/*      $NetBSD: gemini_machdep.c,v 1.35 2023/08/10 20:02:55 andvar Exp $       */

/* adapted from:
*      NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
*/

/*
* Machine dependent functions for kernel setup for TI OSK5912 board.
* Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
*
* Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
*    promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Mark Brinicombe
*      for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 2007 Microsoft
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Microsoft
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.35 2023/08/10 20:02:55 andvar Exp $");

#include "opt_arm_debug.h"
#include "opt_console.h"
#include "opt_machdep.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_md.h"
#include "opt_com.h"
#include "opt_gemini.h"
#include "geminiwdt.h"
#include "geminiipm.h"

#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>
#include <dev/md.h>

#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif

#include <arm/locore.h>
#include <arm/undefined.h>

#include <arm/arm32/machdep.h>

#include <machine/bootconfig.h>

#include <arm/gemini/gemini_reg.h>
#include <arm/gemini/gemini_var.h>
#include <arm/gemini/gemini_wdtvar.h>
#include <arm/gemini/gemini_com.h>
#include <arm/gemini/lpc_com.h>

#include <evbarm/gemini/gemini.h>

#if defined(VERBOSE_INIT_ARM)
# define GEMINI_PUTCHAR(c)      gemini_putchar(c)
# define GEMINI_PUTHEX(n)       gemini_puthex(n)
#else   /* VERBOSE_INIT_ARM */
# define GEMINI_PUTCHAR(c)
# define GEMINI_PUTHEX(n)
#endif  /* VERBOSE_INIT_ARM */

BootConfig bootconfig;          /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;

/* Physical address of the beginning of SDRAM. */
paddr_t physical_start;
/* Physical address of the first byte after the end of SDRAM. */
paddr_t physical_end;

/* Same things, but for the free (unused by the kernel) memory. */
static paddr_t physical_freestart, physical_freeend;
static u_int free_pages;

/* Physical address of the message buffer. */
paddr_t msgbufphys;

extern char KERNEL_BASE_phys[];
extern char KERNEL_BASE_virt[];
extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
extern char _end[];

#define KERNEL_PT_SYS           0       /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL        1       /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM    4
#define KERNEL_PT_VMDATA        (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
                                       /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM    4       /* start with 16MB of KVM */
#define NUM_KERNEL_PTS          (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)

pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];


#if (NGEMINIIPM > 0)
pv_addr_t ipmq_pt;              /* L2 Page table for mapping IPM queues */
#if defined(DEBUG) || 1
unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
#endif  /* DEBUG */
#endif  /* NGEMINIIPM > 0 */


/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space.  *Not* for general use.
*/
#define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)

u_long kern_vtopdiff;

/* Prototypes */

void gemini_intr_init(bus_space_tag_t);
void consinit(void);
#ifdef KGDB
static void kgdb_port_init(void);
#endif

static void setup_real_page_tables(void);
static void init_clocks(void);

bs_protos(bs_notimpl);

#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif


static void gemini_global_reset(void) __attribute__ ((noreturn));
static void gemini_cpu1_start(void);
static void gemini_memchk(void);

static void
gemini_global_reset(void)
{
#if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
       volatile uint32_t *rp;
       uint32_t r;

       rp = (volatile uint32_t *)
               (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
       r = *rp;
       r |= GLOBAL_RESET_GLOBAL;
       *rp = r;
#endif
       for(;;);
       /* NOTREACHED */
}

static void
gemini_cpu1_start(void)
{
#ifdef GEMINI_MASTER
       volatile uint32_t *rp;
       uint32_t r;

       rp = (volatile uint32_t *)
               (GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
       r = *rp;
       r &= ~GLOBAL_RESET_CPU1;
       *rp = r;
#endif
}

static void
gemini_memchk(void)
{
       volatile uint32_t *rp;
       uint32_t r;
       uint32_t base;
       uint32_t size;

       rp = (volatile uint32_t *)
               (GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
       r = *rp;
       base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
       size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
#if defined(GEMINI_SINGLE)
       if (r != 0)
               panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
                       __FUNCTION__, r, MEMSIZE);
#elif defined(GEMINI_MASTER)
       if (base != MEMSIZE)
               panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
                       __FUNCTION__, r, MEMSIZE);
#elif defined(GEMINI_SLAVE)
       if (size != MEMSIZE)
               panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
                       __FUNCTION__, r, MEMSIZE);
#endif
#if defined(VERBOSE_INIT_ARM) || 1
       printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
#endif
}

