/* $NetBSD: dm9000.c,v 1.4 2021/12/12 13:05:13 andvar Exp $ */

/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/param.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>

#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

/*
* This DM9000 is wired as a 16bit device and manages Tx/Rx SRAM buffer
* in 16bit quantity.  MRCMD/MWCMD access increments buffer pointer
* by two regardless of r/w size.  Mixing 16/8bit access is not possible.
* Byte read would end up with loosing every odd indexed datum.
*
* The DM9000 CMD pin is tied with SoC LADDR2 address line.  SA9-SA4
* pins are hardwired to fixed decoding 0x300.  Thus address [26:3] in
* CS4 range 0x2000'0000 are don't-care bits to manipulate the chip.
* The DM9000 INDEX port is accessed at the address b'000 while the
* DATA port at the address b'100.
*
* This code assumes Little endian CPU.
*/

#define NCR     0x00            /* control */
#define  NCR_FDX        (1<<3)  /* FDX link detection report */
#define  NCR_RST        (1<<0)  /* instruct reset, goes 0 at done */
#define NSR     0x01            /* status */
#define  NSR_SPEED      (1<<7)  /* 1->100M, 0->10M, when link is up */
#define  NSR_LINKST     (1<<6)  /* 1->linkup, 0->linkdown */
#define  NSR_TX2END     (1<<3)  /* Tx frame #2 completed */
#define  NSR_TX1END     (1<<2)  /* Tx frame #1 completed */
#define  NSR_RXOV       (1<<1)  /* Rx FIFO overflow detected */
#define TCR     0x02            /* Tx control */
#define  TCR_TXREQ      0x01    /* request to start transmit, goes 0 at done */
#define TCR2    0x2d            /* Tx control #2 */
#define  TCR2_ONEPM     0x10    /* send single Tx frame at a time */
#define RCR     0x05            /* Rx control */
#define  RCR_WTDIS      0x40    /* disable frame receipt watchdog timer */
#define  RCR_DIS_LONG   0x20    /* discard too-long Rx frame */
#define  RCR_DIS_CRC    0x10    /* discard CRC error Rx frame */
#define  RCR_ALL        0x08    /* accept MCAST frames */
#define  RCR_RUNT       0x04    /* accept runt Rx frame */
#define  RCR_PRMSC      0x02    /* promiscuous */
#define  RCR_RXEN       0x01    /* enable frame reception */
#define RSR     0x06            /* RX status */
#define  RSR_MF         (1<<6)  /* bcast/mcast frame found */
#define FCR     0x0a            /* flow control */
#define  FCR_FLCE       0x01    /* enable Tx/Rx flow control */
#define EPCR    0x0b            /* EEPROM and PHY control */
#define  EP_EPOS        (1<<3)  /* 1 for PHY op, 0 for EEPROM op */
#define  EP_ERPRR       (1<<2)  /* instruct to start read op */
#define  EP_ERPRW       (1<<1)  /* instruct to start write op */
#define  EP_ERRE        (1<<0)  /* 1 while operation is in progress */
#define EPAR    0x0c            /* [7:6] for PHY#, [5:0] for addr */
#define EPDRL   0x0d            /* EEPROM/PHY data low byte */
#define EPDRH   0x0e            /* EEPROM/PHY data high byte */
#define PAR     0x10            /* station address */
#define MAR     0x16            /* multicast filter hash value */
#define GPR     0x1f            /* gpio control */
#define  GPR_PHYPWROFF  0x01    /* powerdown internal PHY */
#define VID0    0x28            /* vendor ID low byte */
#define VID1    0x29            /* vendor ID high byte */
#define PID0    0x2a            /* product ID low byte */
#define PID1    0x2b            /* product ID high byte */
#define CHIPR   0x2c            /* chip revision */
#define MRCMDX  0xf0            /* read data w/o pointer incr */
#define MRCMD   0xf2            /* read data with pointer auto incr */
#define MWCMD   0xf8            /* write data with pointer auto incr */
#define TXPLL   0xfc            /* Tx frame length low byte */
#define TXPLH   0xfd            /* Tx frame length high byte */
#define ISR     0xfe            /* interrupt status report */
#define  ISR_LNKCHG     0x20    /* link status change detected */
#define  ISR_UDRUN      0x10    /* transmit underrun detected */
#define  ISR_PTM        (1<<1)  /* frame Tx completed */
#define  ISR_PRS        (1<<0)  /* frame Rx completed */
#define IMR     0xff            /* interrupt mask */
#define  IMR_PAR        (1<<7)  /* use 3/13K SRAM partitioning with autowrap */
#define  IMR_PRM        (1<<0)  /* post interrupt when Rx completed */

