/*      $NetBSD: machdep.c,v 1.240 2024/12/21 17:53:21 tsutsui Exp $    */

/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: machdep.c 1.74 92/12/20$
*
*      @(#)machdep.c   8.10 (Berkeley) 4/20/94
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.240 2024/12/21 17:53:21 tsutsui Exp $");

#include "opt_ddb.h"
#include "opt_compat_netbsd.h"
#include "opt_fpu_emulate.h"
#include "opt_modular.h"
#include "opt_panicbutton.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/exec.h>
#include <sys/exec_aout.h>              /* for MID_* */
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/signalvar.h>
#include <sys/syscallargs.h>
#include <sys/tty.h>
#include <sys/core.h>
#include <sys/kcore.h>
#include <sys/vnode.h>
#include <sys/ksyms.h>
#include <sys/module.h>
#include <sys/cpu.h>

#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#endif /* DDB */
#include <sys/exec_elf.h>

#include <machine/autoconf.h>
#include <machine/bootinfo.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/hp300spu.h>
#include <machine/reg.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/pte.h>

#include <machine/kcore.h>      /* XXX should be pulled in by sys/kcore.h */

#include <dev/cons.h>
#include <dev/mm.h>

#define MAXMEM  64*1024 /* XXX - from cmap.h */
#include <uvm/uvm_extern.h>

#include <sys/sysctl.h>

#include "opt_useleds.h"

#ifdef USELEDS
#include <hp300/hp300/leds.h>
#endif

#include "ksyms.h"

/* the following is used externally (sysctl_hw) */
char    machine[] = MACHINE;    /* from <machine/param.h> */

/* Our exported CPU info; we can have only one. */
struct cpu_info cpu_info_store;

struct vm_map *phys_map = NULL;

extern paddr_t avail_end;

/*
* bootinfo base (physical and virtual).  The bootinfo is placed, by
* the boot loader, into the first page of kernel text, which is zero
* filled (see locore.s) and not mapped at 0.  It is remapped to a
* different address in pmap_bootstrap().
*/
paddr_t bootinfo_pa;
vaddr_t bootinfo_va;

int     maxmem;                 /* max memory per process */

extern  u_int lowram;
extern  short exframesize[];

/* prototypes for local functions */
static void     parityenable(void);
static int      parityerror(struct frame *);
static int      parityerrorfind(void);
static void     identifycpu(void);
static void     initcpu(void);

static int      cpu_dumpsize(void);
static int      cpu_dump(int (*)(dev_t, daddr_t, void *, size_t), daddr_t *);
static void     cpu_init_kcore_hdr(void);

/* functions called from locore.s */
void    dumpsys(void);
void    hp300_init(void);
void    straytrap(int, u_short);
void    nmihand(struct frame);

/*
* Machine-dependent crash dump header info.
*/
static cpu_kcore_hdr_t cpu_kcore_hdr;

/*
* Note that the value of delay_divisor is roughly
* 2048 / cpuspeed (where cpuspeed is in MHz) on 68020
* and 68030 systems.  See clock.c for the delay
* calibration algorithm.
*/
int     cpuspeed;               /* relative CPU speed; XXX skewed on 68040 */
int     delay_divisor;          /* delay constant */

/*
* Early initialization, before main() is called.
*/
void
hp300_init(void)
{
       struct btinfo_magic *bt_mag;
       int i;

       extern paddr_t avail_start, avail_end;

#ifdef CACHE_HAVE_VAC
       /*
        * Determine VA aliasing distance if any
        */
       switch (machineid) {
       case HP_320:
               pmap_aliasmask = 0x3fff;        /* 16KB */
               break;
       case HP_350:
               pmap_aliasmask = 0x7fff;        /* 32KB */
               break;
       default:
               break;
       }
#endif

