/*      $NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $ */

/*
* Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
*    promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for
* Intel DBPXA250 evaluation board (a.k.a. Lubbock).
* Based on iq80310_machhdep.c
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Mark Brinicombe
*      for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Intel IQ80310 evaluation
* boards using RedBoot firmware.
*/

/*
* DIP switches:
*
* S19: no-dot: set RB_KDB.  enter kgdb session.
* S20: no-dot: set RB_SINGLE. don't go multi user mode.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $");

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_md.h"
#include "opt_com.h"
#include "lcd.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>
#include <dev/md.h>
#include <dev/ic/smc91cxxreg.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif

#include <machine/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/xscale/pxa2x0reg.h>
#include <arm/xscale/pxa2x0var.h>
#include <arm/xscale/pxa2x0_gpio.h>
#include <arm/sa11x0/sa1111_reg.h>
#include <evbarm/lubbock/lubbock_reg.h>
#include <evbarm/lubbock/lubbock_var.h>

/* Kernel text starts 2MB in from the bottom of the kernel address space. */
#define KERNEL_TEXT_BASE        (KERNEL_BASE + 0x00200000)
#define KERNEL_VM_BASE          (KERNEL_BASE + 0x01000000)

/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE          0x0C000000

BootConfig bootconfig;          /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;

vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;                 /* Default number */
#endif  /* !PMAP_STATIC_L1S */

/* Physical and virtual addresses for some global pages */
pv_addr_t minidataclean;

paddr_t msgbufphys;

#define KERNEL_PT_SYS           0       /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL        1       /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM    4
#define KERNEL_PT_VMDATA        (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
                                       /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM    4       /* start with 16MB of KVM */
#define NUM_KERNEL_PTS          (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

/* Prototypes */

#if 0
void    process_kernel_args(char *);
#endif

void    consinit(void);
void    kgdb_port_init(void);
void    change_clock(uint32_t v);

bs_protos(bs_notimpl);

#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#ifndef CONSPEED
#define CONSPEED B115200        /* What RedBoot uses */
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

int comcnspeed = CONSPEED;
int comcnmode = CONMODE;

static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
       { 44, GPIO_ALT_FN_1_IN },       /* BTCST */
       { 45, GPIO_ALT_FN_2_OUT },      /* BTRST */

       { 29, GPIO_ALT_FN_1_IN },       /* SDATA_IN0 */

       { -1 }
};
static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
       pxa25x_com_btuart_gpioconf,
       pxa25x_com_ffuart_gpioconf,
#if 0
       pxa25x_com_stuart_gpioconf,
#endif
       pxa25x_pcic_gpioconf,
       pxa25x_pxaacu_gpioconf,
       boarddep_gpioconf,
       NULL
};

/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
       /* info */
       printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif

       /*
        * If we are still cold then hit the air brakes
        * and crash to earth fast
        */
       if (cold) {
               doshutdownhooks();
               pmf_system_shutdown(boothowto);
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
               printf("rebooting...\n");
               cpu_reset();
               /*NOTREACHED*/
       }

       /* Disable console buffering */
/*      cnpollc(1);*/

       /*
        * If RB_NOSYNC was not specified sync the discs.
        * Note: Unless cold is set to 1 here, syslogd will die during the
        * unmount.  It looks like syslogd is getting woken up only to find
        * that it cannot page part of the binary in as the filesystem has
        * been unmounted.
        */
       if (!(howto & RB_NOSYNC))
               bootsync();

       /* Say NO to interrupts */
       splhigh();

       /* Do a dump if requested. */
       if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
               dumpsys();

       /* Run any shutdown hooks */
       doshutdownhooks();

       pmf_system_shutdown(boothowto);

       /* Make sure IRQ's are disabled */
       IRQdisable;

       if (howto & RB_HALT) {
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
       }

       printf("rebooting...\n");
       cpu_reset();
       /*NOTREACHED*/
}

static inline
pd_entry_t *
read_ttb(void)
{
 long ttb;

