should move the current value of the reg
*        * onto the stack so that the reg will loaded with that value.
*        */
*
*       /* All done.  Proceed with the code below */
*    }
*
*    if (etemp_exponent == min_sgl)   etemp_exponent = min_dbl;
*    if (etemp_exponent == max_sgl)   etemp_exponent = max_dbl;
*    cmdreg1b[15:10] = 010101;
*    clear(bug_flag_procIDxxxx);
*    FRESTORE and return;
*
*
*    NOFIX:
*    clear(bug_flag_procIDxxxx);
*    FRESTORE and return;
*

BUGFIX    IDNT    2,1 Motorola 040 Floating Point Software Package

       section 8

       include fpsp.h

       xref    fpsp_fmt_error

       xdef    b1238_fix
b1238_fix:
*
* This code is entered only on completion of the handling of an
* nu-generated ovfl, unfl, or inex exception.  If the version
* number of the fsave is not $40, this handler is not necessary.
* Simply branch to fix_done and exit normally.
*
       cmpi.b  #VER_40,4(a7)
       bne.w   fix_done
*
* Test for cu_savepc equal to zero.  If not, this is not a bug
* #1238 case.
*
       move.b  CU_SAVEPC(a6),d0
       andi.b  #$FE,d0
       beq     fix_done        ;if zero, this is not bug #1238

*
* Test the register conflict aspect.  If opclass0, check for
* cu src equal to xu dest or equal to nu dest.  If so, go to
* op0.  Else, or if opclass2, check for cu dest equal to
* xu dest or equal to nu dest.  If so, go to tst_opcl.  Else,
* exit, it is not the bug case.
*
* Check for opclass 0.  If not, go and check for opclass 2 and sgl.
*
       move.w  CMDREG1B(a6),d0
       andi.w  #$E000,d0               ;strip all but opclass
       bne     op2sgl                  ;not opclass 0, check op2
*
* Check for cu and nu register conflict.  If one exists, this takes
* priority over a cu and xu conflict.
*
       bfextu  CMDREG1B(a6){3:3},d0    ;get 1st src
       bfextu  CMDREG3B(a6){6:3},d1    ;get 3rd dest
       cmp.b   d0,d1
       beq.b   op0                     ;if equal, continue bugfix
*
* Check for cu dest equal to nu dest.  If so, go and fix the
* bug condition.  Otherwise, exit.
*
       bfextu  CMDREG1B(a6){6:3},d0    ;get 1st dest
       cmp.b   d0,d1                   ;cmp 1st dest with 3rd dest
       beq.b   op0                     ;if equal, continue bugfix
*
* Check for cu and xu register conflict.
*
       bfextu  CMDREG2B(a6){6:3},d1    ;get 2nd dest
       cmp.b   d0,d1                   ;cmp 1st dest with 2nd dest
       beq.b   op0_xu                  ;if equal, continue bugfix
       bfextu  CMDREG1B(a6){3:3},d0    ;get 1st src
       cmp.b   d0,d1                   ;cmp 1st src with 2nd dest
       beq     op0_xu
       bne     fix_done                ;if the reg checks fail, exit
*
* We have the opclass 0 situation.
*
op0:
       bfextu  CMDREG1B(a6){3:3},d0    ;get source register no
       move.l  #7,d1
       sub.l   d0,d1
       clr.l   d0
       bset.l  d1,d0
       fmovem.x d0,ETEMP(a6)           ;load source to ETEMP

       move.b  #$12,d0
       bfins   d0,CMDREG1B(a6){0:6}    ;opclass 2, extended
*
*       Set ETEMP exponent bit 15 as the opposite of ete14
*
       btst    #6,ETEMP_EX(a6)         ;check etemp exponent bit 14
       beq     setete15
       bclr    #etemp15_bit,STAG(a6)
       bra     finish
setete15:
       bset    #etemp15_bit,STAG(a6)
       bra     finish

