/*-
* Copyright (c) 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Fleischer <[email protected]>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* This file is based on arch/evbarm/smdk2xx0/smdk2410_machdep.c */
/*
* Copyright (c) 2002, 2003 Fujitsu Component Limited
* Copyright (c) 2002, 2003, 2005 Genetec Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of The Fujitsu Component Limited nor the name of
*    Genetec corporation may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY FUJITSU COMPONENT LIMITED AND GENETEC
* CORPORATION ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED.  IN NO EVENT SHALL FUJITSU COMPONENT LIMITED OR GENETEC
* CORPORATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 2001,2002 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
*    products derived from this software without specific prior written
*    permission.
*
* THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL ARM LTD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/

/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Mark Brinicombe
*      for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependant functions for kernel setup for integrator board
*
* Created      : 24/11/97
*/

/*
* Machine dependant functions for kernel setup for FriendlyARM MINI2440
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mini2440_machdep.c,v 1.22 2024/02/20 23:36:02 andvar Exp $");

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_md.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/mount.h>

#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>
#include <dev/md.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif

#include <sys/exec_elf.h>

#include <sys/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <machine/intr.h>
#include <arm/undefined.h>

#include <machine/autoconf.h>

#include <arm/locore.h>
#include <arm/arm32/machdep.h>

#include <arm/s3c2xx0/s3c2440reg.h>
#include <arm/s3c2xx0/s3c2440var.h>

#include <arch/evbarm/mini2440/mini2440_bootinfo.h>

#include "ksyms.h"

#ifndef SDRAM_START
#define SDRAM_START     S3C2440_SDRAM_START
#endif
#ifndef SDRAM_SIZE
#define SDRAM_SIZE      (64*1024*1024) /* 64 Mb */
#endif

/*
* Address to map I/O registers in early initialize stage.
*/
#define MINI2440_IO_VBASE       0xfd000000

/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_OFFSET           0x00200000
#define KERNEL_TEXT_BASE        (KERNEL_BASE + KERNEL_OFFSET)
#define KERNEL_VM_BASE          (KERNEL_BASE + 0x01000000)

/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE          0x0C000000

/* Declared extern elsewhere in the kernel */
BootConfig bootconfig;          /* Boot config storage */
char *boot_args = NULL;
//char *boot_file = NULL;

char bootinfo[BOOTINFO_MAXSIZE];
struct btinfo_rootdevice        *bi_rdev;
struct btinfo_net               *bi_net;
struct btinfo_bootpath          *bi_path;

vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_freeend_low;
vaddr_t physical_end;
u_int free_pages;
vaddr_t pagetables_start;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;         /* Default number */
#endif                          /* !PMAP_STATIC_L1S */

paddr_t msgbufphys;

#define KERNEL_PT_SYS           0       /* L2 table for mapping zero page */
#define KERNEL_PT_KERNEL        1       /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM    3       /* L2 tables for mapping kernel VM */

#define KERNEL_PT_VMDATA        (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)

#define KERNEL_PT_VMDATA_NUM    4       /* start with 16MB of KVM */
#define NUM_KERNEL_PTS          (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

/* Prototypes */

void consinit(void);
void kgdb_port_init(void);
static void mini2440_ksyms(struct btinfo_symtab *bi_symtab);
static void *lookup_bootinfo(int type);
static void mini2440_device_register(device_t dev, void *aux);


#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#include "sscom.h"
#if NSSCOM > 0
#include "opt_sscom.h"
#include <arm/s3c2xx0/sscom_var.h>
#endif

/*
* Define the default console speed for the board.  This is generally
* what the firmware provided with the board defaults to.
*/
#ifndef CONSPEED
#define CONSPEED B115200        /* TTYDEF_SPEED */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8)   /* 8N1 */
#endif

int comcnspeed = CONSPEED;
int comcnmode = CONMODE;

/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
       /* info */
       printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif

       cpu_reset_address_paddr = vtophys((uintptr_t)s3c2440_softreset);

       /*
        * If we are still cold then hit the air brakes
        * and crash to earth fast
        */
       if (cold) {
               doshutdownhooks();
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
               printf("rebooting...\n");
               cpu_reset();
               /* NOTREACHED */
       }
       /* Disable console buffering */

       /*
        * If RB_NOSYNC was not specified sync the discs.
        * Note: Unless cold is set to 1 here, syslogd will die during the
        * unmount.  It looks like syslogd is getting woken up only to find
        * that it cannot page part of the binary in as the filesystem has
        * been unmounted.
        */
       if (!(howto & RB_NOSYNC))
               bootsync();

