/*      $NetBSD: harmony.c,v 1.11 2022/05/15 00:25:15 gutteridge Exp $  */

/*      $OpenBSD: harmony.c,v 1.23 2004/02/13 21:28:19 mickey Exp $     */

/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Fleming.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 2003 Jason L. Wright ([email protected])
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Harmony (CS4215/AD1849 LASI) audio interface.
*/



#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/kmem.h>
#include <uvm/uvm_extern.h>

#include <sys/rndsource.h>

#include <sys/audioio.h>
#include <dev/audio/audio_if.h>

#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/iomod.h>
#include <machine/autoconf.h>
#include <sys/bus.h>

#include <hppa/dev/cpudevs.h>
#include <hppa/gsc/gscbusvar.h>
#include <hppa/gsc/harmonyreg.h>
#include <hppa/gsc/harmonyvar.h>

void    harmony_close(void *);
int     harmony_query_format(void *, audio_format_query_t *);
int     harmony_set_format(void *, int,
   const audio_params_t *, const audio_params_t *,
   audio_filter_reg_t *, audio_filter_reg_t *);
int     harmony_round_blocksize(void *, int, int, const audio_params_t *);

int     harmony_control_wait(struct harmony_softc *);
int     harmony_commit_settings(void *);

int     harmony_halt_output(void *);
int     harmony_halt_input(void *);
int     harmony_getdev(void *, struct audio_device *);
int     harmony_set_port(void *, mixer_ctrl_t *);
int     harmony_get_port(void *, mixer_ctrl_t *);
int     harmony_query_devinfo(void *, mixer_devinfo_t *);
void *  harmony_allocm(void *, int, size_t);
void    harmony_freem(void *, void *, size_t);
size_t  harmony_round_buffersize(void *, int, size_t);
int     harmony_get_props(void *);
int     harmony_trigger_output(void *, void *, void *, int,
   void (*)(void *), void *, const audio_params_t *);
int     harmony_trigger_input(void *, void *, void *, int,
   void (*)(void *), void *, const audio_params_t *);
void    harmony_get_locks(void *, kmutex_t **, kmutex_t **);

const struct audio_hw_if harmony_sa_hw_if = {
       .close                  = harmony_close,
       .query_format           = harmony_query_format,
       .set_format             = harmony_set_format,
       .round_blocksize        = harmony_round_blocksize,
       .commit_settings        = harmony_commit_settings,
       .halt_output            = harmony_halt_output,
       .halt_input             = harmony_halt_input,
       .getdev                 = harmony_getdev,
       .set_port               = harmony_set_port,
       .get_port               = harmony_get_port,
       .query_devinfo          = harmony_query_devinfo,
       .allocm                 = harmony_allocm,
       .freem                  = harmony_freem,
       .round_buffersize       = harmony_round_buffersize,
       .get_props              = harmony_get_props,
       .trigger_output         = harmony_trigger_output,
       .trigger_input          = harmony_trigger_input,
       .get_locks              = harmony_get_locks,
};

/*
* The HW actually supports more frequencies, but these are the standard ones.
* For the full list, see the definition of harmony_speeds below.
*/
#define HARMONY_FORMAT(enc, prec) \
       { \
               .mode           = AUMODE_PLAY | AUMODE_RECORD, \
               .encoding       = (enc), \
               .validbits      = (prec), \
               .precision      = (prec), \
               .channels       = 2, \
               .channel_mask   = AUFMT_STEREO, \
               .frequency_type = 4, \
               .frequency      = { 16000, 32000, 44100, 48000 }, \
       }
static struct audio_format harmony_formats[] = {
       HARMONY_FORMAT(AUDIO_ENCODING_ULAW,        8),
       HARMONY_FORMAT(AUDIO_ENCODING_ALAW,        8),
       HARMONY_FORMAT(AUDIO_ENCODING_SLINEAR_BE, 16),
};
#define HARMONY_NFORMATS __arraycount(harmony_formats)

int harmony_match(device_t, struct cfdata *, void *);
void harmony_attach(device_t, device_t, void *);


CFATTACH_DECL_NEW(harmony, sizeof(struct harmony_softc),
   harmony_match, harmony_attach, NULL, NULL);

int harmony_intr(void *);
void harmony_intr_enable(struct harmony_softc *);
void harmony_intr_disable(struct harmony_softc *);
uint32_t harmony_speed_bits(struct harmony_softc *, u_int);
int harmony_set_gainctl(struct harmony_softc *);
void harmony_reset_codec(struct harmony_softc *);
void harmony_start_cp(struct harmony_softc *, int);
void harmony_start_pp(struct harmony_softc *, int);
void harmony_tick_pb(void *);
void harmony_tick_cp(void *);
void harmony_try_more(struct harmony_softc *, int, int,
       struct harmony_channel *);
static void harmony_empty_input(struct harmony_softc *);
static void harmony_empty_output(struct harmony_softc *);

