/*      $NetBSD: iyonix_machdep.c,v 1.6 2024/02/20 23:36:02 andvar Exp $        */

/*
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Based on code written by Jason R. Thorpe and Steve C. Woodford for
* Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Mark Brinicombe
*      for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Iyonix.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: iyonix_machdep.c,v 1.6 2024/02/20 23:36:02 andvar Exp $");

#include "opt_ddb.h"
#include "opt_kgdb.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>

#include <dev/pci/ppbreg.h>
#include <dev/ic/i8259reg.h>

#include <net/if.h>
#include <net/if_ether.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>

#include <acorn32/include/bootconfig.h>
#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <arm/xscale/i80321reg.h>
#include <arm/xscale/i80321var.h>

#include <evbarm/iyonix/iyonixreg.h>
#include <evbarm/iyonix/obiovar.h>

#include <dev/wscons/wsconsio.h>
#include <dev/wscons/wsdisplayvar.h>
#include <dev/rasops/rasops.h>
#include <dev/wscons/wsdisplay_vconsvar.h>
#include <dev/wsfont/wsfont.h>

#include "ksyms.h"

#define KERNEL_TEXT_BASE        KERNEL_BASE
#define KERNEL_VM_BASE          (KERNEL_BASE + 0x01000000)

struct vcons_screen rascons_console_screen;

struct wsscreen_descr rascons_stdscreen = {
       "std",
       0, 0,   /* will be filled in -- XXX shouldn't, it's global */
       0,
       0, 0,
       WSSCREEN_REVERSE
};

/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE          0x0C000000

struct bootconfig bootconfig;           /* Boot config storage */

char *boot_args;

vaddr_t physical_start;
vaddr_t physical_freestart;
vaddr_t physical_freeend;
vaddr_t physical_end;
u_int free_pages;
vaddr_t pagetables_start;

/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64;                 /* Default number */
#endif  /* !PMAP_STATIC_L1S */

/* Physical and virtual addresses for some global pages */
pv_addr_t minidataclean;

paddr_t msgbufphys;

#define KERNEL_PT_SYS           0       /* L2 table for mapping zero page */

#define KERNEL_PT_KERNEL        1       /* L2 table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM    4

                                       /* L2 table for mapping i80321 */
#define KERNEL_PT_IOPXS         (KERNEL_PT_KERNEL + KERNEL_PT_KERNEL_NUM)

                                       /* L2 tables for mapping kernel VM */
#define KERNEL_PT_VMDATA        (KERNEL_PT_IOPXS + 1)
#define KERNEL_PT_VMDATA_NUM    4       /* start with 16MB of KVM */
#define NUM_KERNEL_PTS          (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];

char iyonix_macaddr[ETHER_ADDR_LEN];

char boot_consdev[16];

/* Prototypes */

void    iyonix_pic_init(void);
void    iyonix_read_machineid(void);

void    consinit(void);

static void consinit_com(const char *consdev);
static void consinit_genfb(const char *consdev);
static void process_kernel_args(void);
static void parse_iyonix_bootargs(char *args);

#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif

#include "genfb.h"

#if (NGENFB == 0) && (NCOM == 0)
# error "No valid console device (com or genfb)"
#elif defined(COMCONSOLE) || (NGENFB == 0)
# define DEFAULT_CONSDEV "com"
#else
# define DEFAULT_CONSDEV "genfb"
#endif

/*
* Define the default console speed for the machine.
*/
#ifndef CONSPEED
#define CONSPEED B9600
#endif /* ! CONSPEED */

#ifndef CONUNIT
#define CONUNIT 0
#endif

#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
int comcnunit = CONUNIT;

#if KGDB
#ifndef KGDB_DEVNAME
#error Must define KGDB_DEVNAME
#endif
const char kgdb_devname[] = KGDB_DEVNAME;

#ifndef KGDB_DEVADDR
#error Must define KGDB_DEVADDR
#endif
unsigned long kgdb_devaddr = KGDB_DEVADDR;

#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE    CONSPEED
#endif
int kgdb_devrate = KGDB_DEVRATE;

#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE    CONMODE
#endif
int kgdb_devmode = KGDB_DEVMODE;
#endif /* KGDB */