       /* Say NO to interrupts */
       splhigh();

       /* Do a dump if requested. */
       if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
               dumpsys();

       /* Run any shutdown hooks */
       doshutdownhooks();

       /* Make sure IRQ's are disabled */
       IRQdisable;

       if (howto & RB_HALT) {
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
       }
       printf("rebooting...\n");
       cpu_reset();
       /* NOTREACHED */
}

/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel , and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/

#define _V(n)   (MINI2440_IO_VBASE + (n) * L1_S_SIZE)

#define GPIO_VBASE      _V(0)
#define INTCTL_VBASE    _V(1)
#define CLKMAN_VBASE    _V(2)
#define UART_VBASE      _V(3)

static const struct pmap_devmap mini2440_devmap[] = {
       /* GPIO registers */
       DEVMAP_ENTRY(
               GPIO_VBASE,
               S3C2440_GPIO_BASE,
               S3C2440_GPIO_SIZE
       ),
       DEVMAP_ENTRY(
               INTCTL_VBASE,
               S3C2440_INTCTL_BASE,
               S3C2440_INTCTL_SIZE
       ),
       DEVMAP_ENTRY(
               CLKMAN_VBASE,
               S3C2440_CLKMAN_BASE,
               S3C24X0_CLKMAN_SIZE
       ),
       /* UART registers for UART0, 1, 2. */
       DEVMAP_ENTRY(
               UART_VBASE,
               S3C2440_UART0_BASE,
               S3C2440_UART_BASE(3) - S3C2440_UART0_BASE
       ),
       DEVMAP_ENTRY_END
};

static inline   pd_entry_t *
read_ttb(void)
{
       long ttb;

       __asm volatile("mrc     p15, 0, %0, c2, c0, 0" : "=r"(ttb));


       return (pd_entry_t *)(ttb & ~((1 << 14) - 1));
}


#define ioreg_write32(a,v)      (*(volatile uint32_t *)(a)=(v))

/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
*   Taking a copy of the boot configuration structure.
*   Initialising the physical console so characters can be printed.
*   Setting up page tables for the kernel
*   Relocating the kernel to the bottom of physical memory
*/

vaddr_t
initarm(void *arg)
{
       int loop;
       int loop1;
       u_int l1pagetable;
       extern int etext __asm("_etext");
       extern int end __asm("_end");
       uint32_t kerneldatasize;
       struct btinfo_magic *bi_magic = arg;
       struct btinfo_bootstring *bi_bootstring;
       struct btinfo_symtab *bi_symtab;

       boothowto = 0;

       /* Copy bootinfo from boot loader into kernel memory where it remains.
        */
       if (bi_magic != 0x0 && bi_magic->magic == BOOTINFO_MAGIC) {
               memcpy(bootinfo, bi_magic, sizeof(bootinfo));
       } else {
               memset(bootinfo, 0, sizeof(bootinfo));
       }

       /* Extract boot_args from bootinfo */
       bi_bootstring = lookup_bootinfo(BTINFO_BOOTSTRING);
       if (bi_bootstring ) {
               printf("Bootloader args are %s\n", bi_bootstring->bootstring);
               boot_args = bi_bootstring->bootstring;
               parse_mi_bootargs(boot_args);
       }

#define pdatb (*(volatile uint8_t *)(S3C2440_GPIO_BASE+GPIO_PBDAT))

// 0x1E0 is the mask for GPB5, GPB6, GPB7, and GPB8
#define __LED(x)  (pdatb = (pdatb & ~0x1e0) | (~(1<<(x+5)) & 0x1e0))

       __LED(0);

       /*
        * Heads up ... Setup the CPU / MMU / TLB functions
        */
       if (set_cpufuncs())
               panic("cpu not recognized!");

       /*
        * Map I/O registers that are used in startup.  Now we are
        * still using page table prepared by bootloader.  Later we'll
        * map those registers at the same address in the kernel page
        * table.
        */
       pmap_devmap_bootstrap((vaddr_t)read_ttb(), mini2440_devmap);

#undef  pdatb
#define pdatb (*(volatile uint8_t *)(GPIO_VBASE+GPIO_PBDAT))

       /* Disable all peripheral interrupts */
       ioreg_write32(INTCTL_VBASE + INTCTL_INTMSK, ~0);