 __asm volatile("mrc   p15, 0, %0, c2, c0, 0" : "=r" (ttb));


 return (pd_entry_t *)(ttb & ~((1<<14)-1));
}

/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/

static const struct pmap_devmap lubbock_devmap[] = {
   DEVMAP_ENTRY(
           LUBBOCK_OBIO_VBASE,
           LUBBOCK_OBIO_PBASE,
           LUBBOCK_OBIO_SIZE
   ),
   DEVMAP_ENTRY(
           LUBBOCK_GPIO_VBASE,
           PXA2X0_GPIO_BASE,
           PXA250_GPIO_SIZE
   ),
   DEVMAP_ENTRY(
           LUBBOCK_CLKMAN_VBASE,
           PXA2X0_CLKMAN_BASE,
           PXA2X0_CLKMAN_SIZE
   ),
   DEVMAP_ENTRY(
           LUBBOCK_INTCTL_VBASE,
           PXA2X0_INTCTL_BASE,
           PXA2X0_INTCTL_SIZE
   ),
   DEVMAP_ENTRY(
           LUBBOCK_FFUART_VBASE,
           PXA2X0_FFUART_BASE,
           4 * COM_NPORTS
   ),
   DEVMAP_ENTRY(
           LUBBOCK_BTUART_VBASE,
           PXA2X0_BTUART_BASE,
           4 * COM_NPORTS
   ),

   DEVMAP_ENTRY_END
};

/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
*   Taking a copy of the boot configuration structure.
*   Initialising the physical console so characters can be printed.
*   Setting up page tables for the kernel
*   Relocating the kernel to the bottom of physical memory
*/
vaddr_t
initarm(void *arg)
{
       int loop;
       int loop1;
       u_int l1pagetable;
       paddr_t memstart;
       psize_t memsize;
       int led_data = 0;
#define LEDSTEP_P()     ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
#define LEDSTEP() hex_led(led_data++)

       /* use physical address until pagetable is set */
       LEDSTEP_P();

       /* map some peripheral registers at static I/O area */
       pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);

       LEDSTEP_P();

       /* start 32.768 kHz OSC */
       ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
       /* Get ready for splfoo() */
       pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);

       LEDSTEP();

       /*
        * Heads up ... Setup the CPU / MMU / TLB functions
        */
       if (set_cpufuncs())
               panic("cpu not recognized!");

       LEDSTEP();


#if 0
       /* Calibrate the delay loop. */
#endif

       /*
        * Okay, RedBoot has provided us with the following memory map:
        *
        * Physical Address Range     Description
        * -----------------------    ----------------------------------
        * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
        * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
        * 0x08000000 - 0x080000ff    I/O baseboard registers
        * 0x0a000000 - 0x0a0fffff    SRAM (1MB)
        * 0x0c000000 - 0x0c0fffff    Ethernet Controller
        * 0x0e000000 - 0x0e0fffff    Ethernet Controller (Attribute)
        * 0x10000000 - 0x103fffff    SA-1111 Companion Chip
        * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
        * 0x40000000 - 0x480fffff    Processor Registers
        * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
        *
        *
        * Virtual Address Range    X C B  Description
        * -----------------------  - - -  ----------------------------------
        * 0x00000000 - 0x00003fff  N Y Y  SDRAM
        * 0x00004000 - 0x000fffff  N Y N  Boot ROM
        * 0x00100000 - 0x01ffffff  N N N  Application Flash
        * 0x04000000 - 0x05ffffff  N N N  Exp Application Flash
        * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
        * 0x0a000000 - 0x0a0fffff  N N N  SRAM
        * 0x40000000 - 0x480fffff  N N N  Processor Registers
        * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
        * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
        * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
        * (done by this routine)
        * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
        * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
        * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
        * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
        *
        * RedBoot's first level page table is at 0xa0004000.  There
        * are also 2 second-level tables at 0xa0008000 and
        * 0xa0008400.  We will continue to use them until we switch to
        * our pagetable by cpu_setttb().
        *
        */

       /* setup GPIO for BTUART, in case bootloader doesn't take care of it */
       pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
       pxa2x0_gpio_config(lubbock_gpioconf);

       /* turn on clock to UART block.
          XXX: this should not be done here. */
       ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
           ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));

       LEDSTEP();

       consinit();
       LEDSTEP();
#ifdef KGDB
       kgdb_port_init();
       LEDSTEP();
#endif


       /* Talk to the user */
       printf("\nNetBSD/evbarm (lubbock) booting ...\n");

       /* Tweak memory controller */
       {
               /* Modify access timing for CS3 (91c96) */

               uint32_t tmp =
                       ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
               ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
                            (tmp & 0xffff) | (0x3881<<16));
               /* RRR=3, RDN=8, RDF=8
                * XXX: can be faster?
                */
       }