       /*
        * Tell the VM system about available physical memory.  The
        * hp300 only has one segment.
        */
       uvm_page_physload(atop(avail_start), atop(avail_end),
           atop(avail_start), atop(avail_end), VM_FREELIST_DEFAULT);

       /* Calibrate the delay loop. */
       hp300_calibrate_delay();

       /*
        * Initialize error message buffer (at end of core).
        * avail_end was pre-decremented in pmap_bootstrap to compensate.
        */
       for (i = 0; i < btoc(MSGBUFSIZE); i++)
               pmap_kenter_pa((vaddr_t)msgbufaddr + i * PAGE_SIZE,
                   avail_end + i * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, 0);
       pmap_update(pmap_kernel());
       initmsgbuf(msgbufaddr, m68k_round_page(MSGBUFSIZE));

       /*
        * Map in the bootinfo page, and make sure the bootinfo
        * exists by searching for the MAGIC record.  If it's not
        * there, disable bootinfo.
        */
       bootinfo_va = virtual_avail;
       virtual_avail += PAGE_SIZE;
       pmap_enter(pmap_kernel(), bootinfo_va, bootinfo_pa,
           VM_PROT_READ|VM_PROT_WRITE,
           VM_PROT_READ|VM_PROT_WRITE|PMAP_WIRED);
       pmap_update(pmap_kernel());
       bt_mag = lookup_bootinfo(BTINFO_MAGIC);
       if (bt_mag == NULL ||
           bt_mag->magic1 != BOOTINFO_MAGIC1 ||
           bt_mag->magic2 != BOOTINFO_MAGIC2) {
               pmap_remove(pmap_kernel(), bootinfo_va,
                   bootinfo_va + PAGE_SIZE);
               pmap_update(pmap_kernel());
               virtual_avail -= PAGE_SIZE;
               bootinfo_va = 0;
       }
}

/*
* Console initialization: called early on from main,
* before vm init or startup.  Do enough configuration
* to choose and initialize a console.
*/
void
consinit(void)
{

       /*
        * Initialize the external I/O extent map.
        */
       iomap_init();

       /*
        * Initialize the console before we print anything out.
        */

       hp300_cninit();

       /*
        * Issue a warning if the boot loader didn't provide bootinfo.
        */
       if (bootinfo_va != 0)
               printf("bootinfo found at 0x%08lx\n", bootinfo_pa);
       else
               printf("WARNING: boot loader did not provide bootinfo\n");

#if NKSYMS || defined(DDB) || defined(MODULAR)
       {
               extern int end;
               extern int *esym;

               ksyms_addsyms_elf((int)esym - (int)&end - sizeof(Elf32_Ehdr),
                   (void *)&end, esym);
       }
#endif
#ifdef DDB
       if (boothowto & RB_KDB)
               Debugger();
#endif
}

/*
* cpu_startup: allocate memory for variable-sized tables,
* initialize CPU
*/
void
cpu_startup(void)
{
       vaddr_t minaddr, maxaddr;
       char pbuf[9];
#ifdef DEBUG
       extern int pmapdebug;
       int opmapdebug = pmapdebug;

       pmapdebug = 0;
#endif

       hp300_cninit_deferred();

       if (fputype != FPU_NONE)
               m68k_make_fpu_idle_frame();

       /*
        * Initialize the kernel crash dump header.
        */
       cpu_init_kcore_hdr();

       /*
        * Good {morning,afternoon,evening,night}.
        */
       printf("%s%s", copyright, version);
       identifycpu();
       format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
       printf("total memory = %s\n", pbuf);

       minaddr = 0;

       /*
        * Allocate a submap for physio
        */
       phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
           VM_PHYS_SIZE, 0, false, NULL);

#ifdef DEBUG
       pmapdebug = opmapdebug;
#endif
       format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
       printf("avail memory = %s\n", pbuf);

       /*
        * Set up CPU-specific registers, cache, etc.
        */
       initcpu();

