/*
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Based on code written by Jason R. Thorpe and Steve C. Woodford for
* Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependent functions for kernel setup for Iyonix.
*/
struct wsscreen_descr rascons_stdscreen = {
"std",
0, 0, /* will be filled in -- XXX shouldn't, it's global */
0,
0, 0,
WSSCREEN_REVERSE
};
/*
* The range 0xc1000000 - 0xccffffff is available for kernel VM space
* Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
*/
#define KERNEL_VM_SIZE 0x0C000000
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
goto reset;
}
/* Disable console buffering */
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n\r");
reset:
/*
* Make really really sure that all interrupts are disabled,
* and poke the Internal Bus and Peripheral Bus reset lines.
*/
(void) disable_interrupts(I32_bit|F32_bit);
*(volatile uint32_t *)(IYONIX_80321_VBASE + VERDE_ATU_BASE +
ATU_PCSR) = PCSR_RIB | PCSR_RPB;
/* ...and if that didn't work, just croak. */
printf("RESET FAILED!\n");
for (;;);
}
/* Static device mappings. */
static const struct pmap_devmap iyonix_devmap[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
IYONIX_OBIO_BASE,
IYONIX_OBIO_BASE,
IYONIX_OBIO_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Initialising interrupt controllers to a sane default state
*/
vaddr_t
initarm(void *arg)
{
struct bootconfig *passed_bootconfig = arg;
extern char _end[];
int loop;
int loop1;
u_int l1pagetable;
paddr_t memstart = 0;
psize_t memsize = 0;
/* Calibrate the delay loop. */
i80321_calibrate_delay();
/* Ensure bootconfig has valid magic */
if (passed_bootconfig->magic != BOOTCONFIG_MAGIC)
printf("Bad bootconfig magic: %x\n", bootconfig.magic);
bootconfig = *passed_bootconfig;
/* Fake bootconfig structure for anything that still needs it */
/* XXX must make the memory description h/w independent */
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / PAGE_SIZE;
bootconfig.dramblocks = 1;
/* process arguments - can update boothowto */
process_kernel_args();
/*
* Since we map the on-board devices VA==PA, and the kernel
* is running VA==PA, it's possible for us to initialize
* the console now.
*/
consinit();
#ifdef VERBOSE_INIT_ARM
/* Talk to the user */
printf("\nNetBSD/iyonix booting ...\n");
#endif
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/*
* We are currently running with the MMU enabled and the
* entire address space mapped VA==PA.
*/
/*
* Fetch the SDRAM start/size from the i80321 SDRAM configuration
* registers.
*/
i80321_sdram_bounds(&obio_bs_tag, VERDE_PMMR_BASE + VERDE_MCU_BASE,
&memstart, &memsize);
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
/*
* Set up the variables that define the availability of
* physical memory.
*/
physical_start = memstart;
physical_end = physical_start + memsize;
#ifdef VERBOSE_INIT_ARM
/* Tell the user about the memory */
printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
#endif
/*
* The kernel is loaded at the base of physical memory. We allocate
* pages upwards from the top of the kernel.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
loop1 = 0;
kernel_l1pt.pv_pa = kernel_l1pt.pv_va = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[loop1],
L2_TABLE_SIZE / PAGE_SIZE);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
valloc_pages(minidataclean, 1);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Now we fill in the L2 pagetable for the kernel static code/data */
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
/* Map the statically mapped devices. */
pmap_devmap_bootstrap(l1pagetable, iyonix_devmap);
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
void
consinit(void)
{
static int consinit_called;
if (consinit_called != 0)
return;
consinit_called = 1;
/* We let consinit_<foo> worry about device numbers */
if (strncmp(boot_consdev, "genfb", 5) &&
strncmp(boot_consdev, "com", 3))
strcpy(boot_consdev, DEFAULT_CONSDEV);
if (!strncmp(boot_consdev, "com", 3))
consinit_com(boot_consdev);
else
consinit_genfb(boot_consdev);
}
static void
consinit_com(const char *consdev)
{
static const bus_addr_t comcnaddrs[] = {
IYONIX_UART1, /* com0 */
};
/*
* Console devices are mapped VA==PA. Our devmap reflects
* this, so register it now so drivers can map the console
* device.
*/
pmap_devmap_register(iyonix_devmap);
/* When we support more than the first serial port as console,
* we should check consdev for a number.
*/
#if NCOM > 0
if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
COM_FREQ, COM_TYPE_NORMAL, comcnmode))
{
panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
}
#else
panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
#endif