void harmony_acc_tmo(void *);
#define ADD_CLKALLICA(sc) do {                                          \
       (sc)->sc_acc <<= 1;                                             \
       (sc)->sc_acc |= READ_REG((sc), HARMONY_DIAG) & DIAG_CO;         \
       if ((sc)->sc_acc_cnt++ && !((sc)->sc_acc_cnt % 32))             \
               rnd_add_uint32(&(sc)->sc_rnd_source,                    \
                              (sc)->sc_acc_num ^= (sc)->sc_acc);       \
} while(0)

int
harmony_match(device_t parent, struct cfdata *match, void *aux)
{
       struct gsc_attach_args *ga;

       ga = aux;
       if (ga->ga_type.iodc_type == HPPA_TYPE_FIO) {
               if (ga->ga_type.iodc_sv_model == HPPA_FIO_A1 ||
                   ga->ga_type.iodc_sv_model == HPPA_FIO_A2NB ||
                   ga->ga_type.iodc_sv_model == HPPA_FIO_A1NB ||
                   ga->ga_type.iodc_sv_model == HPPA_FIO_A2)
                       return 1;
       }
       return 0;
}

void
harmony_attach(device_t parent, device_t self, void *aux)
{
       struct harmony_softc *sc = device_private(self);
       struct gsc_attach_args *ga;
       uint8_t rev;
       uint32_t cntl;
       int i;

       sc->sc_dv = self;
       ga = aux;
       sc->sc_bt = ga->ga_iot;
       sc->sc_dmat = ga->ga_dmatag;

       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);

       if (bus_space_map(sc->sc_bt, ga->ga_hpa, HARMONY_NREGS, 0,
           &sc->sc_bh) != 0) {
               aprint_error(": couldn't map registers\n");
               return;
       }

       cntl = READ_REG(sc, HARMONY_ID);
       switch ((cntl & ID_REV_MASK)) {
       case ID_REV_TS:
               sc->sc_teleshare = 1;
       case ID_REV_NOTS:
               break;
       default:
               aprint_error(": unknown id == 0x%02x\n",
                   (cntl & ID_REV_MASK) >> ID_REV_SHIFT);
               bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
               return;
       }

       if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct harmony_empty),
           PAGE_SIZE, 0, &sc->sc_empty_seg, 1, &sc->sc_empty_rseg,
           BUS_DMA_WAITOK) != 0) {
               aprint_error(": could not alloc DMA memory\n");
               bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
               return;
       }
       if (bus_dmamem_map(sc->sc_dmat, &sc->sc_empty_seg, 1,
           sizeof(struct harmony_empty), (void **)&sc->sc_empty_kva,
           BUS_DMA_WAITOK) != 0) {
               aprint_error(": couldn't map DMA memory\n");
               bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
                   sc->sc_empty_rseg);
               bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
               return;
       }
       if (bus_dmamap_create(sc->sc_dmat, sizeof(struct harmony_empty), 1,
           sizeof(struct harmony_empty), 0, BUS_DMA_WAITOK,
           &sc->sc_empty_map) != 0) {
               aprint_error(": can't create DMA map\n");
               bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
                   sizeof(struct harmony_empty));
               bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
                   sc->sc_empty_rseg);
               bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
               return;
       }
       if (bus_dmamap_load(sc->sc_dmat, sc->sc_empty_map, sc->sc_empty_kva,
           sizeof(struct harmony_empty), NULL, BUS_DMA_WAITOK) != 0) {
               aprint_error(": can't load DMA map\n");
               bus_dmamap_destroy(sc->sc_dmat, sc->sc_empty_map);
               bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_empty_kva,
                   sizeof(struct harmony_empty));
               bus_dmamem_free(sc->sc_dmat, &sc->sc_empty_seg,
                   sc->sc_empty_rseg);
               bus_space_unmap(sc->sc_bt, sc->sc_bh, HARMONY_NREGS);
               return;
       }

       sc->sc_playback_empty = 0;
       for (i = 0; i < PLAYBACK_EMPTYS; i++)
               sc->sc_playback_paddrs[i] =
                   sc->sc_empty_map->dm_segs[0].ds_addr +
                   offsetof(struct harmony_empty, playback[i][0]);

       sc->sc_capture_empty = 0;
       for (i = 0; i < CAPTURE_EMPTYS; i++)
               sc->sc_capture_paddrs[i] =
                   sc->sc_empty_map->dm_segs[0].ds_addr +
                   offsetof(struct harmony_empty, capture[i][0]);

       bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
           offsetof(struct harmony_empty, playback[0][0]),
           PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);

       (void) hppa_intr_establish(IPL_AUDIO, harmony_intr, sc, ga->ga_ir,
            ga->ga_irq);

