/*      $NetBSD: fpu_implode.c,v 1.15 2013/03/26 11:30:21 isaki Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)fpu_implode.c       8.1 (Berkeley) 6/11/93
*/

/*
* FPU subroutines: `implode' internal format numbers into the machine's
* `packed binary' format.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.15 2013/03/26 11:30:21 isaki Exp $");

#include <sys/types.h>
#include <sys/systm.h>

#include <machine/ieee.h>
#include <machine/reg.h>

#include "fpu_emulate.h"
#include "fpu_arith.h"

/* Conversion from internal format -- note asymmetry. */
static uint32_t fpu_ftoi(struct fpemu *fe, struct fpn *fp);
static uint32_t fpu_ftos(struct fpemu *fe, struct fpn *fp);
static uint32_t fpu_ftod(struct fpemu *fe, struct fpn *fp, uint32_t *);
static uint32_t fpu_ftox(struct fpemu *fe, struct fpn *fp, uint32_t *);

/*
* Round a number (algorithm from Motorola MC68882 manual, modified for
* our internal format).  Set inexact exception if rounding is required.
* Return true iff we rounded up.
*
* After rounding, we discard the guard and round bits by shifting right
* 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
* This saves effort later.
*
* Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
* responsibility to fix this if necessary.
*/
int
fpu_round(struct fpemu *fe, struct fpn *fp)
{
       uint32_t m0, m1, m2;
       int gr, s;

       m0 = fp->fp_mant[0];
       m1 = fp->fp_mant[1];
       m2 = fp->fp_mant[2];
       gr = m2 & 3;
       s = fp->fp_sticky;

       /* mant >>= FP_NG */
       m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
       m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
       m0 >>= FP_NG;

       if ((gr | s) == 0)      /* result is exact: no rounding needed */
               goto rounddown;

       fe->fe_fpsr |= FPSR_INEX2;      /* inexact */

       /* Go to rounddown to round down; break to round up. */
       switch (fe->fe_fpcr & FPCR_ROUND) {

       case FPCR_NEAR:
       default:
               /*
                * Round only if guard is set (gr & 2).  If guard is set,
                * but round & sticky both clear, then we want to round
                * but have a tie, so round to even, i.e., add 1 iff odd.
                */
               if ((gr & 2) == 0)
                       goto rounddown;
               if ((gr & 1) || fp->fp_sticky || (m2 & 1))
                       break;
               goto rounddown;

       case FPCR_ZERO:
               /* Round towards zero, i.e., down. */
               goto rounddown;

       case FPCR_MINF:
               /* Round towards -Inf: up if negative, down if positive. */
               if (fp->fp_sign)
                       break;
               goto rounddown;

       case FPCR_PINF:
               /* Round towards +Inf: up if positive, down otherwise. */
               if (!fp->fp_sign)
                       break;
               goto rounddown;
       }

       /* Bump low bit of mantissa, with carry. */
       if (++m2 == 0 && ++m1 == 0)
               m0++;
       fp->fp_sticky = 0;
       fp->fp_mant[0] = m0;
       fp->fp_mant[1] = m1;
       fp->fp_mant[2] = m2;
       return (1);

rounddown:
       fp->fp_sticky = 0;
       fp->fp_mant[0] = m0;
       fp->fp_mant[1] = m1;
       fp->fp_mant[2] = m2;
       return (0);
}

/*
* For overflow: return true if overflow is to go to +/-Inf, according
* to the sign of the overflowing result.  If false, overflow is to go
* to the largest magnitude value instead.
*/
static int
toinf(struct fpemu *fe, int sign)
{
       int inf;

       /* look at rounding direction */
       switch (fe->fe_fpcr & FPCR_ROUND) {

       default:
       case FPCR_NEAR:         /* the nearest value is always Inf */
               inf = 1;
               break;

       case FPCR_ZERO:         /* toward 0 => never towards Inf */
               inf = 0;
               break;

       case FPCR_PINF:         /* toward +Inf iff positive */
               inf = (sign == 0);
               break;

       case FPCR_MINF:         /* toward -Inf iff negative */
               inf = sign;
               break;
       }
       return (inf);
}