       /* Safe to use malloc for extio_ex now. */
       extio_ex_malloc_safe = 1;
}

struct hp300_model {
       int id;
       int mmuid;
       const char *name;
       const char *speed;
};

static const struct hp300_model hp300_models[] = {
       { HP_320,       -1,             "320",          "16.67" },
       { HP_330,       -1,             "318/319/330",  "16.67" },
       { HP_340,       -1,             "340",          "16.67" },
       { HP_345,       -1,             "345",          "50"    },
       { HP_350,       -1,             "350",          "25"    },
       { HP_360,       -1,             "360",          "25"    },
       { HP_362,       -1,             "362",          "25"    },
       { HP_370,       -1,             "370",          "33.33" },
       { HP_375,       -1,             "375",          "50"    },
       { HP_380,       -1,             "380",          "25"    },
       { HP_382,       -1,             "382",          "25"    },
       { HP_385,       -1,             "385",          "33"    },
       { HP_400,       -1,             "400",          "50"    },
       { HP_425,       MMUID_425_T,    "425t",         "25"    },
       { HP_425,       MMUID_425_S,    "425s",         "25"    },
       { HP_425,       MMUID_425_E,    "425e",         "25"    },
       { HP_425,       -1,             "425",          "25"    },
       { HP_433,       MMUID_433_T,    "433t",         "33"    },
       { HP_433,       MMUID_433_S,    "433s",         "33"    },
       { HP_433,       -1,             "433",          "33"    },
       { 0,            -1,             NULL,           NULL    },
};

static void
identifycpu(void)
{
       const char *t, *cpu, *s, *mmu;
       int i;
       char fpu[64], cache[64];

       /*
        * Find the model number.
        */
       for (t = s = NULL, i = 0; hp300_models[i].name != NULL; i++) {
               if (hp300_models[i].id == machineid) {
                       if (hp300_models[i].mmuid != -1 &&
                           hp300_models[i].mmuid != mmuid)
                               continue;
                       t = hp300_models[i].name;
                       s = hp300_models[i].speed;
                       break;
               }
       }
       if (t == NULL) {
               printf("\nunknown machineid %d\n", machineid);
               goto lose;
       }

       /*
        * ...and the CPU type.
        */
       switch (cputype) {
       case CPU_68040:
               cpu = "MC68040";
               break;
       case CPU_68030:
               cpu = "MC68030";
               break;
       case CPU_68020:
               cpu = "MC68020";
               break;
       default:
               printf("\nunknown cputype %d\n", cputype);
               goto lose;
       }


       /*
        * ...and the MMU type.
        */
       switch (mmutype) {
       case MMU_68040:
       case MMU_68030:
               mmu = "+MMU";
               break;
       case MMU_68851:
               mmu = ", MC68851 MMU";
               break;
       case MMU_HP:
               mmu = ", HP MMU";
               break;
       default:
               printf("%s\nunknown MMU type %d\n", cpu, mmutype);
               panic("startup");
       }

       /*
        * ...and the FPU type.
        */
       fpu[0] = '\0';
       switch (fputype) {
       case FPU_68040:
               strlcpy(fpu, "+FPU", sizeof(fpu));
               break;
       case FPU_68882:
               snprintf(fpu, sizeof(fpu), ", %sMHz MC68882 FPU", s);
               break;
       case FPU_68881:
               snprintf(fpu, sizeof(fpu), ", %sMHz MC68881 FPU",
                   machineid == HP_350 ? "20" : "16.67");
               break;
       case FPU_NONE:
#ifdef FPU_EMULATE
               strlcpy(fpu, ", emulated FPU", sizeof(fpu));
#else
               strlcpy(fpu, ", no FPU", sizeof(fpu));
#endif
               break;
       default:
               strlcpy(fpu, ", unknown FPU", sizeof(fpu));
       }