       /* set defaults */
       sc->sc_in_port = HARMONY_IN_LINE;
       sc->sc_out_port = HARMONY_OUT_SPEAKER;
       sc->sc_input_lvl.left = sc->sc_input_lvl.right = 240;
       sc->sc_output_lvl.left = sc->sc_output_lvl.right = 244;
       sc->sc_monitor_lvl.left = sc->sc_monitor_lvl.right = 208;
       sc->sc_outputgain = 0;

       /* reset chip, and push default gain controls */
       harmony_reset_codec(sc);

       cntl = READ_REG(sc, HARMONY_CNTL);
       rev = (cntl & CNTL_CODEC_REV_MASK) >> CNTL_CODEC_REV_SHIFT;
       aprint_normal(": rev %u", rev);

       if (sc->sc_teleshare)
               printf(", teleshare");
       aprint_normal("\n");

       strlcpy(sc->sc_audev.name, ga->ga_name, sizeof(sc->sc_audev.name));
       snprintf(sc->sc_audev.version, sizeof sc->sc_audev.version,
           "%u.%u;%u", ga->ga_type.iodc_sv_rev,
           ga->ga_type.iodc_model, ga->ga_type.iodc_revision);
       strlcpy(sc->sc_audev.config, device_xname(sc->sc_dv),
           sizeof(sc->sc_audev.config));

       audio_attach_mi(&harmony_sa_hw_if, sc, sc->sc_dv);

       rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dv),
           RND_TYPE_UNKNOWN, RND_FLAG_DEFAULT);

       callout_init(&sc->sc_acc_tmo, 0);
       callout_setfunc(&sc->sc_acc_tmo, harmony_acc_tmo, sc);
       sc->sc_acc_num = 0xa5a5a5a5;
}

void
harmony_reset_codec(struct harmony_softc *sc)
{

       /* silence */
       WRITE_REG(sc, HARMONY_GAINCTL, GAINCTL_OUTPUT_LEFT_M |
           GAINCTL_OUTPUT_RIGHT_M | GAINCTL_MONITOR_M);

       /* start reset */
       WRITE_REG(sc, HARMONY_RESET, RESET_RST);

       DELAY(100000);          /* wait at least 0.1 sec */

       harmony_set_gainctl(sc);
       WRITE_REG(sc, HARMONY_RESET, 0);
}

void
harmony_acc_tmo(void *v)
{
       struct harmony_softc *sc;

       sc = v;
       ADD_CLKALLICA(sc);
       callout_schedule(&sc->sc_acc_tmo, 1);
}

/*
* interrupt handler
*/
int
harmony_intr(void *vsc)
{
       struct harmony_softc *sc;
       uint32_t dstatus;
       int r;

       sc = vsc;
       r = 0;
       ADD_CLKALLICA(sc);

       mutex_spin_enter(&sc->sc_intr_lock);

       harmony_intr_disable(sc);

       dstatus = READ_REG(sc, HARMONY_DSTATUS);

       if (dstatus & DSTATUS_PN) {
               r = 1;
               harmony_start_pp(sc, 0);
       }

       if (dstatus & DSTATUS_RN) {
               r = 1;
               harmony_start_cp(sc, 0);
       }

       if (READ_REG(sc, HARMONY_OV) & OV_OV) {
               sc->sc_ov = 1;
               WRITE_REG(sc, HARMONY_OV, 0);
       } else
               sc->sc_ov = 0;

       harmony_intr_enable(sc);

       mutex_spin_exit(&sc->sc_intr_lock);

       return r;
}

void
harmony_intr_enable(struct harmony_softc *sc)
{

       WRITE_REG(sc, HARMONY_DSTATUS, DSTATUS_IE);
       SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
}

void
harmony_intr_disable(struct harmony_softc *sc)
{

       WRITE_REG(sc, HARMONY_DSTATUS, 0);
       SYNC_REG(sc, HARMONY_DSTATUS, BUS_SPACE_BARRIER_WRITE);
}

void
harmony_close(void *vsc)
{
       struct harmony_softc *sc;

       sc = vsc;
       harmony_intr_disable(sc);
}

int
harmony_query_format(void *vsc, audio_format_query_t *afp)
{

       return audio_query_format(harmony_formats, HARMONY_NFORMATS, afp);
}

int
harmony_set_format(void *vsc, int setmode,
   const audio_params_t *play, const audio_params_t *rec,
   audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
       struct harmony_softc *sc;
       uint32_t bits;

       sc = vsc;