/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
       extern struct geminitmr_softc *ref_sc;

#ifdef DIAGNOSTIC
       /* info */
       printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif

       /*
        * If we are still cold then hit the air brakes
        * and crash to earth fast
        */
       if (cold) {
               doshutdownhooks();
               pmf_system_shutdown(boothowto);
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
               printf("rebooting...\n");
               if (ref_sc != NULL)
                       delay(2000);                    /* cnflush(); */
               gemini_global_reset();
               /*NOTREACHED*/
       }

       /* Disable console buffering */
       cnpollc(1);

       /*
        * If RB_NOSYNC was not specified sync the discs.
        * Note: Unless cold is set to 1 here, syslogd will die during the
        * unmount.  It looks like syslogd is getting woken up only to find
        * that it cannot page part of the binary in as the filesystem has
        * been unmounted.
        */
       if (!(howto & RB_NOSYNC))
               bootsync();

       /* Say NO to interrupts */
       splhigh();

       /* Do a dump if requested. */
       if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
               dumpsys();

       /* Run any shutdown hooks */
       doshutdownhooks();

       pmf_system_shutdown(boothowto);

       /* Make sure IRQ's are disabled */
       IRQdisable;

       if (howto & RB_HALT) {
               printf("The operating system has halted.\n");
               printf("Please press any key to reboot.\n\n");
               cngetc();
       }

       printf("rebooting...\n");
       if (ref_sc != NULL)
               delay(2000);                    /* cnflush(); */
       gemini_global_reset();
       /*NOTREACHED*/
}

/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/

static const struct pmap_devmap devmap[] = {
       /* Global regs */
       DEVMAP_ENTRY_FLAGS(GEMINI_GLOBAL_VBASE,
                          GEMINI_GLOBAL_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* Watchdog */
       DEVMAP_ENTRY_FLAGS(GEMINI_WATCHDOG_VBASE,
                          GEMINI_WATCHDOG_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       DEVMAP_ENTRY_FLAGS(GEMINI_WATCHDOG_VBASE,
                          GEMINI_WATCHDOG_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* UART */
       DEVMAP_ENTRY_FLAGS(GEMINI_UART_VBASE,
                          GEMINI_UART_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* LPCHC */
       DEVMAP_ENTRY_FLAGS(GEMINI_LPCHC_VBASE,
                          GEMINI_LPCHC_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* LPCIO */
       DEVMAP_ENTRY_FLAGS(GEMINI_LPCIO_VBASE,
                          GEMINI_LPCIO_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* Timers */
       DEVMAP_ENTRY_FLAGS(GEMINI_TIMER_VBASE,
                          GEMINI_TIMER_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

       /* DRAM Controller */
       DEVMAP_ENTRY_FLAGS(GEMINI_DRAMC_VBASE,
                          GEMINI_DRAMC_BASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),

#if defined(MEMORY_DISK_DYNAMIC)
       /* Ramdisk */
       DEVMAP_ENTRY_FLAGS(GEMINI_RAMDISK_VBASE,
                          GEMINI_RAMDISK_PBASE,
                          L1_S_SIZE,
                          PMAP_NOCACHE),
#endif

       /* list terminator */
       DEVMAP_ENTRY_END
};

#ifdef DDB
static void gemini_db_trap(int where)
{
#if  NGEMINIWDT > 0
       static int oldwatchdogstate;

       if (where) {
               oldwatchdogstate = geminiwdt_enable(0);
       } else {
               geminiwdt_enable(oldwatchdogstate);
       }
#endif
}
#endif

#if defined(VERBOSE_INIT_ARM) || 1
void gemini_putchar(char c);
void
gemini_putchar(char c)
{
       unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
       int timo = 150000;

       while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
               if (--timo == 0)
                       break;

       com0addr[COM_REG_TXDATA] = c;

       while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
               if (--timo == 0)
                       break;
}

void gemini_puthex(unsigned int);
void
gemini_puthex(unsigned int val)
{
       char hexc[] = "0123456789abcdef";

       gemini_putchar('0');
       gemini_putchar('x');
       gemini_putchar(hexc[(val >> 28) & 0xf]);
       gemini_putchar(hexc[(val >> 24) & 0xf]);
       gemini_putchar(hexc[(val >> 20) & 0xf]);
       gemini_putchar(hexc[(val >> 16) & 0xf]);
       gemini_putchar(hexc[(val >> 12) & 0xf]);
       gemini_putchar(hexc[(val >> 8) & 0xf]);
       gemini_putchar(hexc[(val >> 4) & 0xf]);
       gemini_putchar(hexc[(val >> 0) & 0xf]);
}
#endif  /* VERBOSE_INIT_ARM */