#ifndef DM9000MAC
#define DM9000MAC 0x08,0x08,0x11,0x18,0x12,0x27
#endif

struct local {
       unsigned int csr;
       unsigned int phy, bmsr, anlpar;
       uint8_t en[6];
};

static struct local dm9000local;

int dm9k_match(unsigned int, void *);
void *dm9k_init(unsigned int, void *);
int dm9k_send(void *, char *, unsigned int);
int dm9k_recv(void *, char *, unsigned int, unsigned int);

static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_dealan(struct local *, unsigned int);

extern void usleep(int);

static inline int
CSR_READ_1(struct local *l, int reg)
{
       *(volatile uint8_t *)(l->csr) = reg;
       return *(volatile uint8_t*)(l->csr + 4);
}

static inline int
CSR_READ_2(struct local *l, int reg)
{
       *(volatile uint8_t *)(l->csr) = reg;
       return *(volatile uint16_t *)(l->csr + 4);
}

static inline void
CSR_WRITE_1(struct local *l, int reg, int data)
{
       *(volatile uint8_t *)(l->csr) = reg;
       *(volatile uint8_t *)(l->csr + 4) = data;
}

static inline void
CSR_WRITE_2(struct local *l, int reg, int data)
{
       *(volatile uint8_t *)(l->csr) = reg;
       *(volatile uint16_t *)(l->csr + 4) = data;
}

int
dm9k_match(unsigned int tag, void *aux)
{
       struct local *l = &dm9000local;
       uint8_t *en = aux;
       uint8_t std[6] = { DM9000MAC };
       int val;

       l->csr = 0x20000000;
       val =  CSR_READ_1(l, PID0);
       val |= CSR_READ_1(l, PID1) << 8;
       val |= CSR_READ_1(l, VID0) << 16;
       val |= CSR_READ_1(l, VID1) << 24;
       if (val != 0x0a469000) {
               printf("DM9000 not found at 0x%x\n", l->csr);
               return 0;
       }
       if (en != NULL
           && en[0] && en[1] && en[2] && en[3] && en[4] && en[5])
               memcpy(l->en, en, 6);
       else if (en != NULL) {
               memcpy(en, std, 6);
               memcpy(l->en, std, 6);
       }
       return 1;
}

void *
dm9k_init(unsigned int tag, void *aux)
{
       struct local *l = &dm9000local;
       uint8_t *en = l->en;
       unsigned int val, fdx;

       val = CSR_READ_1(l, CHIPR);
       printf("DM9000 rev. %#x", val);
       val = CSR_READ_1(l, ISR);
       printf(", %d bit mode\n", (val & 1<<7) ? 8 : 16);

       CSR_WRITE_1(l, NCR, 0); /* use internal PHY */
       l->phy = 1;

       /* force PHY poweroff */
       CSR_WRITE_1(l, GPR, GPR_PHYPWROFF);

       CSR_WRITE_1(l, IMR, 0);
       CSR_WRITE_1(l, TCR, 0);
       CSR_WRITE_1(l, RCR, 0);

       /* SW reset */
       CSR_WRITE_1(l, NCR, NCR_RST);
       do {
               usleep(1);
       } while (NCR_RST & CSR_READ_1(l, NCR));

       /* negate PHY poweroff condition */
       CSR_WRITE_1(l, GPR, 0);

       /* SW reset, again */
       CSR_WRITE_1(l, NCR, NCR_RST);
       do {
               usleep(1);
       } while (NCR_RST & CSR_READ_1(l, NCR));

