/*-
* Copyright (c) 2001 ARM Ltd
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the company may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1998, 1999, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and Nick Hudson.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)com.c 7.5 (Berkeley) 5/16/91
*/
/*
* COM driver for the Prime Cell PL010 and PL011 UARTs. Both are is similar to
* the 16C550, but have a completely different programmer's model.
* Derived from the NS16550AF com driver.
*
* Lock order:
* ttylock (IPL_VM)
* -> sc->sc_lock (IPL_HIGH)
* -> timecounter_lock (IPL_HIGH)
*/
/*
* Override cnmagic(9) macro before including <sys/systm.h>.
* We need to know if cn_check_magic triggered debugger, so set a flag.
* Callers of cn_check_magic must declare int cn_trapped = 0;
* XXX: this is *ugly*!
*/
#define cn_trap() \
do { \
console_debugger(); \
cn_trapped = 1; \
} while (/* CONSTCOND */ 0)
/*
* Make this an option variable one can patch.
* But be warned: this must be a power of 2!
*/
u_int plcom_rbuf_size = PLCOM_RING_SIZE;
/* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
u_int plcom_rbuf_hiwat = (PLCOM_RING_SIZE * 1) / 4;
u_int plcom_rbuf_lowat = (PLCOM_RING_SIZE * 3) / 4;
static int plcomconsunit = -1;
static struct plcom_instance plcomcons_info;
static int plcomconsattached;
static int plcomconsrate;
static tcflag_t plcomconscflag;
static struct cnm_state plcom_cnm_state;
#if 0
int
plcomprobe1(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int data;
/* Disable the UART. */
bus_space_write_1(iot, ioh, plcom_cr, 0);
/* Make sure the FIFO is off. */
bus_space_write_4(iot, ioh, plcom_lcr, PL01X_LCR_8BITS);
/* Disable interrupts. */
bus_space_write_1(iot, ioh, plcom_iir, 0);
/* Make sure we swallow anything in the receiving register. */
data = bus_space_read_1(iot, ioh, plcom_dr);
if (bus_space_read_4(iot, ioh, plcom_lcr) != PL01X_LCR_8BITS)
return 0;
data = bus_space_read_1(iot, ioh, plcom_fr) & (PL01X_FR_RXFF | PL01X_FR_RXFE);
if (data != PL01X_FR_RXFE)
return 0;
return 1;
}
#endif
/*
* No locking in this routine; it is only called during attach,
* or with the port already locked.
*/
static void
plcom_enable_debugport(struct plcom_softc *sc)
{
struct plcom_instance *pi = &sc->sc_pi;
/* Make sure the console is always "hardwired". */
delay(1000); /* wait for output to finish */
SET(sc->sc_hwflags, PLCOM_HW_CONSOLE);
SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
/*
* Must re-enable the console immediately, or we will
* hang when trying to print.
*/
sc->sc_cr = PL01X_CR_UARTEN;
switch (pi->pi_type) {
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
SET(sc->sc_cr, PL011_CR_RXE | PL011_CR_TXE);
break;
}
}
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
PWRITE1(pi, PL010COM_CR, sc->sc_cr);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
PWRITE2(pi, PL011COM_CR, sc->sc_cr);
PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
break;
}
if (sc->sc_fifolen == 0) {
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
/*
* The PL010 has a 16-byte fifo, but the tx interrupt
* triggers when there is space for 8 more bytes.
*/
sc->sc_fifolen = 8;
break;
case PLCOM_TYPE_PL011:
/* Some revisions have a 32 byte TX FIFO */
switch (pi->pi_periphid & (PL011_DESIGNER_MASK | PL011_HWREV_MASK)) {
case PL011_DESIGNER_ARM | __SHIFTIN(0, PL011_HWREV_MASK):
case PL011_DESIGNER_ARM | __SHIFTIN(1, PL011_HWREV_MASK):
case PL011_DESIGNER_ARM | __SHIFTIN(2, PL011_HWREV_MASK):
sc->sc_fifolen = 16;
break;
default:
sc->sc_fifolen = 32;
break;
}
break;
case PLCOM_TYPE_GENERIC_UART:
/* At least 32 byte TX FIFO */
sc->sc_fifolen = 32;
break;
}
}
/* Safe amount of bytes to fill when TX FIFO signals empty */
sc->sc_burstlen = 1;
#ifdef KGDB
/*
* Allow kgdb to "take over" this port. If this is
* the kgdb device, it has exclusive use.
*/
if (bus_space_is_equal(pi->pi_iot, plcomkgdb_info.pi_iot) &&
pi->pi_iobase == plcomkgdb_info.pi_iobase) {
if (!ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
plcom_kgdb_attached = 1;
if (sc->sc_rbuf == NULL) {
/*
* Ring buffer allocation failed in the plcom_attach_subr,
* only the tty is allocated, and nothing else.
*/
tty_free(sc->sc_tty);
return 0;
}
/* Free the receive buffer. */
kmem_free(sc->sc_rbuf, sc->sc_ebuf - sc->sc_rbuf);
/* Detach and free the tty. */
tty_detach(sc->sc_tty);
tty_free(sc->sc_tty);
/* Unhook the soft interrupt handler. */
softint_disestablish(sc->sc_si);
/* If we were asserting flow control, then deassert it. */
SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
plcom_hwiflow(sc);
/* Clear any break condition set with TIOCSBRK. */
plcom_break(sc, 0);
/* Turn off PPS capture on last close. */
mutex_spin_enter(&timecounter_lock);
sc->sc_ppsmask = 0;
sc->ppsparam.mode = 0;
mutex_spin_exit(&timecounter_lock);
/*
* Hang up if necessary. Record when we hung up, so if we
* immediately open the port again, we will wait a bit until
* the other side has had time to notice that we hung up.