*
* We have the case in which a conflict exists between the cu src or
* dest and the dest of the xu.  We must clear the instruction in
* the cu and restore the state, allowing the instruction in the
* xu to complete.  Remember, the instruction in the nu
* was exceptional, and was completed by the appropriate handler.
* If the result of the xu instruction is not exceptional, we can
* restore the instruction from the cu to the frame and continue
* processing the original exception.  If the result is also
* exceptional, we choose to kill the process.
*
*       Items saved from the stack:
*
*               $3c stag     - L_SCR1
*               $40 cmdreg1b - L_SCR2
*               $44 dtag     - L_SCR3
*
* The cu savepc is set to zero, and the frame is restored to the
* fpu.
*
op0_xu:
       move.l  STAG(a6),L_SCR1(a6)
       move.l  CMDREG1B(a6),L_SCR2(a6)
       move.l  DTAG(a6),L_SCR3(a6)
       andi.l  #$e0000000,L_SCR3(a6)
       clr.b   CU_SAVEPC(a6)
       move.l  (a7)+,d1                ;save return address from bsr
       frestore (a7)+
       fsave   -(a7)
*
* Check if the instruction which just completed was exceptional.
*
       cmp.w   #$4060,(a7)
       beq     op0_xb
*
* It is necessary to isolate the result of the instruction in the
* xu if it is to fp0 - fp3 and write that value to the USER_FPn
* locations on the stack.  The correct destination register is in
* cmdreg2b.
*
       bfextu  CMDREG2B(a6){6:3},d0    ;get dest register no
       cmpi.l  #3,d0
       bgt.b   op0_xi
       beq.b   op0_fp3
       cmpi.l  #1,d0
       blt.b   op0_fp0
       beq.b   op0_fp1
op0_fp2:
       fmovem.x fp2,USER_FP2(a6)
       bra.b   op0_xi
op0_fp1:
       fmovem.x fp1,USER_FP1(a6)
       bra.b   op0_xi
op0_fp0:
       fmovem.x fp0,USER_FP0(a6)
       bra.b   op0_xi
op0_fp3:
       fmovem.x fp3,USER_FP3(a6)
*
* The frame returned is idle.  We must build a busy frame to hold
* the cu state information and setup etemp.
*
op0_xi:
       move.l  #22,d0          ;clear 23 lwords
       clr.l   (a7)
op0_loop:
       clr.l   -(a7)
       dbf     d0,op0_loop
       move.l  #$40600000,-(a7)
       move.l  L_SCR1(a6),STAG(a6)
       move.l  L_SCR2(a6),CMDREG1B(a6)
       move.l  L_SCR3(a6),DTAG(a6)
       move.b  #$6,CU_SAVEPC(a6)
       move.l  d1,-(a7)                ;return bsr return address
       bfextu  CMDREG1B(a6){3:3},d0    ;get source register no
       move.l  #7,d1
       sub.l   d0,d1
       clr.l   d0
       bset.l  d1,d0
       fmovem.x d0,ETEMP(a6)           ;load source to ETEMP

       move.b  #$12,d0
       bfins   d0,CMDREG1B(a6){0:6}    ;opclass 2, extended
*
*       Set ETEMP exponent bit 15 as the opposite of ete14
*
       btst    #6,ETEMP_EX(a6)         ;check etemp exponent bit 14
       beq     op0_sete15
       bclr    #etemp15_bit,STAG(a6)
       bra     finish
op0_sete15:
       bset    #etemp15_bit,STAG(a6)
       bra     finish

*
* The frame returned is busy.  It is not possible to reconstruct
* the code sequence to allow completion.  We will jump to
* fpsp_fmt_error and allow the kernel to kill the process.
*
op0_xb:
       jmp     fpsp_fmt_error