       /* Initialize for PCMCIA/CF sockets */
       {
               uint32_t tmp;

               /* Activate two sockets.
                  XXX: This code segment should be moved to
                       pcmcia MD attach routine.
                  XXX: These bits should be toggled based on
                       existene of PCMCIA/CF cards
               */
               ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
                            MECR_NOS|MECR_CIT);

               tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
               ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
                            (tmp & ~(1<<4)) | (1<<0));
       }

#if 0
       /*
        * Examine the boot args string for options we need to know about
        * now.
        */
       process_kernel_args((char *)nwbootinfo.bt_args);
#endif

       {
               int processor_card_id;

               processor_card_id = 0x000f &
                       ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
               switch(processor_card_id){
               case 0:
                       /* Cotulla */
                       memstart = 0xa0000000;
                       memsize =  0x04000000; /* 64MB */
                       break;
               case 1:
                       /* XXX: Sabiani */
                       memstart = 0xa0000000;
                       memsize = 0x04000000; /* 64MB */
                       break;
               default:
                       /* XXX: Unknown  */
                       memstart = 0xa0000000;
                       memsize = 0x04000000; /* 64MB */
               }
       }

       printf("initarm: Configuring system ...\n");

       /* Fake bootconfig structure for the benefit of pmap.c */
       /* XXX must make the memory description h/w independent */
       bootconfig.dramblocks = 1;
       bootconfig.dram[0].address = memstart;
       bootconfig.dram[0].pages = memsize / PAGE_SIZE;

       /*
        * Set up the variables that define the availability of
        * physical memory.  For now, we're going to set
        * physical_freestart to 0xa0200000 (where the kernel
        * was loaded), and allocate the memory we need downwards.
        * If we get too close to the page tables that RedBoot
        * set up, we will panic.  We will update physical_freestart
        * and physical_freeend later to reflect what pmap_bootstrap()
        * wants to see.
        *
        * XXX pmap_bootstrap() needs an enema.
        */
       physical_start = bootconfig.dram[0].address;
       physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);

       physical_freestart = 0xa0009000UL;
       physical_freeend = 0xa0200000UL;

       physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       /* Tell the user about the memory */
       printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
           physical_start, physical_end - 1);
#endif

       /*
        * Okay, the kernel starts 2MB in from the bottom of physical
        * memory.  We are going to allocate our bootstrap pages downwards
        * from there.
        *
        * We need to allocate some fixed page tables to get the kernel
        * going.  We allocate one page directory and a number of page
        * tables and store the physical addresses in the kernel_pt_table
        * array.
        *
        * The kernel page directory must be on a 16K boundary.  The page
        * tables must be on 4K boundaries.  What we do is allocate the
        * page directory on the first 16K boundary that we encounter, and
        * the page tables on 4K boundaries otherwise.  Since we allocate
        * at least 3 L2 page tables, we are guaranteed to encounter at
        * least one 16K aligned region.
        */

#ifdef VERBOSE_INIT_ARM
       printf("Allocating page tables\n");
#endif

       free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
              physical_freestart, free_pages, free_pages);
#endif

       /* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)                           \
       alloc_pages((var).pv_pa, (np));                 \
       (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)                            \
       physical_freeend -= ((np) * PAGE_SIZE);         \
       if (physical_freeend < physical_freestart)      \
               panic("initarm: out of memory");        \
       (var) = physical_freeend;                       \
       free_pages -= (np);                             \
       memset((char *)(var), 0, ((np) * PAGE_SIZE));

       loop1 = 0;
       kernel_l1pt.pv_pa = 0;
       kernel_l1pt.pv_va = 0;
       for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
               /* Are we 16KB aligned for an L1 ? */
               if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
                   && kernel_l1pt.pv_pa == 0) {
                       valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
               } else {
                       valloc_pages(kernel_pt_table[loop1],
                           L2_TABLE_SIZE / PAGE_SIZE);
                       ++loop1;
               }
       }

       /* This should never be able to happen but better confirm that. */
       if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
               panic("initarm: Failed to align the kernel page directory");

       LEDSTEP();

       /*
        * Allocate a page for the system page mapped to V0x00000000
        * This page will just contain the system vectors and can be
        * shared by all processes.
        */
       alloc_pages(systempage.pv_pa, 1);

       /* Allocate stacks for all modes */
       valloc_pages(irqstack, IRQ_STACK_SIZE);
       valloc_pages(abtstack, ABT_STACK_SIZE);
       valloc_pages(undstack, UND_STACK_SIZE);
       valloc_pages(kernelstack, UPAGES);