/*
* fpn -> int (int value returned as return value).
*
* N.B.: this conversion always rounds towards zero (this is a peculiarity
* of the SPARC instruction set).
*/
static uint32_t
fpu_ftoi(struct fpemu *fe, struct fpn *fp)
{
       uint32_t i;
       int sign, exp;

       sign = fp->fp_sign;
       switch (fp->fp_class) {
       case FPC_ZERO:
               return (0);

       case FPC_NUM:
               /*
                * If exp >= 2^32, overflow.  Otherwise shift value right
                * into last mantissa word (this will not exceed 0xffffffff),
                * shifting any guard and round bits out into the sticky
                * bit.  Then ``round'' towards zero, i.e., just set an
                * inexact exception if sticky is set (see fpu_round()).
                * If the result is > 0x80000000, or is positive and equals
                * 0x80000000, overflow; otherwise the last fraction word
                * is the result.
                */
               if ((exp = fp->fp_exp) >= 32)
                       break;
               /* NB: the following includes exp < 0 cases */
               if (fpu_shr(fp, FP_NMANT - 1 - FP_NG - exp) != 0) {
                       /*
                        * m68881/2 do not underflow when
                        * converting to integer
                        */
                       ;
               }
               fpu_round(fe, fp);
               i = fp->fp_mant[2];
               if (i >= ((uint32_t)0x80000000 + sign))
                       break;
               return (sign ? -i : i);

       default:                /* Inf, qNaN, sNaN */
               break;
       }
       /* overflow: replace any inexact exception with invalid */
       fe->fe_fpsr = (fe->fe_fpsr & ~FPSR_INEX2) | FPSR_OPERR;
       return (0x7fffffff + sign);
}

/*
* fpn -> single (32 bit single returned as return value).
* We assume <= 29 bits in a single-precision fraction (1.f part).
*/
static uint32_t
fpu_ftos(struct fpemu *fe, struct fpn *fp)
{
       uint32_t sign = fp->fp_sign << 31;
       int exp;

#define SNG_EXP(e)      ((e) << SNG_FRACBITS)   /* makes e an exponent */
#define SNG_MASK        (SNG_EXP(1) - 1)        /* mask for fraction */

       /* Take care of non-numbers first. */
       if (ISNAN(fp)) {
               /*
                * Preserve upper bits of NaN, per SPARC V8 appendix N.
                * Note that fp->fp_mant[0] has the quiet bit set,
                * even if it is classified as a signalling NaN.
                */
               (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
               exp = SNG_EXP_INFNAN;
               goto done;
       }
       if (ISINF(fp))
               return (sign | SNG_EXP(SNG_EXP_INFNAN));
       if (ISZERO(fp))
               return (sign);

       /*
        * Normals (including subnormals).  Drop all the fraction bits
        * (including the explicit ``implied'' 1 bit) down into the
        * single-precision range.  If the number is subnormal, move
        * the ``implied'' 1 into the explicit range as well, and shift
        * right to introduce leading zeroes.  Rounding then acts
        * differently for normals and subnormals: the largest subnormal
        * may round to the smallest normal (1.0 x 2^minexp), or may
        * remain subnormal.  In the latter case, signal an underflow
        * if the result was inexact or if underflow traps are enabled.
        *
        * Rounding a normal, on the other hand, always produces another
        * normal (although either way the result might be too big for
        * single precision, and cause an overflow).  If rounding a
        * normal produces 2.0 in the fraction, we need not adjust that
        * fraction at all, since both 1.0 and 2.0 are zero under the
        * fraction mask.
        *
        * Note that the guard and round bits vanish from the number after
        * rounding.
        */
       if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {   /* subnormal */
               fe->fe_fpsr |= FPSR_UNFL;
               /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
               (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
               if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(1))
                       return (sign | SNG_EXP(1) | 0);
               if (fe->fe_fpsr & FPSR_INEX2) {
                       /* mc68881/2 don't underflow when converting */
                       fe->fe_fpsr |= FPSR_UNFL;
               }
               return (sign | SNG_EXP(0) | fp->fp_mant[2]);
       }
       /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
       (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
#ifdef DIAGNOSTIC
       if ((fp->fp_mant[2] & SNG_EXP(1 << FP_NG)) == 0)
               panic("fpu_ftos");
#endif
       if (fpu_round(fe, fp) && fp->fp_mant[2] == SNG_EXP(2))
               exp++;
       if (exp >= SNG_EXP_INFNAN) {
               /* overflow to inf or to max single */
               fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
               if (toinf(fe, sign))
                       return (sign | SNG_EXP(SNG_EXP_INFNAN));
               return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
       }
done:
       /* phew, made it */
       return (sign | SNG_EXP(exp) | (fp->fp_mant[2] & SNG_MASK));
}

/*
* fpn -> double (32 bit high-order result returned; 32-bit low order result
* left in res[1]).  Assumes <= 61 bits in double precision fraction.
*
* This code mimics fpu_ftos; see it for comments.
*/
static uint32_t
fpu_ftod(struct fpemu *fe, struct fpn *fp, uint32_t *res)
{
       uint32_t sign = fp->fp_sign << 31;
       int exp;

