/*
#
# $NetBSD: fnetbsd.S,v 1.5 2000/11/30 21:00:51 scw Exp $
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
# M68000 Hi-Performance Microprocessor Division
# M68060 Software Package Production Release
#
# M68060 Software Package Copyright (C) 1993, 1994, 1995, 1996 Motorola Inc.
# All rights reserved.
#
# THE SOFTWARE is provided on an "AS IS" basis and without warranty.
# To the maximum extent permitted by applicable law,
# MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
# INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
# FOR A PARTICULAR PURPOSE and any warranty against infringement with
# regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
# and any accompanying written materials.
#
# To the maximum extent permitted by applicable law,
# IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
# (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
# BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
# ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
#
# Motorola assumes no responsibility for the maintenance and support
# of the SOFTWARE.
#
# You are hereby granted a copyright license to use, modify, and distribute the
# SOFTWARE so long as this entire notice is retained without alteration
# in any modified and/or redistributed versions, and that such modified
# versions are clearly identified as such.
# No licenses are granted by implication, estoppel or otherwise under any
# patents or trademarks of Motorola, Inc.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# Derived from:
# fskeleton.s
#
# This file contains:
# (1) example "Call-out"s
# (2) example package entry code
# (3) example "Call-out" table
#
/*
#
# _060_fpsp_done():
#
# This is the main exit point for the 68060 Floating-Point
# Software Package. For a normal exit, all 060FPSP routines call this
# routine. The operating system can do system dependent clean-up or
# simply execute an "rte" as with the sample code below.
#
*/
ASENTRY_NOPROFILE(_060_fpsp_done)
rte
/*
#
# _060_real_ovfl():
#
# This is the exit point for the 060FPSP when an enabled overflow exception
# is present. The routine below should point to the operating system handler
# for enabled overflow conditions. The exception stack frame is an overflow
# stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_ovfl)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_unfl():
#
# This is the exit point for the 060FPSP when an enabled underflow exception
# is present. The routine below should point to the operating system handler
# for enabled underflow conditions. The exception stack frame is an underflow
# stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_unfl)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_operr():
#
# This is the exit point for the 060FPSP when an enabled operand error exception
# is present. The routine below should point to the operating system handler
# for enabled operand error exceptions. The exception stack frame is an operand error
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_operr)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_snan():
#
# This is the exit point for the 060FPSP when an enabled signalling NaN exception
# is present. The routine below should point to the operating system handler
# for enabled signalling NaN exceptions. The exception stack frame is a signalling NaN
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_snan)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_dz():
#
# This is the exit point for the 060FPSP when an enabled divide-by-zero exception
# is present. The routine below should point to the operating system handler
# for enabled divide-by-zero exceptions. The exception stack frame is a divide-by-zero
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_dz)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_inex():
#
# This is the exit point for the 060FPSP when an enabled inexact exception
# is present. The routine below should point to the operating system handler
# for enabled inexact exceptions. The exception stack frame is an inexact
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_inex)
fsave %sp@-
movew #0x6000,%sp@(0x2)
frestore %sp@+
jmp _C_LABEL(fpfault)
/*
#
# _060_real_bsun():
#
# This is the exit point for the 060FPSP when an enabled bsun exception
# is present. The routine below should point to the operating system handler
# for enabled bsun exceptions. The exception stack frame is a bsun
# stack frame.
#
# The sample routine below clears the exception status bit, clears the NaN
# bit in the FPSR, and does an "rte". The instruction that caused the
# bsun will now be re-executed but with the NaN FPSR bit cleared.
#
*/
ASENTRY_NOPROFILE(_060_real_bsun)
fsave %sp@-
/*
#
# _060_real_fline():
#
# This is the exit point for the 060FPSP when an F-Line Illegal exception is
# encountered. Three different types of exceptions can enter the F-Line exception
# vector number 11: FP Unimplemented Instructions, FP implemented instructions when
# the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
# _fpsp_fline() distinguishes between the three and acts appropriately. F-Line
# Illegals branch here.
#
*/
ASENTRY_NOPROFILE(_060_real_fline)
jmp _C_LABEL(fpfault)
/*
#
# _060_real_fpu_disabled():
#
# This is the exit point for the 060FPSP when an FPU disabled exception is
# encountered. Three different types of exceptions can enter the F-Line exception
# vector number 11: FP Unimplemented Instructions, FP implemented instructions when
# the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
# _fpsp_fline() distinguishes between the three and acts appropriately. FPU disabled
# exceptions branch here.
#
# The sample code below enables the FPU, sets the PC field in the exception stack
# frame to the PC of the instruction causing the exception, and does an "rte".
# The execution of the instruction then proceeds with an enabled floating-point
# unit.
#
*/
ASENTRY_NOPROFILE(_060_real_fpu_disabled)
movel %d0,%sp@- |# enabled the fpu
/*
#
# _060_real_trap():
#
# This is the exit point for the 060FPSP when an emulated "ftrapcc" instruction
# discovers that the trap condition is true and it should branch to the operating
# system handler for the trap exception vector number 7.
#
# The sample code below simply executes an "rte".
#
*/
ASENTRY_NOPROFILE(_060_real_trap)
rte