       /*
        * ...and finally, the cache type.
        */
       cache[0] = '\0';
       if (cputype == CPU_68040)
               snprintf(cache, sizeof(cache),
                   ", 4k on-chip physical I/D caches");
       else {
               switch (ectype) {
               case EC_VIRT:
                       snprintf(cache, sizeof(cache),
                           ", %dK virtual-address cache",
                           machineid == HP_320 ? 16 : 32);
                       break;
               case EC_PHYS:
                       snprintf(cache, sizeof(cache),
                           ", %dK physical-address cache",
                           machineid == HP_370 ? 64 : 32);
                       break;
               }
       }

       cpu_setmodel("HP 9000/%s (%sMHz %s CPU%s%s%s)", t, s, cpu,
           mmu, fpu, cache);
       printf("%s\n", cpu_getmodel());
#ifdef DIAGNOSTIC
       printf("cpu: delay divisor %d", delay_divisor);
       if (mmuid)
               printf(", mmuid %d", mmuid);
       printf("\n");
#endif

       /*
        * Now that we have told the user what they have,
        * let them know if that machine type isn't configured.
        */
       switch (machineid) {
       case -1:                /* keep compilers happy */
#if !defined(HP320)
       case HP_320:
#endif
#if !defined(HP330)
       case HP_330:
#endif
#if !defined(HP340)
       case HP_340:
#endif
#if !defined(HP345)
       case HP_345:
#endif
#if !defined(HP350)
       case HP_350:
#endif
#if !defined(HP360)
       case HP_360:
#endif
#if !defined(HP362)
       case HP_362:
#endif
#if !defined(HP370)
       case HP_370:
#endif
#if !defined(HP375)
       case HP_375:
#endif
#if !defined(HP380)
       case HP_380:
#endif
#if !defined(HP382)
       case HP_382:
#endif
#if !defined(HP385)
       case HP_385:
#endif
#if !defined(HP400)
       case HP_400:
#endif
#if !defined(HP425)
       case HP_425:
#endif
#if !defined(HP433)
       case HP_433:
#endif
               panic("SPU type not configured");
       default:
               break;
       }

       return;
lose:
       panic("startup");
}

/*
* machine dependent system variables.
*/
SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
{

       sysctl_createv(clog, 0, NULL, NULL,
           CTLFLAG_PERMANENT,
           CTLTYPE_NODE, "machdep", NULL,
           NULL, 0, NULL, 0,
           CTL_MACHDEP, CTL_EOL);

       sysctl_createv(clog, 0, NULL, NULL,
           CTLFLAG_PERMANENT,
           CTLTYPE_STRUCT, "console_device", NULL,
           sysctl_consdev, 0, NULL, sizeof(dev_t),
           CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
}

int     waittime = -1;

void
cpu_reboot(int howto, char *bootstr)
{
       struct pcb *pcb = lwp_getpcb(curlwp);

       /* take a snap shot before clobbering any registers */
       if (pcb != NULL)
               savectx(pcb);

       /* If system is cold, just halt. */
       if (cold) {
               howto |= RB_HALT;
               goto haltsys;
       }

       boothowto = howto;
       if ((howto & RB_NOSYNC) == 0 && waittime < 0) {
               waittime = 0;
               vfs_shutdown();
       }

       /* Disable interrupts. */
       splhigh();

       /* If rebooting and a dump is requested do it. */
       if (howto & RB_DUMP)
               dumpsys();

haltsys:
       /* Run any shutdown hooks. */
       doshutdownhooks();

       pmf_system_shutdown(boothowto);

#if defined(PANICWAIT) && !defined(DDB)
       if ((howto & RB_HALT) == 0 && panicstr) {
               printf("hit any key to reboot...\n");
               cnpollc(1);
               (void)cngetc();
               cnpollc(0);
               printf("\n");
       }
#endif

       /* Finally, halt/reboot the system. */
       if (howto & RB_HALT) {
               printf("System halted.  Hit any key to reboot.\n\n");
               cnpollc(1);
               (void)cngetc();
               cnpollc(0);
       }

       printf("rebooting...\n");
       DELAY(1000000);
       doboot();
       /* NOTREACHED */
}