/*
* vaddr_t initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
*   Taking a copy of the boot configuration structure.
*   Initialising the physical console so characters can be printed.
*   Setting up page tables for the kernel
*   Relocating the kernel to the bottom of physical memory
*/
vaddr_t
initarm(void *arg)
{
       GEMINI_PUTCHAR('0');

       /*
        * start cpu#1 now
        */
       gemini_cpu1_start();

       /*
        * When we enter here, we are using a temporary first level
        * translation table with section entries in it to cover the OBIO
        * peripherals and SDRAM.  The temporary first level translation table
        * is at the end of SDRAM.
        */

       /* Heads up ... Setup the CPU / MMU / TLB functions. */
       GEMINI_PUTCHAR('1');
       if (set_cpufuncs())
               panic("cpu not recognized!");

       GEMINI_PUTCHAR('2');
       init_clocks();
       GEMINI_PUTCHAR('3');

       /* The console is going to try to map things.  Give pmap a devmap. */
       pmap_devmap_register(devmap);
       GEMINI_PUTCHAR('4');
       consinit();
       GEMINI_PUTCHAR('5');
#ifdef KGDB
       kgdb_port_init();
#endif

       /* Talk to the user */
       printf("\nNetBSD/evbarm (gemini) booting ...\n");

#ifdef BOOT_ARGS
       char mi_bootargs[] = BOOT_ARGS;
       parse_mi_bootargs(mi_bootargs);
#endif

#ifdef VERBOSE_INIT_ARM
       printf("initarm: Configuring system ...\n");
#endif

       /*
        * Set up the variables that define the availability of physical
        * memory.
        */
       gemini_memchk();
       physical_start = GEMINI_DRAM_BASE;
#define MEMSIZE_BYTES   (MEMSIZE * 1024 * 1024)
       physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
       physmem = (physical_end - physical_start) / PAGE_SIZE;

       /* Fake bootconfig structure for the benefit of pmap.c. */
       bootconfig.dramblocks = 1;
       bootconfig.dram[0].address = physical_start;
       bootconfig.dram[0].pages = physmem;

       kern_vtopdiff = KERNEL_BASE - GEMINI_DRAM_BASE;

       /*
        * Our kernel is at the beginning of memory, so set our free space to
        * all the memory after the kernel.
        */
       physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
       physical_freeend = physical_end;
       free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;

       /*
        * This is going to do all the hard work of setting up the first and
        * and second level page tables.  Pages of memory will be allocated
        * and mapped for other structures that are required for system
        * operation.  When it returns, physical_freestart and free_pages will
        * have been updated to reflect the allocations that were made.  In
        * addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
        * abtstack, undstack, kernelstack, msgbufphys will be set to point to
        * the memory that was allocated for them.
        */
       setup_real_page_tables();

       /*
        * Moved from cpu_startup() as data_abort_handler() references
        * this during uvm init.
        */
       uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);

#ifdef VERBOSE_INIT_ARM
       printf("bootstrap done.\n");
#endif

       arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);

       /*
        * Pages were allocated during the secondary bootstrap for the
        * stacks for different CPU modes.
        * We must now set the r13 registers in the different CPU modes to
        * point to these stacks.
        * Since the ARM stacks use STMFD etc. we must set r13 to the top end
        * of the stack memory.
        */
#ifdef VERBOSE_INIT_ARM
       printf("init subsystems: stacks ");
#endif

       set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
       set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);

       /*
        * Well we should set a data abort handler.
        * Once things get going this will change as we will need a proper
        * handler.
        * Until then we will use a handler that just panics but tells us
        * why.
        * Initialisation of the vectors will just panic on a data abort.
        * This just fills in a slightly better one.
        */
#ifdef VERBOSE_INIT_ARM
       printf("vectors ");
#endif
       data_abort_handler_address = (u_int)data_abort_handler;
       prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
       undefined_handler_address = (u_int)undefinedinstruction_bounce;

       /* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
       printf("undefined ");
#endif
       undefined_init();

       /* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
       printf("page ");
#endif
       uvm_md_init();