       /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */
       switch (play->encoding) {
       case AUDIO_ENCODING_ULAW:
               bits = CNTL_FORMAT_ULAW;
               break;
       case AUDIO_ENCODING_ALAW:
               bits = CNTL_FORMAT_ALAW;
               break;
       case AUDIO_ENCODING_SLINEAR_BE:
               bits = CNTL_FORMAT_SLINEAR16BE;
               break;
       default:
               return EINVAL;
       }

       if (sc->sc_outputgain)
               bits |= CNTL_OLB;

       bits |= CNTL_CHANS_STEREO;
       bits |= harmony_speed_bits(sc, play->sample_rate);
       sc->sc_cntlbits = bits;
       sc->sc_need_commit = 1;

       return 0;
}

int
harmony_round_blocksize(void *vsc, int blk,
   int mode, const audio_params_t *param)
{

       return HARMONY_BUFSIZE;
}

int
harmony_control_wait(struct harmony_softc *sc)
{
       uint32_t reg;
       int j = 0;

       while (j < 10) {
               /* Wait for it to come out of control mode */
               reg = READ_REG(sc, HARMONY_CNTL);
               if ((reg & CNTL_C) == 0)
                       return 0;
               DELAY(50000);           /* wait 0.05 */
               j++;
       }

       return 1;
}

int
harmony_commit_settings(void *vsc)
{
       struct harmony_softc *sc;
       uint32_t reg;
       uint8_t quietchar;
       int i;

       sc = vsc;
       if (sc->sc_need_commit == 0)
               return 0;

       harmony_intr_disable(sc);

       for (;;) {
               reg = READ_REG(sc, HARMONY_DSTATUS);
               if ((reg & (DSTATUS_PC | DSTATUS_RC)) == 0)
                       break;
       }

       /* Setting some bits in gainctl requires a reset */
       harmony_reset_codec(sc);

       /* set the silence character based on the encoding type */
       bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
           offsetof(struct harmony_empty, playback[0][0]),
           PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_POSTWRITE);
       switch (sc->sc_cntlbits & CNTL_FORMAT_MASK) {
       case CNTL_FORMAT_ULAW:
               quietchar = 0x7f;
               break;
       case CNTL_FORMAT_ALAW:
               quietchar = 0x55;
               break;
       case CNTL_FORMAT_SLINEAR16BE:
       case CNTL_FORMAT_ULINEAR8:
       default:
               quietchar = 0;
               break;
       }
       for (i = 0; i < PLAYBACK_EMPTYS; i++)
               memset(&sc->sc_empty_kva->playback[i][0],
                   quietchar, HARMONY_BUFSIZE);
       bus_dmamap_sync(sc->sc_dmat, sc->sc_empty_map,
           offsetof(struct harmony_empty, playback[0][0]),
           PLAYBACK_EMPTYS * HARMONY_BUFSIZE, BUS_DMASYNC_PREWRITE);

       harmony_control_wait(sc);

       bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_CNTL,
           sc->sc_cntlbits | CNTL_C);

       harmony_control_wait(sc);

       sc->sc_need_commit = 0;

       if (sc->sc_playing || sc->sc_capturing)
               harmony_intr_enable(sc);

       return 0;
}

static void
harmony_empty_output(struct harmony_softc *sc)
{

       WRITE_REG(sc, HARMONY_PNXTADD,
           sc->sc_playback_paddrs[sc->sc_playback_empty]);
       SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);

       if (++sc->sc_playback_empty == PLAYBACK_EMPTYS)
               sc->sc_playback_empty = 0;
}

int
harmony_halt_output(void *vsc)
{
       struct harmony_softc *sc;

       sc = vsc;
       sc->sc_playing = 0;

       harmony_empty_output(sc);
       return 0;
}

static void
harmony_empty_input(struct harmony_softc *sc)
{

       WRITE_REG(sc, HARMONY_RNXTADD,
           sc->sc_capture_paddrs[sc->sc_capture_empty]);
       SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);

       if (++sc->sc_capture_empty == CAPTURE_EMPTYS)
               sc->sc_capture_empty = 0;
}

int
harmony_halt_input(void *vsc)
{
       struct harmony_softc *sc;

       sc = vsc;
       sc->sc_capturing = 0;

       harmony_empty_input(sc);
       return 0;
}

int
harmony_getdev(void *vsc, struct audio_device *retp)
{
       struct harmony_softc *sc;

       sc = vsc;
       *retp = sc->sc_audev;
       return 0;
}

int
harmony_set_port(void *vsc, mixer_ctrl_t *cp)
{
       struct harmony_softc *sc;
       int err;