/*
* Initialize the kernel crash dump header.
*/
static void
cpu_init_kcore_hdr(void)
{
       cpu_kcore_hdr_t *h = &cpu_kcore_hdr;
       struct m68k_kcore_hdr *m = &h->un._m68k;
       extern int end;

       memset(&cpu_kcore_hdr, 0, sizeof(cpu_kcore_hdr));

       /*
        * Initialize the `dispatcher' portion of the header.
        */
       strcpy(h->name, machine);
       h->page_size = PAGE_SIZE;
       h->kernbase = KERNBASE;

       /*
        * Fill in information about our MMU configuration.
        */
       m->mmutype      = mmutype;
       m->sg_v         = SG_V;
       m->sg_frame     = SG_FRAME;
       m->sg_ishift    = SG_ISHIFT;
       m->sg_pmask     = SG_PMASK;
       m->sg40_shift1  = SG4_SHIFT1;
       m->sg40_mask2   = SG4_MASK2;
       m->sg40_shift2  = SG4_SHIFT2;
       m->sg40_mask3   = SG4_MASK3;
       m->sg40_shift3  = SG4_SHIFT3;
       m->sg40_addr1   = SG4_ADDR1;
       m->sg40_addr2   = SG4_ADDR2;
       m->pg_v         = PG_V;
       m->pg_frame     = PG_FRAME;

       /*
        * Initialize pointer to kernel segment table.
        */
       m->sysseg_pa = (uint32_t)(pmap_kernel()->pm_stpa);

       /*
        * Initialize relocation value such that:
        *
        *      pa = (va - KERNBASE) + reloc
        */
       m->reloc = lowram;

       /*
        * Define the end of the relocatable range.
        */
       m->relocend = (uint32_t)&end;

       /*
        * hp300 has one contiguous memory segment.
        */
       m->ram_segs[0].start = lowram;
       m->ram_segs[0].size  = ctob(physmem);
}

/*
* Compute the size of the machine-dependent crash dump header.
* Returns size in disk blocks.
*/

#define CHDRSIZE (ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)))
#define MDHDRSIZE roundup(CHDRSIZE, dbtob(1))

static int
cpu_dumpsize(void)
{

       return btodb(MDHDRSIZE);
}

/*
* Called by dumpsys() to dump the machine-dependent header.
*/
static int
cpu_dump(int (*dump)(dev_t, daddr_t, void *, size_t), daddr_t *blknop)
{
       int buf[MDHDRSIZE / sizeof(int)];
       cpu_kcore_hdr_t *chdr;
       kcore_seg_t *kseg;
       int error;

       kseg = (kcore_seg_t *)buf;
       chdr = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(kcore_seg_t)) /
           sizeof(int)];

       /* Create the segment header. */
       CORE_SETMAGIC(*kseg, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
       kseg->c_size = MDHDRSIZE - ALIGN(sizeof(kcore_seg_t));

       memcpy(chdr, &cpu_kcore_hdr, sizeof(cpu_kcore_hdr_t));
       error = (*dump)(dumpdev, *blknop, (void *)buf, sizeof(buf));
       *blknop += btodb(sizeof(buf));
       return error;
}

/*
* These variables are needed by /sbin/savecore
*/
uint32_t dumpmag = 0x8fca0101;  /* magic number */
int     dumpsize = 0;           /* pages */
long    dumplo = 0;             /* blocks */

/*
* This is called by main to set dumplo and dumpsize.
* Dumps always skip the first PAGE_SIZE of disk space
* in case there might be a disk label stored there.
* If there is extra space, put dump at the end to
* reduce the chance that swapping trashes it.
*/
void
cpu_dumpconf(void)
{
       int chdrsize;   /* size of dump header */
       int nblks;      /* size of dump area */

       if (dumpdev == NODEV)
               return;
       nblks = bdev_size(dumpdev);
       chdrsize = cpu_dumpsize();

       dumpsize = btoc(cpu_kcore_hdr.un._m68k.ram_segs[0].size);