/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{

       /*
        * If we are still cold then hit the air brakes
        * and crash to earth fast
        */
       if (cold) {
               doshutdownhooks();
               pmf_system_shutdown(boothowto);
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
               printf("rebooting...\n");
               goto reset;
       }

       /* Disable console buffering */

       /*
        * If RB_NOSYNC was not specified sync the discs.
        * Note: Unless cold is set to 1 here, syslogd will die during the
        * unmount.  It looks like syslogd is getting woken up only to find
        * that it cannot page part of the binary in as the filesystem has
        * been unmounted.
        */
       if (!(howto & RB_NOSYNC))
               bootsync();

       /* Say NO to interrupts */
       splhigh();

       /* Do a dump if requested. */
       if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
               dumpsys();

       /* Run any shutdown hooks */
       doshutdownhooks();

       pmf_system_shutdown(boothowto);

       /* Make sure IRQ's are disabled */
       IRQdisable;

       if (howto & RB_HALT) {
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
       }

       printf("rebooting...\n\r");
reset:
       /*
        * Make really really sure that all interrupts are disabled,
        * and poke the Internal Bus and Peripheral Bus reset lines.
        */
       (void) disable_interrupts(I32_bit|F32_bit);
       *(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE +
           ATU_PCSR) = PCSR_RIB | PCSR_RPB;

       /* ...and if that didn't work, just croak. */
       printf("RESET FAILED!\n");
       for (;;);
}

/* Static device mappings. */
static const struct pmap_devmap iyonix_devmap[] = {
   /*
    * Map the on-board devices VA == PA so that we can access them
    * with the MMU on or off.
    */
   {
       IYONIX_OBIO_BASE,
       IYONIX_OBIO_BASE,
       IYONIX_OBIO_SIZE,
       VM_PROT_READ|VM_PROT_WRITE,
       PTE_NOCACHE,
   },

   {
       IYONIX_IOW_VBASE,
       VERDE_OUT_XLATE_IO_WIN0_BASE,
       VERDE_OUT_XLATE_IO_WIN_SIZE,
       VM_PROT_READ|VM_PROT_WRITE,
       PTE_NOCACHE,
  },

  {
       IYONIX_80321_VBASE,
       VERDE_PMMR_BASE,
       VERDE_PMMR_SIZE,
       VM_PROT_READ|VM_PROT_WRITE,
       PTE_NOCACHE,
  },

  {
       IYONIX_FLASH_BASE,
       IYONIX_FLASH_BASE,
       IYONIX_FLASH_SIZE,
       VM_PROT_READ|VM_PROT_WRITE,
       PTE_NOCACHE,
  },

  {
       0,
       0,
       0,
       0,
       0,
   }
};

/* Read out the Machine ID from the flash, and stash it away for later use. */

void
iyonix_read_machineid(void)
{
       volatile uint32_t *flashbase = (uint32_t *)IYONIX_FLASH_BASE;
       volatile uint16_t *flashword = (uint16_t *)IYONIX_FLASH_BASE;
       union {
               uint32_t w[2];
               uint8_t  b[8];
       } machid;

       /* Enter SecSi Sector Region */
       flashword[0x555] = 0xAA;
       flashword[0x2AA] = 0x55;
       flashword[0x555] = 0x88;

       machid.w[0] = flashbase[0];
       machid.w[1] = flashbase[1];

       iyonix_macaddr[0] = machid.b[6];
       iyonix_macaddr[1] = machid.b[5];
       iyonix_macaddr[2] = machid.b[4];
       iyonix_macaddr[3] = machid.b[3];
       iyonix_macaddr[4] = machid.b[2];
       iyonix_macaddr[5] = machid.b[1];

       /* Exit SecSi Sector Region */
       flashword[0x555] = 0xAA;
       flashword[0x2AA] = 0x55;
       flashword[0x555] = 0x90;
       flashword[0x555] = 0x00;
}

#define IYONIX_PIC_WRITE(a,v) (*((char *)IYONIX_OBIO_BASE + (a)) = (v))

void
iyonix_pic_init(void)
{
       IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
       IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW2, ICW2_IRL(0));
       IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW3, ICW3_CASCADE(2));
       IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_ICW4, ICW4_8086);
       IYONIX_PIC_WRITE(IYONIX_MASTER_PIC + PIC_OCW1, 0x0); /* Unmask */

       IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW1, ICW1_IC4|ICW1_SELECT);
       IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW2, ICW2_IRL(0));
       IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW3, ICW3_CASCADE(1));
       IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_ICW4, ICW4_8086);
       IYONIX_PIC_WRITE(IYONIX_SLAVE_PIC + PIC_OCW1, 0x0); /* Unmask */

}

/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
*   Taking a copy of the boot configuration structure.
*   Initialising the physical console so characters can be printed.
*   Setting up page tables for the kernel
*   Initialising interrupt controllers to a sane default state
*/
vaddr_t
initarm(void *arg)
{
       struct bootconfig *passed_bootconfig = arg;
       extern char _end[];
       int loop;
       int loop1;
       u_int l1pagetable;
       paddr_t memstart = 0;
       psize_t memsize = 0;

       /* Calibrate the delay loop. */
       i80321_calibrate_delay();

       /* Ensure bootconfig has valid magic */
       if (passed_bootconfig->magic != BOOTCONFIG_MAGIC)
               printf("Bad bootconfig magic: %x\n", bootconfig.magic);

       bootconfig = *passed_bootconfig;

       /* Fake bootconfig structure for anything that still needs it */
       /* XXX must make the memory description h/w independent */
       bootconfig.dram[0].address = memstart;
       bootconfig.dram[0].pages = memsize / PAGE_SIZE;
       bootconfig.dramblocks = 1;

       /* process arguments - can update boothowto */
       process_kernel_args();

       /*
        * Since we map the on-board devices VA==PA, and the kernel
        * is running VA==PA, it's possible for us to initialize
        * the console now.
        */
       consinit();

#ifdef VERBOSE_INIT_ARM
       /* Talk to the user */
       printf("\nNetBSD/iyonix booting ...\n");
#endif

       /*
        * Heads up ... Setup the CPU / MMU / TLB functions
        */
       if (set_cpufuncs())
               panic("cpu not recognized!");

       /*
        * We are currently running with the MMU enabled and the
        * entire address space mapped VA==PA.
        */

       /*
        * Fetch the SDRAM start/size from the i80321 SDRAM configuration
        * registers.
        */
       i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
           &memstart, &memsize);

#ifdef VERBOSE_INIT_ARM
       printf("initarm: Configuring system ...\n");
#endif

       /*
        * Set up the variables that define the availability of
        * physical memory.
        */
       physical_start = memstart;
       physical_end = physical_start + memsize;

       physical_freestart = physical_start +
           (((uintptr_t) _end - KERNEL_TEXT_BASE + PGOFSET) & ~PGOFSET);
       physical_freeend = physical_end;

       physmem = (physical_end - physical_start) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       /* Tell the user about the memory */
       printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
           physical_start, physical_end - 1);
#endif

       /*
        * The kernel is loaded at the base of physical memory. We allocate
        * pages upwards from the top of the kernel.
        *
        * We need to allocate some fixed page tables to get the kernel
        * going.  We allocate one page directory and a number of page
        * tables and store the physical addresses in the kernel_pt_table
        * array.
        *
        * The kernel page directory must be on a 16K boundary.  The page
        * tables must be on 4K boundaries.  What we do is allocate the
        * page directory on the first 16K boundary that we encounter, and
        * the page tables on 4K boundaries otherwise.  Since we allocate
        * at least 3 L2 page tables, we are guaranteed to encounter at
        * least one 16K aligned region.
        */

#ifdef VERBOSE_INIT_ARM
       printf("Allocating page tables\n");
#endif

       free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
              physical_freestart, free_pages, free_pages);
#endif

       /* Define a macro to simplify memory allocation */
#define valloc_pages(var, np)                           \
       alloc_pages((var).pv_pa, (np));                 \
       (var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;

#define alloc_pages(var, np)                            \
       (var) = physical_freestart;                     \
       physical_freestart += ((np) * PAGE_SIZE);       \
       if (physical_freeend < physical_freestart)      \
               panic("initarm: out of memory");        \
       free_pages -= (np);                             \
       memset((char *)(var), 0, ((np) * PAGE_SIZE));

       loop1 = 0;
       kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0;
       for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
               /* Are we 16KB aligned for an L1 ? */
               if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
                   && kernel_l1pt.pv_pa == 0) {
                       valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
               } else {
                       valloc_pages(kernel_pt_table[loop1],
                           L2_TABLE_SIZE / PAGE_SIZE);
                       ++loop1;
               }
       }