       __LED(1);

       /* initialize some variables so that splfoo() doesn't
          touch illegal address.  */
       s3c2xx0_intr_bootstrap(INTCTL_VBASE);

       __LED(2);
       consinit();
       __LED(3);

       /* Extract information from the bootloader configuration */
       bi_rdev = lookup_bootinfo(BTINFO_ROOTDEVICE);
       bi_net = lookup_bootinfo(BTINFO_NET);
       bi_path = lookup_bootinfo(BTINFO_BOOTPATH);

#ifdef VERBOSE_INIT_ARM
       printf("consinit done\n");
#endif

#ifdef KGDB
       kgdb_port_init();
#endif

#ifdef VERBOSE_INIT_ARM
       /* Talk to the user */
       printf("\nNetBSD/evbarm (MINI2440) booting ...\n");
#endif
       /*
        * Ok we have the following memory map
        *
        * Physical Address Range     Description
        * -----------------------    ----------------------------------
        * 0x30000000 - 0x33ffffff    SDRAM (64MB)
        *
        * Kernel is loaded by bootloader at 0x30200000
        *
        * The initarm() has the responsibility for creating the kernel
        * page tables.
        * It must also set up various memory pointers that are used
        * by pmap etc.
        */

       /* Fake bootconfig structure for the benefit of pmap.c */
       /* XXX must make the memory description h/w independent */
       bootconfig.dramblocks = 1;
       bootconfig.dram[0].address = SDRAM_START;
       bootconfig.dram[0].pages = SDRAM_SIZE / PAGE_SIZE;

       /*
        * Set up the variables that define the availability of
        * physical memory.
        * We use the 2MB between the physical start and the kernel to
        * begin with. Allocating from 0x30200000 and downwards
        * If we get too close to the bottom of SDRAM, we
        * will panic.  We will update physical_freestart and
        * physical_freeend later to reflect what pmap_bootstrap()
        * wants to see.
        *
        * XXX pmap_bootstrap() needs an enema.
        */
       physical_start = bootconfig.dram[0].address;
       physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

       physical_freestart = SDRAM_START;       /* XXX */
       physical_freeend = SDRAM_START + KERNEL_OFFSET;

       physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       /* Tell the user about the memory */
       printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
           physical_start, physical_end - 1);
       printf("phys_end: 0x%08lx\n", physical_end);
#endif

       /*
        * XXX
        * Okay, the kernel starts 2MB in from the bottom of physical
        * memory.  We are going to allocate our bootstrap pages downwards
        * from there.
        *
        * We need to allocate some fixed page tables to get the kernel
        * going.  We allocate one page directory and a number of page
        * tables and store the physical addresses in the kernel_pt_table
        * array.
        *
        * The kernel page directory must be on a 16K boundary.  The page
        * tables must be on 4K boundaries.  What we do is allocate the
        * page directory on the first 16K boundary that we encounter, and
        * the page tables on 4K boundaries otherwise.  Since we allocate
        * at least 3 L2 page tables, we are guaranteed to encounter at
        * least one 16K aligned region.
        */

#ifdef VERBOSE_INIT_ARM
       printf("Allocating page tables\n");
#endif

       free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%08x), freeend = 0x%08lx\n",
           physical_freestart, free_pages, free_pages, physical_freeend);
#endif

       /* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)                           \
       alloc_pages((var).pv_pa, (np));                 \
       (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)                            \
       physical_freeend -= ((np) * PAGE_SIZE);         \
       if (physical_freeend < physical_freestart)      \
               panic("initarm: out of memory");        \
       (var) = physical_freeend;                       \
       free_pages -= (np);                             \
       memset((char *)(var), 0, ((np) * PAGE_SIZE));

       loop1 = 0;
       for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
               /* Are we 16KB aligned for an L1 ? */
               if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
                   && kernel_l1pt.pv_pa == 0) {
                       valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
               } else {
                       valloc_pages(kernel_pt_table[loop1],
                           L2_TABLE_SIZE / PAGE_SIZE);
                       ++loop1;
               }
       }

       /* This should never be able to happen but better confirm that. */
       if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE - 1)) != 0)
               panic("initarm: Failed to align the kernel page directory\n");

       /*
        * Allocate a page for the system page mapped to V0x00000000
        * This page will just contain the system vectors and can be
        * shared by all processes.
        */
       alloc_pages(systempage.pv_pa, 1);