       /*
        * Check do see if we will fit.  Note we always skip the
        * first PAGE_SIZE in case there is a disk label there.
        */
       if (nblks < (ctod(dumpsize) + chdrsize + ctod(1))) {
               dumpsize = 0;
               dumplo = -1;
               return;
       }

       /*
        * Put dump at the end of the partition.
        */
       dumplo = (nblks - 1) - ctod(dumpsize) - chdrsize;
}

/*
* Dump physical memory onto the dump device.  Called by cpu_reboot().
*/
void
dumpsys(void)
{
       const struct bdevsw *bdev;
       daddr_t blkno;          /* current block to write */
                               /* dump routine */
       int (*dump)(dev_t, daddr_t, void *, size_t);
       int pg;                 /* page being dumped */
       paddr_t maddr;          /* PA being dumped */
       int error;              /* error code from (*dump)() */

       /* XXX initialized here because of gcc lossage */
       maddr = lowram;
       pg = 0;

       /* Make sure dump device is valid. */
       if (dumpdev == NODEV)
               return;
       bdev = bdevsw_lookup(dumpdev);
       if (bdev == NULL)
               return;
       if (dumpsize == 0) {
               cpu_dumpconf();
               if (dumpsize == 0)
                       return;
       }
       if (dumplo <= 0) {
               printf("\ndump to dev %u,%u not possible\n",
                   major(dumpdev), minor(dumpdev));
               return;
       }
       dump = bdev->d_dump;
       blkno = dumplo;

       printf("\ndumping to dev %u,%u offset %ld\n",
           major(dumpdev), minor(dumpdev), dumplo);

       printf("dump ");

       /* Write the dump header. */
       error = cpu_dump(dump, &blkno);
       if (error)
               goto bad;

       for (pg = 0; pg < dumpsize; pg++) {
#define NPGMB   (1024*1024/PAGE_SIZE)
               /* print out how many MBs we have dumped */
               if (pg && (pg % NPGMB) == 0)
                       printf("%d ", pg / NPGMB);
#undef NPGMB
               pmap_enter(pmap_kernel(), (vaddr_t)vmmap, maddr,
                   VM_PROT_READ, VM_PROT_READ|PMAP_WIRED);

               pmap_update(pmap_kernel());
               error = (*dump)(dumpdev, blkno, vmmap, PAGE_SIZE);
bad:
               switch (error) {
               case 0:
                       maddr += PAGE_SIZE;
                       blkno += btodb(PAGE_SIZE);
                       break;

               case ENXIO:
                       printf("device bad\n");
                       return;

               case EFAULT:
                       printf("device not ready\n");
                       return;

               case EINVAL:
                       printf("area improper\n");
                       return;

               case EIO:
                       printf("i/o error\n");
                       return;

               case EINTR:
                       printf("aborted from console\n");
                       return;

               default:
                       printf("error %d\n", error);
                       return;
               }
       }
       printf("succeeded\n");
}

static void
initcpu(void)
{

       parityenable();
#ifdef USELEDS
       ledinit();
#endif
}

void
straytrap(int pc, u_short evec)
{
       printf("unexpected trap (vector offset %x) from %x\n",
              evec & 0xFFF, pc);
}

/* XXX should change the interface, and make one badaddr() function */

int     *nofault;

int
badaddr(void *addr)
{
       int i;
       label_t faultbuf;

       nofault = (int *)&faultbuf;
       if (setjmp((label_t *)nofault)) {
               nofault = (int *)0;
               return 1;
       }
       i = *(volatile short *)addr;
       __USE(i);
       nofault = (int *)0;
       return 0;
}

int
badbaddr(void *addr)
{
       int i;
       label_t faultbuf;

       nofault = (int *)&faultbuf;
       if (setjmp((label_t *)nofault)) {
               nofault = (int *)0;
               return 1;
       }
       i = *(volatile char *)addr;
       __USE(i);
       nofault = (int *) 0;
       return 0;
}