       /* This should never be able to happen but better confirm that. */
       if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
               panic("initarm: Failed to align the kernel page directory");

       /*
        * Allocate a page for the system page mapped to V0x00000000
        * This page will just contain the system vectors and can be
        * shared by all processes.
        */
       alloc_pages(systempage.pv_pa, 1);

       /* Allocate stacks for all modes */
       valloc_pages(irqstack, IRQ_STACK_SIZE);
       valloc_pages(abtstack, ABT_STACK_SIZE);
       valloc_pages(undstack, UND_STACK_SIZE);
       valloc_pages(kernelstack, UPAGES);

       /* Allocate enough pages for cleaning the Mini-Data cache. */
       KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
       valloc_pages(minidataclean, 1);

#ifdef VERBOSE_INIT_ARM
       printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
           irqstack.pv_va);
       printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
           abtstack.pv_va);
       printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
           undstack.pv_va);
       printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
           kernelstack.pv_va);
#endif

       alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);

       /*
        * Ok we have allocated physical pages for the primary kernel
        * page tables
        */

#ifdef VERBOSE_INIT_ARM
       printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

       /*
        * Now we start construction of the L1 page table
        * We start by mapping the L2 page tables into the L1.
        * This means that we can replace L1 mappings later on if necessary
        */
       l1pagetable = kernel_l1pt.pv_pa;

       /* Map the L2 pages tables in the L1 page table */
       pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
           &kernel_pt_table[KERNEL_PT_SYS]);
       for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
       pmap_link_l2pt(l1pagetable, IYONIX_IOPXS_VBASE,
           &kernel_pt_table[KERNEL_PT_IOPXS]);
       for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
               pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
                   &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

       /* update the top of the kernel VM */
       pmap_curmaxkvaddr =
           KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#ifdef VERBOSE_INIT_ARM
       printf("Mapping kernel\n");
#endif

       /* Now we fill in the L2 pagetable for the kernel static code/data */
       {
               extern char etext[], _end[];
               size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
               size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
               u_int logical;

               textsize = (textsize + PGOFSET) & ~PGOFSET;
               totalsize = (totalsize + PGOFSET) & ~PGOFSET;

               logical = 0;    /* offset of kernel in RAM */
               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                   physical_start + logical, textsize,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
               logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
                   physical_start + logical, totalsize - textsize,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       }

#ifdef VERBOSE_INIT_ARM
       printf("Constructing L2 page tables\n");
#endif

       /* Map the stack pages */
       pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
           IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
           ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
           UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
           UPAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

       pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
           L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

       for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
               pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
                   kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
                   VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
       }

       /* Map the Mini-Data cache clean area. */
       xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
           minidataclean.pv_pa);

       /* Map the vector page. */
       pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
           VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

       /* Map the statically mapped devices. */
       pmap_devmap_bootstrap(l1pagetable, iyonix_devmap);

       /*
        * Give the XScale global cache clean code an appropriately
        * sized chunk of unmapped VA space starting at 0xff000000
        * (our device mappings end before this address).
        */
       xscale_cache_clean_addr = 0xff000000U;

       /*
        * Now we have the real page tables in place so we can switch to them.
        * Once this is done we will be running with the REAL kernel page
        * tables.
        */

       /* Switch tables */
#ifdef VERBOSE_INIT_ARM
       printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
              physical_freestart, free_pages, free_pages);
       printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
#endif
       cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
       cpu_setttb(kernel_l1pt.pv_pa, true);
       cpu_tlb_flushID();
       cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

       iyonix_read_machineid();

       /*
        * Moved from cpu_startup() as data_abort_handler() references
        * this during uvm init
        */
       uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
       printf("done!\n");
#endif