#if (GEMINI_RAM_RESV_PBASE != 0)
       uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
           atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
           VM_FREELIST_DEFAULT);
       uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
           atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
           VM_FREELIST_DEFAULT);
#else
       uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
           atop(physical_freestart), atop(physical_freeend),
           VM_FREELIST_DEFAULT);
#endif
       uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
           atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
           VM_FREELIST_DEFAULT);

       /* Boot strap pmap telling it where managed kernel virtual memory is */
#ifdef VERBOSE_INIT_ARM
       printf("pmap ");
#endif
       pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);

#ifdef VERBOSE_INIT_ARM
       printf("done.\n");
#endif

#if defined(MEMORY_DISK_DYNAMIC)
       md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
#endif

#ifdef KGDB
       if (boothowto & RB_KDB) {
               kgdb_debug_init = 1;
               kgdb_connect(1);
       }
#endif

#ifdef DDB
       db_trap_callback = gemini_db_trap;
       db_machine_init();

       /* Firmware doesn't load symbols. */
       ddb_init(0, NULL, NULL);

       if (boothowto & RB_KDB)
               Debugger();
#endif
       printf("initarm done.\n");

       /* We return the new stack pointer address */
       return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
}

static void
init_clocks(void)
{
}

#ifndef CONSADDR
#error Specify the address of the console UART with the CONSADDR option.
#endif
#ifndef CONSPEED
#define CONSPEED 19200
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif

static const bus_addr_t consaddr = CONSADDR;
static const int conspeed = CONSPEED;
static const int conmode = CONMODE;

#if CONSADDR==0x42000000
/*
* console initialization for obio com console
*/
void
consinit(void)
{
       static int consinit_called = 0;

       if (consinit_called != 0)
               return;
       consinit_called = 1;

       if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
               GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
                       panic("Serial console can not be initialized.");
}

#elif CONSADDR==0x478003f8
# include <arm/gemini/gemini_lpcvar.h>
/*
* console initialization for lpc com console
*/
void
consinit(void)
{
       static int consinit_called = 0;
       bus_space_tag_t iot = &gemini_bs_tag;
       bus_space_handle_t lpchc_ioh;
       bus_space_handle_t lpcio_ioh;
       bus_size_t sz = L1_S_SIZE;
       gemini_lpc_softc_t lpcsoftc;
       gemini_lpc_bus_ops_t *ops;
       void *lpctag = &lpcsoftc;
       uint32_t r;
       extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;

       ops = &gemini_lpc_bus_ops;

       if (consinit_called != 0)
               return;
       consinit_called = 1;

       if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
               panic("consinit: LPCHC can not be mapped.");

       if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
               panic("consinit: LPCIO can not be mapped.");

       /* enable the LPC bus */
       r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
       r |= LPCHC_CSR_BEN;
       bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);

       memset(&lpcsoftc, 0, sizeof(lpcsoftc));
       lpcsoftc.sc_iot = iot;
       lpcsoftc.sc_ioh = lpcio_ioh;

       /* activate Serial Port 1 */
       (*ops->lpc_pnp_enter)(lpctag);
       (*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
       (*ops->lpc_pnp_exit)(lpctag);

       if (comcnattach(iot, consaddr, conspeed,
               IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
                       panic("Serial console can not be initialized.");
       }

       bus_space_unmap(iot, lpcio_ioh, sz);
       bus_space_unmap(iot, lpchc_ioh, sz);
}
#else
# error unknown console
#endif

#ifdef KGDB
#ifndef KGDB_DEVADDR
#error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
#endif
#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE 19200
#endif

#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
static const int comkgdbspeed = KGDB_DEVRATE;
static const int comkgdbmode = KGDB_DEVMODE;

void
static kgdb_port_init(void)
{
       static int kgdbsinit_called = 0;

       if (kgdbsinit_called != 0)
               return;

       kgdbsinit_called = 1;

       bus_space_handle_t bh;
       if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
               GEMINI_UART_SIZE, 0, &bh))
                       panic("kgdb port can not be mapped.");

       if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
               GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
                       panic("KGDB uart can not be initialized.");

       bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
}
#endif

static void
setup_real_page_tables(void)
{
       /*
        * We need to allocate some fixed page tables to get the kernel going.
        *
        * We are going to allocate our bootstrap pages from the beginning of
        * the free space that we just calculated.  We allocate one page
        * directory and a number of page tables and store the physical
        * addresses in the kernel_pt_table array.
        *
        * The kernel page directory must be on a 16K boundary.  The page
        * tables must be on 4K boundaries.  What we do is allocate the
        * page directory on the first 16K boundary that we encounter, and
        * the page tables on 4K boundaries otherwise.  Since we allocate
        * at least 3 L2 page tables, we are guaranteed to encounter at
        * least one 16K aligned region.
        */