       /* clear NSR bits */
       (void) CSR_READ_1(l, NSR);

       printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
              en[0], en[1], en[2], en[3], en[4], en[5]);
       CSR_WRITE_1(l, PAR + 0, en[0]);
       CSR_WRITE_1(l, PAR + 1, en[1]);
       CSR_WRITE_1(l, PAR + 2, en[2]);
       CSR_WRITE_1(l, PAR + 3, en[3]);
       CSR_WRITE_1(l, PAR + 4, en[4]);
       CSR_WRITE_1(l, PAR + 5, en[5]);

       /* make sure not to receive bcast/mcast frames */
       CSR_WRITE_1(l, MAR + 0, 0);
       CSR_WRITE_1(l, MAR + 1, 0);
       CSR_WRITE_1(l, MAR + 2, 0);
       CSR_WRITE_1(l, MAR + 3, 0);
       CSR_WRITE_1(l, MAR + 4, 0);
       CSR_WRITE_1(l, MAR + 5, 0);
       CSR_WRITE_1(l, MAR + 6, 0);
       CSR_WRITE_1(l, MAR + 7, 0);

       /* perform link auto-negotiation */
       printf("waiting for linkup ... ");
       mii_dealan(l, 5);

       val = CSR_READ_1(l, NSR);
       if ((val & NSR_LINKST) == 0) {
               printf("failed; cable problem?\n");
               return NULL;
       }

       /*
        * speed and duplexity can be seen in MII 17.
        *  bit15 100Mbps-FDX
        *  bit14 100Mbps
        *  bit13 10Mbps-FDX
        *  bit12 10Mbps
        * also available in NSR[SPEED] and NCR[FDX] respectively.
        */
       val = mii_read(l, l->phy, 17);
       if (val & (03 << 14))
               printf("100Mbps");
       if (val & (03 << 12))
               printf("10Mbps");
       fdx = !!(val & (05 << 13));
       if (fdx) {
               printf("-FDX");
               val = CSR_READ_1(l, FCR);
               CSR_WRITE_1(l, FCR, val | FCR_FLCE);
       }
       printf("\n");

       CSR_WRITE_1(l, NSR, ~0);
       CSR_WRITE_1(l, ISR, ~0);

       /*
        * - send one frame at a time.
        * - disable Rx watchdog timer, discard too-long/CRC error frames.
        * - 3/13K SRAM partitioning, r/w pointer autowrap.
        */
       CSR_WRITE_1(l, TCR2, TCR2_ONEPM);
       CSR_WRITE_1(l, RCR, RCR_RXEN | RCR_WTDIS | RCR_DIS_LONG | RCR_DIS_CRC);
       CSR_WRITE_1(l, IMR, IMR_PAR);

       memcpy(aux, l->en, 6);
       return l;
}

int
dm9k_send(void *dev, char *buf, unsigned int len)
{
       struct local *l = dev;
       unsigned int val, cnt, bound;

       if (len > 1520) {
               printf("dm9k_send: len > 1520 (%u)\n", len);
               len = 1520;
       }

       CSR_WRITE_1(l, ISR, ISR_PTM); /* clear ISR Tx complete bit */
       for (cnt = 0; cnt < len; cnt += 2) {
               val = (buf[1] << 8) | buf[0];
               CSR_WRITE_2(l, MWCMD, val);
               buf += 2;
       }
       CSR_WRITE_1(l, TXPLL, len);
       CSR_WRITE_1(l, TXPLH, len >> 8);
       CSR_WRITE_1(l, TCR, TCR_TXREQ); /* request to transmit */

       bound = getsecs() + 1;
       do {
               val = CSR_READ_1(l, TCR);
               if ((val & TCR_TXREQ) == 0)
                       goto done;
       } while (getsecs() < bound);
       printf("xmit failed\n");
       return -1;
 done:
       return len;
}

int
dm9k_recv(void *dev, char *buf, unsigned int maxlen, unsigned int timo)
{
       struct local *l = dev;
       unsigned int bound, val, mark, stat, len, upto, cnt;
       char *ptr;