#ifdef VERBOSE_INIT_ARM
       printf("bootstrap done.\n");
#endif

       arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

       /*
        * Pages were allocated during the secondary bootstrap for the
        * stacks for different CPU modes.
        * We must now set the r13 registers in the different CPU modes to
        * point to these stacks.
        * Since the ARM stacks use STMFD etc. we must set r13 to the top end
        * of the stack memory.
        */
#ifdef VERBOSE_INIT_ARM
       printf("init subsystems: stacks ");
#endif

       set_stackptr(PSR_IRQ32_MODE,
           irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_ABT32_MODE,
           abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_UND32_MODE,
           undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

       /*
        * Well we should set a data abort handler.
        * Once things get going this will change as we will need a proper
        * handler.
        * Until then we will use a handler that just panics but tells us
        * why.
        * Initialisation of the vectors will just panic on a data abort.
        * This just fills in a slightly better one.
        */
#ifdef VERBOSE_INIT_ARM
       printf("vectors ");
#endif
       data_abort_handler_address = (u_int)data_abort_handler;
       prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
       undefined_handler_address = (u_int)undefinedinstruction_bounce;

       /* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
       printf("undefined ");
#endif
       undefined_init();

       /* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
       printf("page ");
#endif
       uvm_md_init();
       uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
           atop(physical_freestart), atop(physical_freeend),
           VM_FREELIST_DEFAULT);

       /* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
       printf("pmap ");
#endif
       pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

       /* Setup the IRQ system */
#ifdef VERBOSE_INIT_ARM
       printf("irq ");
#endif
       i80321_intr_init();

#ifdef VERBOSE_INIT_ARM
       printf("done.\n");
#endif

#ifdef DDB
       db_machine_init();
       if (boothowto & RB_KDB)
               Debugger();
#endif

       iyonix_pic_init();

       printf("args: %s\n", bootconfig.args);
       printf("howto: %x\n", boothowto);

       /* We return the new stack pointer address */
       return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}

void
consinit(void)
{
       static int consinit_called;

       if (consinit_called != 0)
               return;

       consinit_called = 1;

       /* We let consinit_<foo> worry about device numbers */
       if (strncmp(boot_consdev, "genfb", 5) &&
           strncmp(boot_consdev, "com", 3))
               strcpy(boot_consdev, DEFAULT_CONSDEV);

       if (!strncmp(boot_consdev, "com", 3))
               consinit_com(boot_consdev);
       else
               consinit_genfb(boot_consdev);
}

static void
consinit_com(const char *consdev)
{
       static const bus_addr_t comcnaddrs[] = {
               IYONIX_UART1,           /* com0 */
       };
       /*
        * Console devices are mapped VA==PA.  Our devmap reflects
        * this, so register it now so drivers can map the console
        * device.
        */
       pmap_devmap_register(iyonix_devmap);

       /* When we support more than the first serial port as console,
        * we should check consdev for a number.
        */
#if NCOM > 0
       if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
           COM_FREQ, COM_TYPE_NORMAL, comcnmode))
       {
               panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
       }
#else
       panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
#endif

#if KGDB
#if NCOM > 0
       if (strcmp(kgdb_devname, "com") == 0) {
               com_kgdb_attach(&obio_bs_tag, kgdb_devaddr, kgdb_devrate,
                   COM_FREQ, COM_TYPE_NORMAL, kgdb_devmode);
       }
#endif  /* NCOM > 0 */
#endif  /* KGDB */
}

static void
consinit_genfb(const char *consdev)
{
       /* NOTYET */
}

static void
process_kernel_args(void)
{
       char *args;

       /* Ok now we will check the arguments for interesting parameters. */
       args = bootconfig.args;

#ifdef BOOTHOWTO
       boothowto = BOOTHOWTO;
#else
       boothowto = 0;
#endif

       /* Only arguments itself are passed from the bootloader */
       while (*args == ' ')
               ++args;

       boot_args = args;
       parse_mi_bootargs(boot_args);
       parse_iyonix_bootargs(boot_args);
}

static void
parse_iyonix_bootargs(char *args)
{
       char *ptr;

       if (get_bootconf_option(args, "consdev", BOOTOPT_TYPE_STRING, &ptr))
       {
               /* ptr may have trailing clutter */
               strlcpy(boot_consdev, ptr, sizeof(boot_consdev));
               if ( (ptr = strchr(boot_consdev, ' ')) )
                       *ptr = 0;
       }
}