/*
* lookup_bootinfo:
*
*      Look up information in bootinfo from boot loader.
*/
void *
lookup_bootinfo(int type)
{
       struct btinfo_common *bt;
       char *help = (char *)bootinfo_va;

       /* Check for a bootinfo record first. */
       if (help == NULL)
               return NULL;

       do {
               bt = (struct btinfo_common *)help;
               if (bt->type == type)
                       return help;
               help += bt->next;
       } while (bt->next != 0 &&
                (size_t)help < (size_t)bootinfo_va + BOOTINFO_SIZE);

       return NULL;
}

#if defined(PANICBUTTON) && !defined(DDB)
/*
* Declare these so they can be patched.
*/
int panicbutton = 1;    /* non-zero if panic buttons are enabled */
int candbdiv = 2;       /* give em half a second (hz / candbdiv) */

static void     candbtimer(void *);

int crashandburn;

callout_t candbtimer_ch;

void
candbtimer(void *arg)
{

       crashandburn = 0;
}
#endif /* PANICBUTTON & !DDB */

static int innmihand;   /* simple mutex */

/*
* Level 7 interrupts can be caused by HIL keyboards (in cooked mode only,
* but we run them in raw mode) or parity errors.
*/
void
nmihand(struct frame frame)
{

       /* Prevent unwanted recursion. */
       if (innmihand)
               return;
       innmihand = 1;

       if (parityerror(&frame))
               return;
       /* panic?? */
       printf("unexpected level 7 interrupt ignored\n");

       innmihand = 0;
}

/*
* Parity error section.  Contains magic.
*/
#define PARREG          ((volatile short *)IIOV(0x5B0000))
static int gotparmem = 0;
#ifdef DEBUG
int ignorekperr = 0;    /* ignore kernel parity errors */
#endif

/*
* Enable parity detection
*/
static void
parityenable(void)
{
       label_t faultbuf;

       nofault = (int *)&faultbuf;
       if (setjmp((label_t *)nofault)) {
               nofault = (int *)0;
               printf("Parity detection disabled\n");
               return;
       }
       *PARREG = 1;
       nofault = (int *)0;
       gotparmem = 1;
}

/*
* Determine if level 7 interrupt was caused by a parity error
* and deal with it if it was.  Returns 1 if it was a parity error.
*/
static int
parityerror(struct frame *fp)
{
       if (!gotparmem)
               return 0;
       *PARREG = 0;
       DELAY(10);
       *PARREG = 1;
       if (panicstr) {
               printf("parity error after panic ignored\n");
               return 1;
       }
       if (!parityerrorfind())
               printf("WARNING: transient parity error ignored\n");
       else if (USERMODE(fp->f_sr)) {
               printf("pid %d: parity error\n", curproc->p_pid);
               uprintf("sorry, pid %d killed due to memory parity error\n",
                   curproc->p_pid);
               psignal(curproc, SIGKILL);
#ifdef DEBUG
       } else if (ignorekperr) {
               printf("WARNING: kernel parity error ignored\n");
#endif
       } else {
               regdump((struct trapframe *)fp, 128);
               panic("kernel parity error");
       }
       return 1;
}

/*
* Yuk!  There has got to be a better way to do this!
* Searching all of memory with interrupts blocked can lead to disaster.
*/
static int
parityerrorfind(void)
{
       static label_t parcatch;
       static int looking = 0;
       volatile int pg, o, s;
       volatile int *ip;
       int i;
       int found;