       bound = getsecs() + timo; /* second */
 again:
       do {
               /* wait for Rx completion */
               val = CSR_READ_1(l, ISR);
               if (val & ISR_PRS)
                       goto gotone;
               /* usleep(10); this makes a stuck in mid transfer */
       } while (getsecs() < bound);
       printf("receive timeout (%d seconds wait)\n", timo);
       errno = 0;
       return -1;
 gotone:
       CSR_WRITE_1(l, ISR, ISR_PRS); /* clear ISR Rx complete bit */
       (void) CSR_READ_2(l, MRCMDX); /* dummy read */
       mark = CSR_READ_2(l, MRCMDX); /* mark in [7:0] */
       if ((mark & 03) != 01) {
               stat = CSR_READ_1(l, RSR);
               printf("dm9k_recv: mark %x, RSR %x\n", mark, stat);
               /* XXX got hosed, need full scale reinitialise XXX */
               goto again;
       }

       stat = CSR_READ_2(l, MRCMD); /* stat in [15:8] */
       len  = CSR_READ_2(l, MRCMD);

       /* should not happen, make sure to discard bcast/mcast frames */
       if (stat & (RSR_MF<<8)) {
               for (cnt = 0; cnt < len; cnt += 2)
                       (void) CSR_READ_2(l, MRCMD);
               printf("bcast/mcast frame, len = %d\n", len);
               goto again;
       }

       upto = len - 4; /* HASFCS */
       if (upto > maxlen)
               upto = maxlen;
       ptr = buf;
       for (cnt = 0; cnt < upto; cnt += 2) {
               val = CSR_READ_2(l, MRCMD);
               ptr[0] = val;
               ptr[1] = val >> 8;
               ptr += 2;
       }
       /* discard trailing bytes */
       for (; cnt < len; cnt += 2)
               (void) CSR_READ_2(l, MRCMD);

       return upto;
}

static unsigned int
mii_read(struct local *l, int phy, int reg)
{
       int v;

       CSR_WRITE_1(l, EPAR, phy << 6 | reg);
       CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRR);
       do {
               v = CSR_READ_1(l, EPCR);
       } while (v & EP_ERRE);
       CSR_WRITE_1(l, EPCR, 0);
       v = (CSR_READ_1(l, EPDRH) << 8) | CSR_READ_1(l, EPDRL);
       return v;
}

static void
mii_write(struct local *l, int phy, int reg, int data)
{
       int v;

       CSR_WRITE_1(l, EPAR, phy << 6 | reg);
       CSR_WRITE_1(l, EPDRL, data);
       CSR_WRITE_1(l, EPDRH, data >> 8);
       CSR_WRITE_1(l, EPCR, EP_EPOS | EP_ERPRW);
       do {
               v = CSR_READ_1(l, EPCR);
       } while (v & EP_ERRE);
       CSR_WRITE_1(l, EPCR, 0);
}

#define MII_BMCR        0x00    /* Basic mode control register (rw) */
#define  BMCR_RESET     0x8000  /* reset */
#define  BMCR_AUTOEN    0x1000  /* autonegotiation enable */
#define  BMCR_ISO       0x0400  /* isolate */
#define  BMCR_STARTNEG  0x0200  /* restart autonegotiation */
#define MII_BMSR        0x01    /* Basic mode status register (ro) */
#define  BMSR_ACOMP     0x0020  /* Autonegotiation complete */
#define  BMSR_LINK      0x0004  /* Link status */
#define MII_ANAR        0x04    /* Autonegotiation advertisement (rw) */
#define  ANAR_FC        0x0400  /* local device supports PAUSE */
#define  ANAR_TX_FD     0x0100  /* local device supports 100bTx FD */
#define  ANAR_TX        0x0080  /* local device supports 100bTx */
#define  ANAR_10_FD     0x0040  /* local device supports 10bT FD */
#define  ANAR_10        0x0020  /* local device supports 10bT */
#define  ANAR_CSMA      0x0001  /* protocol selector CSMA/CD */
#define MII_ANLPAR      0x05    /* Autonegotiation lnk partner abilities (rw) */

static void
mii_dealan(struct local *l, unsigned int timo)
{
       unsigned int bound;

       mii_write(l, l->phy, MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
           ANAR_10 | ANAR_CSMA | ANAR_FC);
       mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
       l->anlpar = 0;
       bound = getsecs() + timo;
       do {
               l->bmsr = mii_read(l, l->phy, MII_BMSR) |
                  mii_read(l, l->phy, MII_BMSR); /* read twice */
               if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
                       l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
                       break;
               }
               usleep(10 * 1000);
       } while (getsecs() < bound);
       return;
}