#define DBL_EXP(e)      ((e) << (DBL_FRACBITS & 31))
#define DBL_MASK        (DBL_EXP(1) - 1)

       if (ISNAN(fp)) {
               (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
               exp = DBL_EXP_INFNAN;
               goto done;
       }
       if (ISINF(fp)) {
               sign |= DBL_EXP(DBL_EXP_INFNAN);
               res[1] = 0;
               return (sign);
       }
       if (ISZERO(fp)) {
               res[1] = 0;
               return (sign);
       }

       if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
               fe->fe_fpsr |= FPSR_UNFL;
               (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
               if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(1)) {
                       res[1] = 0;
                       return (sign | DBL_EXP(1) | 0);
               }
               if (fe->fe_fpsr & FPSR_INEX2) {
                       /* mc68881/2 don't underflow when converting */
                       fe->fe_fpsr |= FPSR_UNFL;
               }
               exp = 0;
               goto done;
       }
       (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
       if (fpu_round(fe, fp) && fp->fp_mant[1] == DBL_EXP(2))
               exp++;
       if (exp >= DBL_EXP_INFNAN) {
               fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
               if (toinf(fe, sign)) {
                       res[1] = 0;
                       return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
               }
               res[1] = ~0;
               return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
       }
done:
       res[1] = fp->fp_mant[2];
       return (sign | DBL_EXP(exp) | (fp->fp_mant[1] & DBL_MASK));
}

/*
* fpn -> 68k extended (32 bit high-order result returned; two 32-bit low
* order result left in res[1] & res[2]).  Assumes == 64 bits in extended
* precision fraction.
*
* This code mimics fpu_ftos; see it for comments.
*/
static uint32_t
fpu_ftox(struct fpemu *fe, struct fpn *fp, uint32_t *res)
{
       uint32_t sign = fp->fp_sign << 31;
       int exp;

#define EXT_EXP(e)      ((e) << 16)
/*
* on m68k extended prec, significand does not share the same long
* word with exponent
*/
#define EXT_MASK        0
#define EXT_EXPLICIT1   (1UL << (63 & 31))
#define EXT_EXPLICIT2   (1UL << (64 & 31))

       if (ISNAN(fp)) {
               (void) fpu_shr(fp, FP_NMANT - EXT_FRACBITS);
               exp = EXT_EXP_INFNAN;
               goto done;
       }
       if (ISINF(fp)) {
               sign |= EXT_EXP(EXT_EXP_INFNAN);
               res[1] = res[2] = 0;
               return (sign);
       }
       if (ISZERO(fp)) {
               res[1] = res[2] = 0;
               return (sign);
       }

       if ((exp = fp->fp_exp + EXT_EXP_BIAS) < 0) {
               fe->fe_fpsr |= FPSR_UNFL;
               /*
                * I'm not sure about this <=... exp==0 doesn't mean
                * it's a denormal in extended format
                */
               (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS - exp);
               if (fpu_round(fe, fp) && fp->fp_mant[1] == EXT_EXPLICIT1) {
                       res[1] = res[2] = 0;
                       return (sign | EXT_EXP(1) | 0);
               }
               if (fe->fe_fpsr & FPSR_INEX2) {
                       /* mc68881/2 don't underflow */
                       fe->fe_fpsr |= FPSR_UNFL;
               }
               exp = 0;
               goto done;
       }
#if (FP_NMANT - FP_NG - EXT_FRACBITS) > 0
       (void) fpu_shr(fp, FP_NMANT - FP_NG - EXT_FRACBITS);
#endif
       if (fpu_round(fe, fp) && fp->fp_mant[0] == EXT_EXPLICIT2) {
               exp++;
               fpu_shr(fp, 1);
       }
       if (exp >= EXT_EXP_INFNAN) {
               fe->fe_fpsr |= FPSR_OPERR | FPSR_INEX2 | FPSR_OVFL;
               if (toinf(fe, sign)) {
                       res[1] = res[2] = 0;
                       return (sign | EXT_EXP(EXT_EXP_INFNAN) | 0);
               }
               res[1] = res[2] = ~0;
               return (sign | EXT_EXP(EXT_EXP_INFNAN) | EXT_MASK);
       }
done:
       res[1] = fp->fp_mant[1];
       res[2] = fp->fp_mant[2];
       return (sign | EXT_EXP(exp));
}

/*
* Implode an fpn, writing the result into the given space.
*/
void
fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint32_t *space)
{
       /* XXX Dont delete exceptions set here: fe->fe_fpsr &= ~FPSR_EXCP; */

       switch (type) {
       case FTYPE_LNG:
               space[0] = fpu_ftoi(fe, fp);
               break;

       case FTYPE_SNG:
               space[0] = fpu_ftos(fe, fp);
               break;

       case FTYPE_DBL:
               space[0] = fpu_ftod(fe, fp, space);
               break;

       case FTYPE_EXT:
               /* funky rounding precision options ?? */
               space[0] = fpu_ftox(fe, fp, space);
               break;

       default:
               panic("fpu_implode");
       }
}