*
* Check for opclass 2 and single size.  If not both, exit.
*
op2sgl:
       move.w  CMDREG1B(a6),d0
       andi.w  #$FC00,d0               ;strip all but opclass and size
       cmpi.w  #$4400,d0               ;test for opclass 2 and size=sgl
       bne     fix_done                ;if not, it is not bug 1238
*
* Check for cu dest equal to nu dest or equal to xu dest, with
* a cu and nu conflict taking priority an nu conflict.  If either,
* go and fix the bug condition.  Otherwise, exit.
*
       bfextu  CMDREG1B(a6){6:3},d0    ;get 1st dest
       bfextu  CMDREG3B(a6){6:3},d1    ;get 3rd dest
       cmp.b   d0,d1                   ;cmp 1st dest with 3rd dest
       beq     op2_com                 ;if equal, continue bugfix
       bfextu  CMDREG2B(a6){6:3},d1    ;get 2nd dest
       cmp.b   d0,d1                   ;cmp 1st dest with 2nd dest
       bne     fix_done                ;if the reg checks fail, exit
*
* We have the case in which a conflict exists between the cu src or
* dest and the dest of the xu.  We must clear the instruction in
* the cu and restore the state, allowing the instruction in the
* xu to complete.  Remember, the instruction in the nu
* was exceptional, and was completed by the appropriate handler.
* If the result of the xu instruction is not exceptional, we can
* restore the instruction from the cu to the frame and continue
* processing the original exception.  If the result is also
* exceptional, we choose to kill the process.
*
*       Items saved from the stack:
*
*               $3c stag     - L_SCR1
*               $40 cmdreg1b - L_SCR2
*               $44 dtag     - L_SCR3
*               etemp        - FP_SCR2
*
* The cu savepc is set to zero, and the frame is restored to the
* fpu.
*
op2_xu:
       move.l  STAG(a6),L_SCR1(a6)
       move.l  CMDREG1B(a6),L_SCR2(a6)
       move.l  DTAG(a6),L_SCR3(a6)
       andi.l  #$e0000000,L_SCR3(a6)
       clr.b   CU_SAVEPC(a6)
       move.l  ETEMP(a6),FP_SCR2(a6)
       move.l  ETEMP_HI(a6),FP_SCR2+4(a6)
       move.l  ETEMP_LO(a6),FP_SCR2+8(a6)
       move.l  (a7)+,d1                ;save return address from bsr
       frestore (a7)+
       fsave   -(a7)
*
* Check if the instruction which just completed was exceptional.
*
       cmp.w   #$4060,(a7)
       beq     op2_xb
*
* It is necessary to isolate the result of the instruction in the
* xu if it is to fp0 - fp3 and write that value to the USER_FPn
* locations on the stack.  The correct destination register is in
* cmdreg2b.
*
       bfextu  CMDREG2B(a6){6:3},d0    ;get dest register no
       cmpi.l  #3,d0
       bgt.b   op2_xi
       beq.b   op2_fp3
       cmpi.l  #1,d0
       blt.b   op2_fp0
       beq.b   op2_fp1
op2_fp2:
       fmovem.x fp2,USER_FP2(a6)
       bra.b   op2_xi
op2_fp1:
       fmovem.x fp1,USER_FP1(a6)
       bra.b   op2_xi
op2_fp0:
       fmovem.x fp0,USER_FP0(a6)
       bra.b   op2_xi
op2_fp3:
       fmovem.x fp3,USER_FP3(a6)
*
* The frame returned is idle.  We must build a busy frame to hold
* the cu state information and fix up etemp.
*
op2_xi:
       move.l  #22,d0          ;clear 23 lwords
       clr.l   (a7)
op2_loop:
       clr.l   -(a7)
       dbf     d0,op2_loop
       move.l  #$40600000,-(a7)
       move.l  L_SCR1(a6),STAG(a6)
       move.l  L_SCR2(a6),CMDREG1B(a6)
       move.l  L_SCR3(a6),DTAG(a6)
       move.b  #$6,CU_SAVEPC(a6)
       move.l  FP_SCR2(a6),ETEMP(a6)
       move.l  FP_SCR2+4(a6),ETEMP_HI(a6)
       move.l  FP_SCR2+8(a6),ETEMP_LO(a6)
       move.l  d1,-(a7)
       bra     op2_com

*
* We have the opclass 2 single source situation.
*
op2_com:
       move.b  #$15,d0
       bfins   d0,CMDREG1B(a6){0:6}    ;opclass 2, double

       cmp.w   #$407F,ETEMP_EX(a6)     ;single +max
       bne.b   case2
       move.w  #$43FF,ETEMP_EX(a6)     ;to double +max
       bra     finish
case2:
       cmp.w   #$C07F,ETEMP_EX(a6)     ;single -max
       bne.b   case3
       move.w  #$C3FF,ETEMP_EX(a6)     ;to double -max
       bra     finish
case3:
       cmp.w   #$3F80,ETEMP_EX(a6)     ;single +min
       bne.b   case4
       move.w  #$3C00,ETEMP_EX(a6)     ;to double +min
       bra     finish
case4:
       cmp.w   #$BF80,ETEMP_EX(a6)     ;single -min
       bne     fix_done
       move.w  #$BC00,ETEMP_EX(a6)     ;to double -min
       bra     finish
*
* The frame returned is busy.  It is not possible to reconstruct
* the code sequence to allow completion.  fpsp_fmt_error causes
* an fline illegal instruction to be executed.
*
* You should replace the jump to fpsp_fmt_error with a jump
* to the entry point used to kill a process.
*
op2_xb:
       jmp     fpsp_fmt_error

*
* Enter here if the case is not of the situations affected by
* bug #1238, or if the fix is completed, and exit.
*
finish:
fix_done:
       rts

       end