/*
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for
* Intel DBPXA250 evaluation board (a.k.a. Lubbock).
* Based on iq80310_machhdep.c
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Intel IQ80310 evaluation
* boards using RedBoot firmware.
*/
/*
* DIP switches:
*
* S19: no-dot: set RB_KDB. enter kgdb session.
* S20: no-dot: set RB_SINGLE. don't go multi user mode.
*/
/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE (KERNEL_BASE + 0x01000000)
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
/* cnpollc(1);*/
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
vaddr_t
initarm(void *arg)
{
int loop;
int loop1;
u_int l1pagetable;
paddr_t memstart;
psize_t memsize;
int led_data = 0;
#define LEDSTEP_P() ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
#define LEDSTEP() hex_led(led_data++)
/* use physical address until pagetable is set */
LEDSTEP_P();
/* map some peripheral registers at static I/O area */
pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
LEDSTEP_P();
/* start 32.768 kHz OSC */
ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
/* Get ready for splfoo() */
pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
LEDSTEP();
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
LEDSTEP();
#if 0
/* Calibrate the delay loop. */
#endif
/*
* Okay, RedBoot has provided us with the following memory map:
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x00000000 - 0x01ffffff flash Memory (32MB)
* 0x04000000 - 0x05ffffff Application flash Memory (32MB)
* 0x08000000 - 0x080000ff I/O baseboard registers
* 0x0a000000 - 0x0a0fffff SRAM (1MB)
* 0x0c000000 - 0x0c0fffff Ethernet Controller
* 0x0e000000 - 0x0e0fffff Ethernet Controller (Attribute)
* 0x10000000 - 0x103fffff SA-1111 Companion Chip
* 0x14000000 - 0x17ffffff Expansion Card (64MB)
* 0x40000000 - 0x480fffff Processor Registers
* 0xa0000000 - 0xa3ffffff SDRAM Bank 0 (64MB)
*
*
* Virtual Address Range X C B Description
* ----------------------- - - - ----------------------------------
* 0x00000000 - 0x00003fff N Y Y SDRAM
* 0x00004000 - 0x000fffff N Y N Boot ROM
* 0x00100000 - 0x01ffffff N N N Application Flash
* 0x04000000 - 0x05ffffff N N N Exp Application Flash
* 0x08000000 - 0x080fffff N N N I/O baseboard registers
* 0x0a000000 - 0x0a0fffff N N N SRAM
* 0x40000000 - 0x480fffff N N N Processor Registers
* 0xa0000000 - 0xa000ffff N Y N RedBoot SDRAM
* 0xa0017000 - 0xa3ffffff Y Y Y SDRAM
* 0xc0000000 - 0xcfffffff Y Y Y Cache Flush Region
* (done by this routine)
* 0xfd000000 - 0xfd0000ff N N N I/O baseboard registers
* 0xfd100000 - 0xfd3fffff N N N Processor Registers.
* 0xfd400000 - 0xfd4fffff N N N FF-UART
* 0xfd500000 - 0xfd5fffff N N N BT-UART
*
* RedBoot's first level page table is at 0xa0004000. There
* are also 2 second-level tables at 0xa0008000 and
* 0xa0008400. We will continue to use them until we switch to
* our pagetable by cpu_setttb().
*
*/
/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
pxa2x0_gpio_config(lubbock_gpioconf);
/* turn on clock to UART block.
XXX: this should not be done here. */
ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
/* Initialize for PCMCIA/CF sockets */
{
uint32_t tmp;
/* Activate two sockets.
XXX: This code segment should be moved to
pcmcia MD attach routine.
XXX: These bits should be toggled based on
existene of PCMCIA/CF cards
*/
ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
MECR_NOS|MECR_CIT);
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independent */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
/*
* Set up the variables that define the availability of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the page tables that RedBoot
* set up, we will panic. We will update physical_freestart
* and physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
loop1 = 0;
kernel_l1pt.pv_pa = 0;
kernel_l1pt.pv_va = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
LEDSTEP();
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
valloc_pages(minidataclean, 1);
/*
* XXX Defer this to later so that we can reclaim the memory
* XXX used by the RedBoot page tables.
*/
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, 0x00000000,
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
/* Map the vector page. */
#if 1
/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
* cache-clean code there. */
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif
/*
* map integrated peripherals at same address in l1pagetable
* so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
printf("init subsystems: stacks ");
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();