       /* Allocate stacks for all modes */
       valloc_pages(irqstack, IRQ_STACK_SIZE);
       valloc_pages(abtstack, ABT_STACK_SIZE);
       valloc_pages(undstack, UND_STACK_SIZE);
       valloc_pages(kernelstack, UPAGES);

#ifdef VERBOSE_INIT_ARM
       printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
           irqstack.pv_va);
       printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
           abtstack.pv_va);
       printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
           undstack.pv_va);
       printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
           kernelstack.pv_va);
       printf("Free memory in bootstrap region: %ld bytes\n", physical_freeend - physical_freestart);
#endif

       alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

       physical_freeend_low = physical_freeend;

       /*
        * Ok we have allocated physical pages for the primary kernel
        * page tables
        */

#ifdef VERBOSE_INIT_ARM
       printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

       /*
        * Now we start construction of the L1 page table
        * We start by mapping the L2 page tables into the L1.
        * This means that we can replace L1 mappings later on if necessary
        */
       l1pagetable = kernel_l1pt.pv_pa;

       /* Map the L2 pages tables in the L1 page table */
       pmap_link_l2pt(l1pagetable, 0x00000000,
           &kernel_pt_table[KERNEL_PT_SYS]);
       for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
       for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

       /* update the top of the kernel VM */
       pmap_curmaxkvaddr =
           KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
       printf("Mapping kernel\n");
#endif

       /* Now we fill in the L2 pagetable for the kernel static code/data */
       {
               /* Total size must include symbol table, if it exists.
                  The size of the symbol table can be acquired from the ELF
                  header, to which a pointer is passed in the boot info (ssym).
                */
               size_t textsize = (uintptr_t)&etext - KERNEL_TEXT_BASE;
               kerneldatasize = (uintptr_t)&end - KERNEL_TEXT_BASE;
               u_int logical;

               bi_symtab = lookup_bootinfo(BTINFO_SYMTAB);

               if (bi_symtab) {
                       Elf_Ehdr *elfHeader;
                       Elf_Shdr *sectionHeader;
                       int nsection;
                       int sz = 0;

                       elfHeader = bi_symtab->ssym;

#ifdef VERBOSE_INIT_ARM
                       printf("Symbol table information provided by bootloader\n");
                       printf("ELF header is at %p\n", elfHeader);
#endif
                       sectionHeader = (Elf_Shdr*)((char*)(bi_symtab->ssym) +
                                                    (elfHeader->e_shoff));
                       nsection = elfHeader->e_shnum;
#ifdef VERBOSE_INIT_ARM
                       printf("Number of sections: %d\n", nsection);
#endif
                       for(; nsection > 0; nsection--, sectionHeader++) {
                               if (sectionHeader->sh_offset > 0 &&
                                   (sectionHeader->sh_offset + sectionHeader->sh_size) > sz)
                                       sz = sectionHeader->sh_offset + sectionHeader->sh_size;
                       }
#ifdef VERBOSE_INIT_ARM
                       printf("Max size of sections: %d\n", sz);
#endif
                       kerneldatasize += sz;
               }

#ifdef VERBOSE_INIT_ARM
               printf("Textsize: %u, kerneldatasize: %u\n", (uint)textsize,
                      (uint)kerneldatasize);
               printf("&etext: 0x%x\n", (uint)&etext);
               printf("&end: 0x%x\n", (uint)&end);
               printf("KERNEL_TEXT_BASE: 0x%x\n", KERNEL_TEXT_BASE);
#endif

               textsize = (textsize + PGOFSET) & ~PGOFSET;
               kerneldatasize = (kerneldatasize + PGOFSET) & ~PGOFSET;

               logical = KERNEL_OFFSET;        /* offset of kernel in RAM */

               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                                         physical_start + logical, textsize,
                                         VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                                         physical_start + logical, kerneldatasize - textsize,
                                         VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
       }

#ifdef VERBOSE_INIT_ARM
       printf("Constructing L2 page tables\n");
#endif

       /* Map the stack pages */
       pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
           IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
           PTE_CACHE);
       pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
           ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
           PTE_CACHE);
       pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
           UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE,
           PTE_CACHE);
       pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
           UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

       pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
           L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

       for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
               pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
                   kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
       }

       /* Map the vector page. */
#if 0
       /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
        * cache-clean code there.  */
       pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
           VM_PROT_READ | VM_PROT_WRITE, PTE_NOCACHE);
#else
       pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
           VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
#endif

