/*
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* NOTE: This routine must be called with interrupts disabled in the CPSR.
*/
static void
ifpga_intr_calculate_masks(void)
{
struct intrq *iq;
struct intrhand *ih;
int irq, ipl;
/* First, figure out which IPLs each IRQ has. */
for (irq = 0; irq < NIRQ; irq++) {
int levels = 0;
iq = &intrq[irq];
ifpga_disable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list))
levels |= (1U << ih->ih_ipl);
iq->iq_levels = levels;
}
/* Next, figure out which IRQs are used by each IPL. */
for (ipl = 0; ipl < NIPL; ipl++) {
int irqs = 0;
for (irq = 0; irq < NIRQ; irq++) {
if (intrq[irq].iq_levels & (1U << ipl))
irqs |= (1U << irq);
}
ifpga_imask[ipl] = irqs;
}
KASSERT(ifpga_imask[IPL_NONE] == 0);
/*
* Enforce a hierarchy that gives "slow" device (or devices with
* limited input buffer space/"real-time" requirements) a better
* chance at not dropping data.
*/
ifpga_imask[IPL_VM] |= 0;
ifpga_imask[IPL_SCHED] |= ifpga_imask[IPL_VM];
ifpga_imask[IPL_HIGH] |= ifpga_imask[IPL_SCHED];
/*
* Now compute which IRQs must be blocked when servicing any
* given IRQ.
*/
for (irq = 0; irq < NIRQ; irq++) {
int irqs = (1U << irq);
iq = &intrq[irq];
if (TAILQ_FIRST(&iq->iq_list) != NULL)
ifpga_enable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list))
irqs |= ifpga_imask[ih->ih_ipl];
iq->iq_mask = irqs;
}
}
void
splx(int new)
{
ifpga_splx(new);
}
int
_spllower(int ipl)
{
return (ifpga_spllower(ipl));
}
int
_splraise(int ipl)
{
return (ifpga_splraise(ipl));
}
/*
* ifpga_intr_init:
*
* Initialize the rest of the interrupt subsystem, making it
* ready to handle interrupts from devices.
*/
void
ifpga_intr_init(void)
{
struct intrq *iq;
int i;
intr_enabled = 0;
for (i = 0; i < NIRQ; i++) {
iq = &intrq[i];
TAILQ_INIT(&iq->iq_list);
/*
* Disable all the interrupts that are pending. We will
* reenable them once they are processed and not masked.
*/
intr_enabled &= ~hwpend;
ifpga_set_intrmask();
/* Wait for these interrupts to be suppressed. */
while ((ifpga_iintsrc_read() & hwpend) != 0)
;
if (pcpl & ibit) {
/*
* IRQ is masked; mark it as pending and check
* the next one. Note: the IRQ is already disabled.
*/
ifpga_ipending |= ibit;
continue;
}
ifpga_ipending &= ~ibit;
iq = &intrq[irq];
iq->iq_ev.ev_count++;
ci->ci_data.cpu_nintr++;
ci->ci_cpl |= iq->iq_mask;
oldirqstate = enable_interrupts(I32_bit);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
}
restore_interrupts(oldirqstate);
ci->ci_cpl = pcpl;