       /* Allocate enough pages for cleaning the Mini-Data cache. */
       KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
       valloc_pages(minidataclean, 1);

#ifdef VERBOSE_INIT_ARM
       printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
           irqstack.pv_va);
       printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
           abtstack.pv_va);
       printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
           undstack.pv_va);
       printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
           kernelstack.pv_va);
#endif

       /*
        * XXX Defer this to later so that we can reclaim the memory
        * XXX used by the RedBoot page tables.
        */
       alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

       /*
        * Ok we have allocated physical pages for the primary kernel
        * page tables
        */

#ifdef VERBOSE_INIT_ARM
       printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

       /*
        * Now we start construction of the L1 page table
        * We start by mapping the L2 page tables into the L1.
        * This means that we can replace L1 mappings later on if necessary
        */
       l1pagetable = kernel_l1pt.pv_pa;

       /* Map the L2 pages tables in the L1 page table */
       pmap_link_l2pt(l1pagetable, 0x00000000,
           &kernel_pt_table[KERNEL_PT_SYS]);
       for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
       for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

       /* update the top of the kernel VM */
       pmap_curmaxkvaddr =
           KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
       printf("Mapping kernel\n");
#endif

       /* Now we fill in the L2 pagetable for the kernel static code/data */
       {
               extern char etext[], _end[];
               size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
               size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
               u_int logical;

               textsize = (textsize + PGOFSET) & ~PGOFSET;
               totalsize = (totalsize + PGOFSET) & ~PGOFSET;

               logical = 0x00200000;   /* offset of kernel in RAM */

               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                   physical_start + logical, textsize,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                   physical_start + logical, totalsize - textsize,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       }

#ifdef VERBOSE_INIT_ARM
       printf("Constructing L2 page tables\n");
#endif

       /* Map the stack pages */
       pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
           IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
           ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
           UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
           UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

       pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
           L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

       for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
               pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
                   kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
       }

       /* Map the Mini-Data cache clean area. */
       xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
           minidataclean.pv_pa);

       /* Map the vector page. */
#if 1
       /* MULTI-ICE requires that page 0 is NC/NB so that it can download the
        * cache-clean code there.  */
       pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
           VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#else
       pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
           VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif

       /*
        * map integrated peripherals at same address in l1pagetable
        * so that we can continue to use console.
        */
       pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);

       /*
        * Give the XScale global cache clean code an appropriately
        * sized chunk of unmapped VA space starting at 0xff000000
        * (our device mappings end before this address).
        */
       xscale_cache_clean_addr = 0xff000000U;

       /*
        * Now we have the real page tables in place so we can switch to them.
        * Once this is done we will be running with the REAL kernel page
        * tables.
        */

       /*
        * Update the physical_freestart/physical_freeend/free_pages
        * variables.
        */
       {
               extern char _end[];

               physical_freestart = physical_start +
                   (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
                    KERNEL_BASE);
               physical_freeend = physical_end;
               free_pages =
                   (physical_freeend - physical_freestart) / PAGE_SIZE;
       }

       /* Switch tables */
#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
              physical_freestart, free_pages, free_pages);
       printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif

       LEDSTEP();

       cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
       cpu_setttb(kernel_l1pt.pv_pa, true);
       cpu_tlb_flushID();
       cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
       LEDSTEP();

       /*
        * Moved from cpu_startup() as data_abort_handler() references
        * this during uvm init
        */
       uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
       printf("bootstrap done.\n");
#endif

       arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);

       /*
        * Pages were allocated during the secondary bootstrap for the
        * stacks for different CPU modes.
        * We must now set the r13 registers in the different CPU modes to
        * point to these stacks.
        * Since the ARM stacks use STMFD etc. we must set r13 to the top end
        * of the stack memory.
        */
       printf("init subsystems: stacks ");

       set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

       /*
        * Well we should set a data abort handler.
        * Once things get going this will change as we will need a proper
        * handler.
        * Until then we will use a handler that just panics but tells us
        * why.
        * Initialisation of the vectors will just panic on a data abort.
        * This just fills in a slightly better one.
        */
       printf("vectors ");
       data_abort_handler_address = (u_int)data_abort_handler;
       prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
       undefined_handler_address = (u_int)undefinedinstruction_bounce;