       sc = vsc;
       err = EINVAL;
       switch (cp->dev) {
       case HARMONY_PORT_INPUT_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels == 1)
                       sc->sc_input_lvl.left = sc->sc_input_lvl.right =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
               else if (cp->un.value.num_channels == 2) {
                       sc->sc_input_lvl.left =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
                       sc->sc_input_lvl.right =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
               } else
                       break;
               sc->sc_need_commit = 1;
               err = 0;
               break;
       case HARMONY_PORT_OUTPUT_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels == 1)
                       sc->sc_output_lvl.left = sc->sc_output_lvl.right =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
               else if (cp->un.value.num_channels == 2) {
                       sc->sc_output_lvl.left =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
                       sc->sc_output_lvl.right =
                           cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
               } else
                       break;
               sc->sc_need_commit = 1;
               err = 0;
               break;
       case HARMONY_PORT_OUTPUT_GAIN:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               sc->sc_outputgain = cp->un.ord ? 1 : 0;
               err = 0;
               break;
       case HARMONY_PORT_MONITOR_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels != 1)
                       break;
               sc->sc_monitor_lvl.left = sc->sc_input_lvl.right =
                   cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
               sc->sc_need_commit = 1;
               err = 0;
               break;
       case HARMONY_PORT_RECORD_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               if (cp->un.ord != HARMONY_IN_LINE &&
                   cp->un.ord != HARMONY_IN_MIC)
                       break;
               sc->sc_in_port = cp->un.ord;
               err = 0;
               sc->sc_need_commit = 1;
               break;
       case HARMONY_PORT_OUTPUT_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               if (cp->un.ord != HARMONY_OUT_LINE &&
                   cp->un.ord != HARMONY_OUT_SPEAKER &&
                   cp->un.ord != HARMONY_OUT_HEADPHONE)
                       break;
               sc->sc_out_port = cp->un.ord;
               err = 0;
               sc->sc_need_commit = 1;
               break;
       }

       return err;
}

int
harmony_get_port(void *vsc, mixer_ctrl_t *cp)
{
       struct harmony_softc *sc;
       int err;

       sc = vsc;
       err = EINVAL;
       switch (cp->dev) {
       case HARMONY_PORT_INPUT_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels == 1) {
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                           sc->sc_input_lvl.left;
               } else if (cp->un.value.num_channels == 2) {
                       cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
                           sc->sc_input_lvl.left;
                       cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
                           sc->sc_input_lvl.right;
               } else
                       break;
               err = 0;
               break;
       case HARMONY_PORT_INPUT_OV:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               cp->un.ord = sc->sc_ov ? 1 : 0;
               err = 0;
               break;
       case HARMONY_PORT_OUTPUT_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels == 1) {
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                           sc->sc_output_lvl.left;
               } else if (cp->un.value.num_channels == 2) {
                       cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
                           sc->sc_output_lvl.left;
                       cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
                           sc->sc_output_lvl.right;
               } else
                       break;
               err = 0;
               break;
       case HARMONY_PORT_OUTPUT_GAIN:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               cp->un.ord = sc->sc_outputgain ? 1 : 0;
               err = 0;
               break;
       case HARMONY_PORT_MONITOR_LVL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       break;
               if (cp->un.value.num_channels != 1)
                       break;
               cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                   sc->sc_monitor_lvl.left;
               err = 0;
               break;
       case HARMONY_PORT_RECORD_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               cp->un.ord = sc->sc_in_port;
               err = 0;
               break;
       case HARMONY_PORT_OUTPUT_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM)
                       break;
               cp->un.ord = sc->sc_out_port;
               err = 0;
               break;
       }
       return err;
}

int
harmony_query_devinfo(void *vsc, mixer_devinfo_t *dip)
{
       int err;

       err = 0;
       switch (dip->index) {
       case HARMONY_PORT_INPUT_LVL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name);
               dip->un.v.num_channels = 2;
               strlcpy(dip->un.v.units.name, AudioNvolume,
                   sizeof dip->un.v.units.name);
               break;
       case HARMONY_PORT_INPUT_OV:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, "overrange", sizeof dip->label.name);
               dip->un.e.num_mem = 2;
               strlcpy(dip->un.e.member[0].label.name, AudioNoff,
                   sizeof dip->un.e.member[0].label.name);
               dip->un.e.member[0].ord = 0;
               strlcpy(dip->un.e.member[1].label.name, AudioNon,
                   sizeof dip->un.e.member[1].label.name);
               dip->un.e.member[1].ord = 1;
               break;
       case HARMONY_PORT_OUTPUT_LVL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
               dip->un.v.num_channels = 2;
               strlcpy(dip->un.v.units.name, AudioNvolume,
                   sizeof dip->un.v.units.name);
               break;
       case HARMONY_PORT_OUTPUT_GAIN:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = HARMONY_PORT_OUTPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, "gain", sizeof dip->label.name);
               dip->un.e.num_mem = 2;
               strlcpy(dip->un.e.member[0].label.name, AudioNoff,
                   sizeof dip->un.e.member[0].label.name);
               dip->un.e.member[0].ord = 0;
               strlcpy(dip->un.e.member[1].label.name, AudioNon,
                   sizeof dip->un.e.member[1].label.name);
               dip->un.e.member[1].ord = 1;
               break;
       case HARMONY_PORT_MONITOR_LVL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name);
               dip->un.v.num_channels = 1;
               strlcpy(dip->un.v.units.name, AudioNvolume,
                   sizeof dip->un.v.units.name);
               break;
       case HARMONY_PORT_RECORD_SOURCE:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name);
               dip->un.e.num_mem = 2;
               strlcpy(dip->un.e.member[0].label.name, AudioNmicrophone,
                   sizeof dip->un.e.member[0].label.name);
               dip->un.e.member[0].ord = HARMONY_IN_MIC;
               strlcpy(dip->un.e.member[1].label.name, AudioNline,
                   sizeof dip->un.e.member[1].label.name);
               dip->un.e.member[1].ord = HARMONY_IN_LINE;
               break;
       case HARMONY_PORT_OUTPUT_SOURCE:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = HARMONY_PORT_MONITOR_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name);
               dip->un.e.num_mem = 3;
               strlcpy(dip->un.e.member[0].label.name, AudioNline,
                   sizeof dip->un.e.member[0].label.name);
               dip->un.e.member[0].ord = HARMONY_OUT_LINE;
               strlcpy(dip->un.e.member[1].label.name, AudioNspeaker,
                   sizeof dip->un.e.member[1].label.name);
               dip->un.e.member[1].ord = HARMONY_OUT_SPEAKER;
               strlcpy(dip->un.e.member[2].label.name, AudioNheadphone,
                   sizeof dip->un.e.member[2].label.name);
               dip->un.e.member[2].ord = HARMONY_OUT_HEADPHONE;
               break;
       case HARMONY_PORT_INPUT_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioCinputs, sizeof dip->label.name);
               break;
       case HARMONY_PORT_OUTPUT_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioCoutputs, sizeof dip->label.name);
               break;
       case HARMONY_PORT_MONITOR_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = HARMONY_PORT_INPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioCmonitor, sizeof dip->label.name);
               break;
       case HARMONY_PORT_RECORD_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = HARMONY_PORT_RECORD_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strlcpy(dip->label.name, AudioCrecord, sizeof dip->label.name);
               break;
       default:
               err = ENXIO;
               break;
       }