#ifdef VERBOSE_INIT_ARM
       printf("Allocating page tables\n");
#endif

       /*
        * Define a macro to simplify memory allocation.  As we allocate the
        * memory, make sure that we don't walk over our temporary first level
        * translation table.
        */
#define valloc_pages(var, np)                                           \
       (var).pv_pa = physical_freestart;                               \
       physical_freestart += ((np) * PAGE_SIZE);                       \
       if (physical_freestart > (physical_freeend - L1_TABLE_SIZE))    \
               panic("initarm: out of memory");                        \
       free_pages -= (np);                                             \
       (var).pv_va = KERN_PHYSTOV((var).pv_pa);                        \
       memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));

       int loop, pt_index;

       pt_index = 0;
       kernel_l1pt.pv_pa = 0;
       kernel_l1pt.pv_va = 0;
#ifdef VERBOSE_INIT_ARM
       printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
#endif
       for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
               /* Are we 16KB aligned for an L1 ? */
               if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
                   && kernel_l1pt.pv_pa == 0) {
                       valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
               } else {
                       valloc_pages(kernel_pt_table[pt_index],
                           L2_TABLE_SIZE / PAGE_SIZE);
                       ++pt_index;
               }
       }

#if (NGEMINIIPM > 0)
       valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
#endif

#ifdef VERBOSE_INIT_ARM
       pt_index=0;
       printf("%s: kernel_l1pt: %#lx:%#lx\n",
               __func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
       printf("%s: kernel_pt_table:\n", __func__);
       for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
               printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
                       kernel_pt_table[pt_index].pv_pa);
               ++pt_index;
       }
#if (NGEMINIIPM > 0)
       printf("%s: ipmq_pt:\n", __func__);
       printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
#endif
#endif

       /* This should never be able to happen but better confirm that. */
       if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
               panic("initarm: Failed to align the kernel page directory");

       /*
        * Allocate a page for the system page mapped to V0x00000000
        * This page will just contain the system vectors and can be
        * shared by all processes.
        */
       valloc_pages(systempage, 1);
       systempage.pv_va = ARM_VECTORS_HIGH;

       /* Allocate stacks for all modes */
       valloc_pages(fiqstack, FIQ_STACK_SIZE);
       valloc_pages(irqstack, IRQ_STACK_SIZE);
       valloc_pages(abtstack, ABT_STACK_SIZE);
       valloc_pages(undstack, UND_STACK_SIZE);
       valloc_pages(kernelstack, UPAGES);

       /* Allocate the message buffer. */
       pv_addr_t msgbuf;
       int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
       valloc_pages(msgbuf, msgbuf_pgs);
       msgbufphys = msgbuf.pv_pa;

       /*
        * Ok we have allocated physical pages for the primary kernel
        * page tables
        */

#ifdef VERBOSE_INIT_ARM
       printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif

       /*
        * Now we start construction of the L1 page table
        * We start by mapping the L2 page tables into the L1.
        * This means that we can replace L1 mappings later on if necessary
        */
       vaddr_t l1_va = kernel_l1pt.pv_va;
       paddr_t l1_pa = kernel_l1pt.pv_pa;

       /* Map the L2 pages tables in the L1 page table */
       pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
                      &kernel_pt_table[KERNEL_PT_SYS]);
       for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
               pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
                              &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
       for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
               pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
                              &kernel_pt_table[KERNEL_PT_VMDATA + loop]);

       /* update the top of the kernel VM */
       pmap_curmaxkvaddr =
           KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);

#if (NGEMINIIPM > 0)
printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
       pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
#endif

#ifdef VERBOSE_INIT_ARM
       printf("Mapping kernel\n");
#endif

       /* Now we fill in the L2 pagetable for the kernel static code/data */
#define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
       size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
       size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
       /* offset of kernel in RAM */
       u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;