       /*
        * If looking is true we are searching for a known parity error
        * and it has just occurred.  All we do is return to the higher
        * level invocation.
        */
       if (looking)
               longjmp(&parcatch);
       s = splhigh();
       /*
        * If setjmp returns true, the parity error we were searching
        * for has just occurred (longjmp above) at the current pg+o
        */
       if (setjmp(&parcatch)) {
               printf("Parity error at 0x%x\n", ctob(pg)|o);
               found = 1;
               goto done;
       }
       /*
        * If we get here, a parity error has occurred for the first time
        * and we need to find it.  We turn off any external caches and
        * loop thru memory, testing every longword til a fault occurs and
        * we regain control at setjmp above.  Note that because of the
        * setjmp, pg and o need to be volatile or their values will be lost.
        */
       looking = 1;
       ecacheoff();
       for (pg = btoc(lowram); pg < btoc(lowram)+physmem; pg++) {
               pmap_enter(pmap_kernel(), (vaddr_t)vmmap, ctob(pg),
                   VM_PROT_READ, VM_PROT_READ|PMAP_WIRED);
               pmap_update(pmap_kernel());
               ip = (int *)vmmap;
               for (o = 0; o < PAGE_SIZE; o += sizeof(int))
                       i = *ip++;
       }
       __USE(i);
       /*
        * Getting here implies no fault was found.  Should never happen.
        */
       printf("Couldn't locate parity error\n");
       found = 0;
done:
       looking = 0;
       pmap_remove(pmap_kernel(), (vaddr_t)vmmap, (vaddr_t)&vmmap[PAGE_SIZE]);
       pmap_update(pmap_kernel());
       ecacheon();
       splx(s);
       return found;
}

/*
* cpu_exec_aout_makecmds():
*      CPU-dependent a.out format hook for execve().
*
* Determine of the given exec package refers to something which we
* understand and, if so, set up the vmcmds for it.
*
* XXX what are the special cases for the hp300?
* XXX why is this COMPAT_NOMID?  was something generating
*      hp300 binaries with an a_mid of 0?  i thought that was only
*      done on little-endian machines...  -- cgd
*/
int
cpu_exec_aout_makecmds(struct lwp *l, struct exec_package *epp)
{
#if defined(COMPAT_NOMID) || defined(COMPAT_44)
       u_long midmag, magic;
       u_short mid;
       int error;
       struct exec *execp = epp->ep_hdr;

       midmag = ntohl(execp->a_midmag);
       mid = (midmag >> 16) & 0xffff;
       magic = midmag & 0xffff;

       midmag = mid << 16 | magic;

       switch (midmag) {
#ifdef COMPAT_NOMID
       case (MID_ZERO << 16) | ZMAGIC:
               error = exec_aout_prep_oldzmagic(l, epp);
               return error;
#endif
#ifdef COMPAT_44
       case (MID_HP300 << 16) | ZMAGIC:
               error = exec_aout_prep_oldzmagic(l, epp);
               return error;
#endif
       }
#endif /* !(defined(COMPAT_NOMID) || defined(COMPAT_44)) */

       return ENOEXEC;
}

int
mm_md_physacc(paddr_t pa, vm_prot_t prot)
{

       /*
        * On the hp300, physical RAM is always located at the end of
        * the physical address space, i.e. from 0xffffffff to lowram.
        */
       return (pa < lowram || pa >= 0xfffffffc) ? EFAULT : 0;
}

int
mm_md_kernacc(void *ptr, vm_prot_t prot, bool *handled)
{

       /*
        * Do not allow reading intio or dio device space.  This could lead
        * to corruption of device registers.
        */
       *handled = false;
       return (ISIIOVA(ptr) || ((uint8_t *)ptr >= extiobase &&
           (uint8_t *)ptr < extiobase + (EIOMAPSIZE * PAGE_SIZE)))
           ? EFAULT : 0;
}

#ifdef MODULAR
/*
* Push any modules loaded by the bootloader etc.
*/
void
module_init_md(void)
{
}
#endif