       return err;
}

void *
harmony_allocm(void *vsc, int dir, size_t size)
{
       struct harmony_softc *sc;
       struct harmony_dma *d;
       int rseg;

       sc = vsc;
       d = kmem_alloc(sizeof(*d), KM_SLEEP);

       if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_WAITOK,
           &d->d_map) != 0)
               goto fail1;

       if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &d->d_seg, 1,
           &rseg, BUS_DMA_WAITOK) != 0)
               goto fail2;

       if (bus_dmamem_map(sc->sc_dmat, &d->d_seg, 1, size, &d->d_kva,
           BUS_DMA_WAITOK) != 0)
               goto fail3;

       if (bus_dmamap_load(sc->sc_dmat, d->d_map, d->d_kva, size, NULL,
           BUS_DMA_WAITOK) != 0)
               goto fail4;

       d->d_next = sc->sc_dmas;
       sc->sc_dmas = d;
       d->d_size = size;
       return (d->d_kva);

fail4:
       bus_dmamem_unmap(sc->sc_dmat, d->d_kva, size);
fail3:
       bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
fail2:
       bus_dmamap_destroy(sc->sc_dmat, d->d_map);
fail1:
       kmem_free(d, sizeof(*d));
       return (NULL);
}

void
harmony_freem(void *vsc, void *ptr, size_t size)
{
       struct harmony_softc *sc;
       struct harmony_dma *d, **dd;

       sc = vsc;
       for (dd = &sc->sc_dmas; (d = *dd) != NULL; dd = &(*dd)->d_next) {
               if (d->d_kva != ptr)
                       continue;
               bus_dmamap_unload(sc->sc_dmat, d->d_map);
               bus_dmamem_unmap(sc->sc_dmat, d->d_kva, d->d_size);
               bus_dmamem_free(sc->sc_dmat, &d->d_seg, 1);
               bus_dmamap_destroy(sc->sc_dmat, d->d_map);
               kmem_free(d, sizeof(*d));
               return;
       }
       printf("%s: free rogue pointer\n", device_xname(sc->sc_dv));
}

size_t
harmony_round_buffersize(void *vsc, int direction, size_t size)
{

       return ((size + HARMONY_BUFSIZE - 1) & (size_t)(-HARMONY_BUFSIZE));
}

int
harmony_get_props(void *vsc)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
           AUDIO_PROP_FULLDUPLEX;
}

void
harmony_get_locks(void *vsc, kmutex_t **intr, kmutex_t **thread)
{
       struct harmony_softc *sc;

       sc = vsc;
       *intr = &sc->sc_intr_lock;
       *thread = &sc->sc_lock;
}

int
harmony_trigger_output(void *vsc, void *start, void *end, int blksize,
   void (*intr)(void *), void *intrarg, const audio_params_t *param)
{
       struct harmony_softc *sc;
       struct harmony_channel *c;
       struct harmony_dma *d;

       sc = vsc;
       c = &sc->sc_playback;
       for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
               continue;
       if (d == NULL) {
               printf("%s: trigger_output: bad addr: %p\n",
                   device_xname(sc->sc_dv), start);
               return EINVAL;
       }