       /*
        * map integrated peripherals at same address in l1pagetable
        * so that we can continue to use console.
        */
       pmap_devmap_bootstrap(l1pagetable, mini2440_devmap);

       /*
        * Now we have the real page tables in place so we can switch to them.
        * Once this is done we will be running with the REAL kernel page
        * tables.
        */
       /*
        * Update the physical_freestart/physical_freeend/free_pages
        * variables.
        */
       physical_freestart = physical_start +
         (KERNEL_TEXT_BASE - KERNEL_BASE) + kerneldatasize;
       physical_freeend = physical_end;
       free_pages =
         (physical_freeend - physical_freestart) / PAGE_SIZE;

       /* Switch tables */
#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
           physical_freestart, free_pages, free_pages);
       printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
       cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
       cpu_setttb(kernel_l1pt.pv_pa, true);
       cpu_tlb_flushID();
       cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

       /*
        * Moved from cpu_startup() as data_abort_handler() references
        * this during uvm init
        */
       uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
       printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
       printf("bootstrap done.\n");
#endif

       arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

       /*
        * Pages were allocated during the secondary bootstrap for the
        * stacks for different CPU modes.
        * We must now set the r13 registers in the different CPU modes to
        * point to these stacks.
        * Since the ARM stacks use STMFD etc. we must set r13 to the top end
        * of the stack memory.
        */
#ifdef VERBOSE_INIT_ARM
       printf("init subsystems: stacks ");
#endif

       set_stackptr(PSR_IRQ32_MODE,
           irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_ABT32_MODE,
           abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_UND32_MODE,
           undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

       cpu_idcache_wbinv_all();

       /*
        * Well we should set a data abort handler.
        * Once things get going this will change as we will need a proper
        * handler.
        * Until then we will use a handler that just panics but tells us
        * why.
        * Initialisation of the vectors will just panic on a data abort.
        * This just fills in a slightly better one.
        */
#ifdef VERBOSE_INIT_ARM
       printf("vectors ");
#endif
       data_abort_handler_address = (u_int)data_abort_handler;
       prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
       undefined_handler_address = (u_int)undefinedinstruction_bounce;

       /* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
       printf("undefined ");
#endif
       undefined_init();

       /* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
       printf("page ");
#endif
       uvm_md_init();
       uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
           atop(physical_freestart), atop(physical_freeend),
           VM_FREELIST_DEFAULT);
       uvm_page_physload(atop(SDRAM_START), atop(physical_freeend_low),
           atop(SDRAM_START), atop(physical_freeend_low),
           VM_FREELIST_DEFAULT);


       /* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
       printf("pmap ");
#endif
       pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

#ifdef VERBOSE_INIT_ARM
       printf("done.\n");
#endif

#ifdef BOOTHOWTO
       boothowto |= BOOTHOWTO;
#endif

#ifdef KGDB
       if (boothowto & RB_KDB) {
               kgdb_debug_init = 1;
               kgdb_connect(1);
       }
#endif

       mini2440_ksyms(bi_symtab);

#ifdef DDB
       /*db_machine_init();*/
       if (boothowto & RB_KDB)
               Debugger();
#endif

       evbarm_device_register = mini2440_device_register;

       /* We return the new stack pointer address */
       return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}

void
consinit(void)
{
       static int consinit_done = 0;
#if defined(SSCOM0CONSOLE) || defined(SSCOM1CONSOLE)
       bus_space_tag_t iot = &s3c2xx0_bs_tag;
#endif
       int pclk;

       if (consinit_done != 0)
               return;

       consinit_done = 1;

       s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);

#if NSSCOM > 0
#ifdef SSCOM0CONSOLE
       if (0 == s3c2440_sscom_cnattach(iot, 0, comcnspeed,
               pclk, comcnmode))
               return;
#endif
#ifdef SSCOM1CONSOLE
       if (0 == s3c2440_sscom_cnattach(iot, 1, comcnspeed,
               pclk, comcnmode))
               return;
#endif
#endif                          /* NSSCOM */
#if NCOM>0 && defined(CONCOMADDR)
       if (comcnattach(&isa_io_bs_tag, CONCOMADDR, comcnspeed,
               COM_FREQ, COM_TYPE_NORMAL, comcnmode))
               panic("can't init serial console @%x", CONCOMADDR);
       return;
#endif

       consinit_done = 0;
}


#ifdef KGDB

#if (NSSCOM > 0)

#ifdef KGDB_DEVNAME
const char kgdb_devname[] = KGDB_DEVNAME;
#else
const char kgdb_devname[] = "";
#endif