       /* Initialise the undefined instruction handlers */
       printf("undefined ");
       undefined_init();

       /* Load memory into UVM. */
       printf("page ");
       uvm_md_init();
       uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
           atop(physical_freestart), atop(physical_freeend),
           VM_FREELIST_DEFAULT);

       /* Boot strap pmap telling it where managed kernel virtual memory is */
       printf("pmap ");
       LEDSTEP();
       pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
       LEDSTEP();

#ifdef __HAVE_MEMORY_DISK__
       md_root_setconf(memory_disk, sizeof memory_disk);
#endif

       {
               uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);

               if (0 == (sw & (1<<13))) /* check S19 */
                       boothowto |= RB_KDB;
               if (0 == (sw & (1<<12))) /* S20 */
                       boothowto |= RB_SINGLE;
       }

       LEDSTEP();

#ifdef KGDB
       if (boothowto & RB_KDB) {
               kgdb_debug_init = 1;
               kgdb_connect(1);
       }
#endif

#ifdef DDB
       db_machine_init();

       /* Firmware doesn't load symbols. */
       ddb_init(0, NULL, NULL);

       if (boothowto & RB_KDB)
               Debugger();
#endif

       /* We return the new stack pointer address */
       return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}

#if 0
void
process_kernel_args(char *args)
{

       boothowto = 0;

       /* Make a local copy of the bootargs */
       strncpy(bootargs, args, MAX_BOOT_STRING);

       args = bootargs;
       boot_file = bootargs;

       /* Skip the kernel image filename */
       while (*args != ' ' && *args != 0)
               ++args;

       if (*args != 0)
               *args++ = 0;

       while (*args == ' ')
               ++args;

       boot_args = args;

       printf("bootfile: %s\n", boot_file);
       printf("bootargs: %s\n", boot_args);

       parse_mi_bootargs(boot_args);
}
#endif

#ifdef KGDB
#ifndef KGDB_DEVNAME
#define KGDB_DEVNAME "ffuart"
#endif
const char kgdb_devname[] = KGDB_DEVNAME;

#if (NCOM > 0)
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comkgdbmode = KGDB_DEVMODE;
#endif /* NCOM */

#endif /* KGDB */


void
consinit(void)
{
       static int consinit_called = 0;
       uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
#if 0
       char *console = CONSDEVNAME;
#endif

       if (consinit_called != 0)
               return;

       consinit_called = 1;

#if NCOM > 0

#ifdef FFUARTCONSOLE
       /* Check switch. */
       if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
               /* We don't use FF serial when S17=no-dot position */
       }
#ifdef KGDB
       else if (0 == strcmp(kgdb_devname, "ffuart")) {
               /* port is reserved for kgdb */
       }
#endif
       else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
                    comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
#if 0
               /* XXX: can't call pxa2x0_clkman_config yet */
               pxa2x0_clkman_config(CKEN_FFUART, 1);
#else
               ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
                   ckenreg|CKEN_FFUART);
#endif

               return;
       }
#endif /* FFUARTCONSOLE */

#ifdef BTUARTCONSOLE
#ifdef KGDB
       if (0 == strcmp(kgdb_devname, "btuart")) {
               /* port is reserved for kgdb */
       } else
#endif
       if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
               comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
               ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
                   ckenreg|CKEN_BTUART);
               return;
       }
#endif /* BTUARTCONSOLE */


#endif /* NCOM */

}

#ifdef KGDB
void
kgdb_port_init(void)
{
#if (NCOM > 0) && defined(COM_PXA2X0)
       paddr_t paddr = 0;
       uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);

       if (0 == strcmp(kgdb_devname, "ffuart")) {
               paddr = PXA2X0_FFUART_BASE;
               ckenreg |= CKEN_FFUART;
       }
       else if (0 == strcmp(kgdb_devname, "btuart")) {
               paddr = PXA2X0_BTUART_BASE;
               ckenreg |= CKEN_BTUART;
       }

       if (paddr &&
           0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
               kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {

               ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
       }
#endif
}
#endif

#if 0
/*
* display a number in hex LED.
* a digit is blank when the corresponding bit in arg blank is 1
*/
unsigned short led_control_value = 0;

void
hex_led_blank(uint32_t value, int blank)
{
       int save = disable_interrupts(I32_bit);

       ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
       led_control_value = (led_control_value & 0xff)
               | ((blank & 0xff)<<8);
       ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
       restore_interrupts(save);
}
#endif