       c->c_intr = intr;
       c->c_intrarg = intrarg;
       c->c_blksz = blksize;
       c->c_current = d;
       c->c_segsz = (char *)end - (char *)start;
       c->c_cnt = 0;
       c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;

       sc->sc_playing = 1;

       harmony_start_pp(sc, 1);
       harmony_start_cp(sc, 0);
       harmony_intr_enable(sc);

       return 0;
}

void
harmony_start_cp(struct harmony_softc *sc, int start)
{
       struct harmony_channel *c;
       struct harmony_dma *d;
       bus_addr_t nextaddr;
       bus_size_t togo;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       c = &sc->sc_capture;
       if (sc->sc_capturing == 0)
               harmony_empty_input(sc);
       else {
               d = c->c_current;
               togo = c->c_segsz - c->c_cnt;
               if (togo == 0) {
                       nextaddr = d->d_map->dm_segs[0].ds_addr;
                       c->c_cnt = togo = c->c_blksz;
               } else {
                       nextaddr = c->c_lastaddr;
                       if (togo > c->c_blksz)
                               togo = c->c_blksz;
                       c->c_cnt += togo;
               }

               bus_dmamap_sync(sc->sc_dmat, d->d_map,
                   nextaddr - d->d_map->dm_segs[0].ds_addr,
                   c->c_blksz, BUS_DMASYNC_PREWRITE);

               WRITE_REG(sc, HARMONY_RNXTADD, nextaddr);
               if (start)
                       c->c_theaddr = nextaddr;
               SYNC_REG(sc, HARMONY_RNXTADD, BUS_SPACE_BARRIER_WRITE);
               c->c_lastaddr = nextaddr + togo;

               harmony_try_more(sc, HARMONY_RCURADD,
                   RCURADD_BUFMASK, &sc->sc_capture);
       }

       callout_schedule(&sc->sc_acc_tmo, 1);
}

void
harmony_start_pp(struct harmony_softc *sc, int start)
{
       struct harmony_channel *c;
       struct harmony_dma *d;
       bus_addr_t nextaddr;
       bus_size_t togo;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       c = &sc->sc_playback;
       if (sc->sc_playing == 0)
               harmony_empty_output(sc);
       else {
               d = c->c_current;
               togo = c->c_segsz - c->c_cnt;
               if (togo == 0) {
                       nextaddr = d->d_map->dm_segs[0].ds_addr;
                       c->c_cnt = togo = c->c_blksz;
               } else {
                       nextaddr = c->c_lastaddr;
                       if (togo > c->c_blksz)
                               togo = c->c_blksz;
                       c->c_cnt += togo;
               }

               bus_dmamap_sync(sc->sc_dmat, d->d_map,
                   nextaddr - d->d_map->dm_segs[0].ds_addr,
                   c->c_blksz, BUS_DMASYNC_PREWRITE);

               WRITE_REG(sc, HARMONY_PNXTADD, nextaddr);
               if (start)
                       c->c_theaddr = nextaddr;
               SYNC_REG(sc, HARMONY_PNXTADD, BUS_SPACE_BARRIER_WRITE);
               c->c_lastaddr = nextaddr + togo;

               harmony_try_more(sc, HARMONY_PCURADD,
                   PCURADD_BUFMASK, &sc->sc_playback);
       }
}

int
harmony_trigger_input(void *vsc, void *start, void *end, int blksize,
   void (*intr)(void *), void *intrarg, const audio_params_t *param)
{
       struct harmony_softc *sc = vsc;
       struct harmony_channel *c = &sc->sc_capture;
       struct harmony_dma *d;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       for (d = sc->sc_dmas; d->d_kva != start; d = d->d_next)
               continue;
       if (d == NULL) {
               printf("%s: trigger_input: bad addr: %p\n",
                   device_xname(sc->sc_dv), start);
               return EINVAL;
       }

       c->c_intr = intr;
       c->c_intrarg = intrarg;
       c->c_blksz = blksize;
       c->c_current = d;
       c->c_segsz = (char *)end - (char *)start;
       c->c_cnt = 0;
       c->c_lastaddr = d->d_map->dm_segs[0].ds_addr;

       sc->sc_capturing = 1;

       harmony_start_cp(sc, 1);
       harmony_intr_enable(sc);

       return 0;
}

static const struct speed_struct {
       uint32_t speed;
       uint32_t bits;
} harmony_speeds[] = {
       { 5125, CNTL_RATE_5125 },
       { 6615, CNTL_RATE_6615 },
       { 8000, CNTL_RATE_8000 },
       { 9600, CNTL_RATE_9600 },
       { 11025, CNTL_RATE_11025 },
       { 16000, CNTL_RATE_16000 },
       { 18900, CNTL_RATE_18900 },
       { 22050, CNTL_RATE_22050 },
       { 27428, CNTL_RATE_27428 },
       { 32000, CNTL_RATE_32000 },
       { 33075, CNTL_RATE_33075 },
       { 37800, CNTL_RATE_37800 },
       { 44100, CNTL_RATE_44100 },
       { 48000, CNTL_RATE_48000 },
};