#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE|CSTOPB|PARENB))|CS8) /* 8N1 */
#endif
int kgdb_sscom_mode = KGDB_DEVMODE;

#endif                          /* NSSCOM */

void
kgdb_port_init(void)
{
#if (NSSCOM > 0)
       int unit = -1;
       int pclk;

       if (strcmp(kgdb_devname, "sscom0") == 0)
               unit = 0;
       else if (strcmp(kgdb_devname, "sscom1") == 0)
               unit = 1;

       if (unit >= 0) {
               s3c24x0_clock_freq2(CLKMAN_VBASE, NULL, NULL, &pclk);

               s3c2440_sscom_kgdb_attach(&s3c2xx0_bs_tag,
                   unit, kgdb_rate, pclk, kgdb_sscom_mode);
       }
#endif
}
#endif


static struct arm32_dma_range mini2440_dma_ranges[1];

bus_dma_tag_t
s3c2xx0_bus_dma_init(struct arm32_bus_dma_tag *dma_tag_template)
{
       extern paddr_t physical_start, physical_end;
       struct arm32_bus_dma_tag *dmat;

       mini2440_dma_ranges[0].dr_sysbase = physical_start;
       mini2440_dma_ranges[0].dr_busbase = physical_start;
       mini2440_dma_ranges[0].dr_len = physical_end - physical_start;

#if 1
       dmat = dma_tag_template;
#else
       dmat = malloc(sizeof *dmat, M_DEVBUF, M_WAITOK);
       *dmat =  *dma_tag_template;
#endif

       dmat->_ranges = mini2440_dma_ranges;
       dmat->_nranges = 1;

       return dmat;
}

void
mini2440_ksyms(struct btinfo_symtab *bi_symtab)
{
#if NKSYMS || defined(DDB) || defined(LKM)
       extern int end;

#ifdef DDB
       db_machine_init();
#endif
       if (bi_symtab == NULL) {
               return;
       }
#ifdef VERBOSE_INIT_ARM
       printf("Got symbol table. nsym=%d, ssym=%p, esym=%p\n",
              bi_symtab->nsym,
              bi_symtab->ssym,
              bi_symtab->esym);
#endif

       ksyms_addsyms_elf(bi_symtab->nsym,
                         (int*)bi_symtab->ssym,
                         (int*)bi_symtab->esym);
#endif
}

void *
lookup_bootinfo(int type)
{
       struct btinfo_common *bt;
       struct btinfo_common *help = (struct btinfo_common *)bootinfo;

       if (help->next == 0)
               return (NULL);  /* bootinfo[] was not made */
       do {
               bt = help;
               if (bt->type == type)
                       return (help);
               help = (struct btinfo_common *)((char*)help + bt->next);
       } while (bt->next &&
                (size_t)help < (size_t)bootinfo + BOOTINFO_MAXSIZE);

       return (NULL);
}


extern char *booted_kernel;

static void
mini2440_device_register(device_t dev, void *aux) {
       if (device_class(dev) == DV_IFNET) {
#ifndef MEMORY_DISK_IS_ROOT
               if (bi_rdev != NULL && device_is_a(dev, bi_rdev->devname) ) {
                       booted_device = dev;
                       rootfstype = MOUNT_NFS;
                       if( bi_path != NULL ) {
                               booted_kernel = bi_path->bootpath;
                       }
               }
#endif
               if (bi_net != NULL && device_is_a(dev, bi_net->devname)) {
                       prop_data_t pd;
                       pd = prop_data_create_data_nocopy(bi_net->mac_address, ETHER_ADDR_LEN);
                       KASSERT(pd != NULL);
                       if (prop_dictionary_set(device_properties(dev), "mac-address", pd) == false) {
                               printf("WARNING: Unable to set mac-address property for %s\n", device_xname(dev));
                       }
                       prop_object_release(pd);
                       bi_net = NULL;
               }
       }
#ifndef MEMORY_DISK_IS_ROOT
       if (bi_rdev != NULL && device_class(dev) == DV_DISK
           && device_is_a(dev, bi_rdev->devname)
           && device_unit(dev) == bi_rdev->cookie) {
               booted_device = dev;
               booted_partition = bi_rdev->partition;
               rootfstype = ROOT_FSTYPE_ANY;
               if( bi_path != NULL ) {
                       booted_kernel = bi_path->bootpath;
               }
       }
#endif
}