#ifdef DDB
       /* Map text section read-write. */
       offset += pmap_map_chunk(l1_va,
                               (vaddr_t)KERNEL_BASE + offset,
                                physical_start + offset, textsize,
                                VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
                                PTE_CACHE);
#else
       /* Map text section read-only. */
       offset += pmap_map_chunk(l1_va,
                               (vaddr_t)KERNEL_BASE + offset,
                                physical_start + offset, textsize,
                                VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
#endif
       /* Map data and bss sections read-write. */
       offset += pmap_map_chunk(l1_va,
                               (vaddr_t)KERNEL_BASE + offset,
                                physical_start + offset, totalsize - textsize,
                                VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#ifdef VERBOSE_INIT_ARM
       printf("Constructing L2 page tables\n");
#endif

       /* Map the stack pages */
       pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
           FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
           IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
           ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
           UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
           UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);

       pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
           L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);

       for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
               pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
                              kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
                              VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
       }

       /* Map the vector page. */
       pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
                      VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);

#if (NGEMINIIPM > 0)
       /* Map the IPM queue l2pt */
       pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
               L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);

       /* Map the IPM queue pages */
       pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
           GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);

#ifdef GEMINI_SLAVE
       /*
        * Map all memory, including that owned by other core
        * take into account the RAM remap, so view in this region
        * is consistent with MASTER
        */
       pmap_map_chunk(l1_va,
           GEMINI_ALLMEM_VBASE,
           GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
           (GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
           VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
       pmap_map_chunk(l1_va,
           GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
           GEMINI_ALLMEM_PBASE,
           (MEMSIZE * 1024 * 1024),
           VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else
       /* Map all memory, including that owned by other core */
       pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
           GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif  /* GEMINI_SLAVE */
#endif  /* NGEMINIIPM */

       /*
        * Map integrated peripherals at same address in first level page
        * table so that we can continue to use console.
        */
       pmap_devmap_bootstrap(l1_va, devmap);


#ifdef VERBOSE_INIT_ARM
       /* Tell the user about where all the bits and pieces live. */
       printf("%22s       Physical              Virtual        Num\n", " ");
       printf("%22s Starting    Ending    Starting    Ending   Pages\n", " ");

       static const char mem_fmt[] =
           "%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
       static const char mem_fmt_nov[] =
           "%20s: 0x%08lx 0x%08lx                       %d\n";

       printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
           KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
           (int)physmem);
       printf(mem_fmt, "text section",
              KERN_VTOPHYS((vaddr_t)KERNEL_BASE_virt), KERN_VTOPHYS((vaddr_t)etext-1),
              (vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
              (int)(textsize / PAGE_SIZE));
       printf(mem_fmt, "data section",
              KERN_VTOPHYS((vaddr_t)__data_start), KERN_VTOPHYS((vaddr_t)_edata),
              (vaddr_t)__data_start, (vaddr_t)_edata,
              (int)((round_page((vaddr_t)_edata)
                     - trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
       printf(mem_fmt, "bss section",
              KERN_VTOPHYS((vaddr_t)__bss_start), KERN_VTOPHYS((vaddr_t)__bss_end__),
              (vaddr_t)__bss_start, (vaddr_t)__bss_end__,
              (int)((round_page((vaddr_t)__bss_end__)
                     - trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
       printf(mem_fmt, "L1 page directory",
           kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
           kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
           L1_TABLE_SIZE / PAGE_SIZE);
       printf(mem_fmt, "Exception Vectors",
           systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
           (vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
           1);
       printf(mem_fmt, "FIQ stack",
           fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
           fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
           FIQ_STACK_SIZE);
       printf(mem_fmt, "IRQ stack",
           irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
           irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
           IRQ_STACK_SIZE);
       printf(mem_fmt, "ABT stack",
           abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
           abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
           ABT_STACK_SIZE);
       printf(mem_fmt, "UND stack",
           undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
           undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
           UND_STACK_SIZE);
       printf(mem_fmt, "SVC stack",
           kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
           kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
           UPAGES);
       printf(mem_fmt_nov, "Message Buffer",
           msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
       printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
           KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
           free_pages);
#endif

       /*
        * Now we have the real page tables in place so we can switch to them.
        * Once this is done we will be running with the REAL kernel page
        * tables.
        */

       /* Switch tables */
#ifdef VERBOSE_INIT_ARM
       printf("switching to new L1 page table  @%#lx...", l1_pa);
#endif

       cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
       cpu_setttb(l1_pa, true);
       cpu_tlb_flushID();
       cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));

#ifdef VERBOSE_INIT_ARM
       printf("OK.\n");
#endif
}