uint32_t
harmony_speed_bits(struct harmony_softc *sc, u_int speed)
{
       int i;

       for (i = 0; i < __arraycount(harmony_speeds); i++) {
               if (speed == harmony_speeds[i].speed) {
                       return harmony_speeds[i].bits;
               }
       }
       /* If this happens, harmony_formats[] is wrong */
       panic("speed %u not supported", speed);
}

int
harmony_set_gainctl(struct harmony_softc *sc)
{
       uint32_t bits, mask, val, old;

       /* XXX leave these bits alone or the chip will not come out of CNTL */
       bits = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;

       /* input level */
       bits |= ((sc->sc_input_lvl.left >> (8 - GAINCTL_INPUT_BITS)) <<
           GAINCTL_INPUT_LEFT_S) & GAINCTL_INPUT_LEFT_M;
       bits |= ((sc->sc_input_lvl.right >> (8 - GAINCTL_INPUT_BITS)) <<
           GAINCTL_INPUT_RIGHT_S) & GAINCTL_INPUT_RIGHT_M;

       /* output level (inverted) */
       mask = (1 << GAINCTL_OUTPUT_BITS) - 1;
       val = mask - (sc->sc_output_lvl.left >> (8 - GAINCTL_OUTPUT_BITS));
       bits |= (val << GAINCTL_OUTPUT_LEFT_S) & GAINCTL_OUTPUT_LEFT_M;
       val = mask - (sc->sc_output_lvl.right >> (8 - GAINCTL_OUTPUT_BITS));
       bits |= (val << GAINCTL_OUTPUT_RIGHT_S) & GAINCTL_OUTPUT_RIGHT_M;

       /* monitor level (inverted) */
       mask = (1 << GAINCTL_MONITOR_BITS) - 1;
       val = mask - (sc->sc_monitor_lvl.left >> (8 - GAINCTL_MONITOR_BITS));
       bits |= (val << GAINCTL_MONITOR_S) & GAINCTL_MONITOR_M;

       /* XXX messing with these causes CNTL_C to get stuck... grr. */
       bits &= ~GAINCTL_IS_MASK;
       if (sc->sc_in_port == HARMONY_IN_MIC)
               bits |= GAINCTL_IS_LINE;
       else
               bits |= GAINCTL_IS_MICROPHONE;

       /* XXX messing with these causes CNTL_C to get stuck... grr. */
       bits &= ~(GAINCTL_LE | GAINCTL_HE | GAINCTL_SE);
       if (sc->sc_out_port == HARMONY_OUT_LINE)
               bits |= GAINCTL_LE;
       else if (sc->sc_out_port == HARMONY_OUT_SPEAKER)
               bits |= GAINCTL_SE;
       else
               bits |= GAINCTL_HE;

       mask = GAINCTL_LE | GAINCTL_HE | GAINCTL_SE | GAINCTL_IS_MASK;
       old = bus_space_read_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL);
       bus_space_write_4(sc->sc_bt, sc->sc_bh, HARMONY_GAINCTL, bits);
       if ((old & mask) != (bits & mask))
               return 1;
       return 0;
}

void
harmony_try_more(struct harmony_softc *sc, int curadd, int bufmask,
       struct harmony_channel *c)
{
       struct harmony_dma *d;
       uint32_t cur;
       int i, nsegs;

       d = c->c_current;
       cur = bus_space_read_4(sc->sc_bt, sc->sc_bh, curadd);
       cur &= bufmask;
       nsegs = 0;

#ifdef DIAGNOSTIC
       if (cur < d->d_map->dm_segs[0].ds_addr ||
           cur >= (d->d_map->dm_segs[0].ds_addr + c->c_segsz))
               panic("%s: bad current %x < %lx || %x > %lx",
                   device_xname(sc->sc_dv), cur,
                   d->d_map->dm_segs[0].ds_addr, cur,
                   d->d_map->dm_segs[0].ds_addr + c->c_segsz);
#endif /* DIAGNOSTIC */

       if (cur > c->c_theaddr) {
               nsegs = (cur - c->c_theaddr) / HARMONY_BUFSIZE;
       } else if (cur < c->c_theaddr) {
               nsegs = (d->d_map->dm_segs[0].ds_addr + c->c_segsz -
                   c->c_theaddr) / HARMONY_BUFSIZE;
               nsegs += (cur - d->d_map->dm_segs[0].ds_addr) /
                   HARMONY_BUFSIZE;
       }

       if (nsegs != 0 && c->c_intr != NULL) {
               for (i = 0; i < nsegs; i++)
                       (*c->c_intr)(c->c_intrarg);
               c->c_theaddr = cur;
       }
}