*/
if (ISSET(tp->t_cflag, HUPCL)) {
plcom_modem(sc, 0);
microuptime(&sc->sc_hup_pending);
sc->sc_hup_pending.tv_sec++;
}
sc->sc_cr = 0;
sc->sc_imsc = 0;
/* Turn off interrupts. */
if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
/* interrupt on break */
#ifdef KGDB
/*
* If this is the kgdb port, no other use is permitted.
*/
if (ISSET(sc->sc_hwflags, PLCOM_HW_KGDB))
return EBUSY;
#endif
tp = sc->sc_tty;
if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
return (EBUSY);
s = spltty();
/*
* Do the following iff this is a first open.
*/
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
struct termios t;
struct timeval now, diff;
/*
* Initialize the termios status to the defaults. Add in the
* sticky bits from TIOCSFLAGS.
*/
if (ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
t.c_ospeed = plcomconsrate;
t.c_cflag = plcomconscflag;
} else {
t.c_ospeed = TTYDEF_SPEED;
t.c_cflag = TTYDEF_CFLAG;
}
t.c_ispeed = t.c_ospeed;
if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
SET(t.c_cflag, CLOCAL);
if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
SET(t.c_cflag, CRTSCTS);
if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
SET(t.c_cflag, MDMBUF);
/* Make sure plcomparam() will do something. */
tp->t_ospeed = 0;
(void) plcomparam(tp, &t);
tp->t_iflag = TTYDEF_IFLAG;
tp->t_oflag = TTYDEF_OFLAG;
tp->t_lflag = TTYDEF_LFLAG;
ttychars(tp);
ttsetwater(tp);
mutex_spin_enter(&sc->sc_lock);
/*
* Turn on DTR. We must always do this, even if carrier is not
* present, because otherwise we'd have to use TIOCSDTR
* immediately after setting CLOCAL, which applications do not
* expect. We always assert DTR while the device is open
* unless explicitly requested to deassert it.
*/
plcom_modem(sc, 1);
/* Clear the input ring, and unblock. */
sc->sc_rbput = sc->sc_rbget = sc->sc_rbuf;
sc->sc_rbavail = plcom_rbuf_size;
plcom_iflush(sc);
CLR(sc->sc_rx_flags, RX_ANY_BLOCK);
plcom_hwiflow(sc);
#ifdef PLCOM_DEBUG
if (plcom_debug)
plcomstatus(sc, "plcomopen ");
#endif
mutex_spin_exit(&sc->sc_lock);
}
splx(s);
error = ttyopen(tp, PLCOMDIALOUT(dev), ISSET(flag, O_NONBLOCK));
if (error)
goto bad;
error = (*tp->t_linesw->l_open)(dev, tp);
if (error)
goto bad;
return 0;
bad:
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* We failed to open the device, and nobody else had it opened.
* Clean up the state as appropriate.
*/
plcom_shutdown(sc);
}
return error;
}
int
plcomclose(dev_t dev, int flag, int mode, struct lwp *l)
{
struct plcom_softc *sc =
device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
struct tty *tp = sc->sc_tty;
/* XXX This is for cons.c. */
if (!ISSET(tp->t_state, TS_ISOPEN))
return 0;
(*tp->t_linesw->l_close)(tp, flag);
ttyclose(tp);
if (PLCOM_ISALIVE(sc) == 0)
return 0;
if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
/*
* Although we got a last close, the device may still be in
* use; e.g. if this was the dialout node, and there are still
* processes waiting for carrier on the non-dialout node.
*/
plcom_shutdown(sc);
}
return 0;
}
int
plcomread(dev_t dev, struct uio *uio, int flag)
{
struct plcom_softc *sc =
device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
struct tty *tp = sc->sc_tty;
if (PLCOM_ISALIVE(sc) == 0)
return EIO;
return (*tp->t_linesw->l_read)(tp, uio, flag);
}
int
plcomwrite(dev_t dev, struct uio *uio, int flag)
{
struct plcom_softc *sc =
device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
struct tty *tp = sc->sc_tty;
if (PLCOM_ISALIVE(sc) == 0)
return EIO;
return (*tp->t_linesw->l_write)(tp, uio, flag);
}
int
plcompoll(dev_t dev, int events, struct lwp *l)
{
struct plcom_softc *sc =
device_lookup_private(&plcom_cd, PLCOMUNIT(dev));
struct tty *tp = sc->sc_tty;
case PPS_IOC_FETCH: {
pps_info_t *pi;
pi = (pps_info_t *)data;
mutex_spin_enter(&timecounter_lock);
*pi = sc->ppsinfo;
mutex_spin_exit(&timecounter_lock);
break;
}
case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
/*
* Some GPS clocks models use the falling rather than
* rising edge as the on-the-second signal.
* The old API has no way to specify PPS polarity.
*/
mutex_spin_enter(&timecounter_lock);
sc->sc_ppsmask = PL01X_MSR_DCD;
#ifndef PPS_TRAILING_EDGE
sc->sc_ppsassert = PL01X_MSR_DCD;
sc->sc_ppsclear = -1;
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
&sc->ppsinfo.assert_timestamp);
#else
sc->sc_ppsassert = -1
sc->sc_ppsclear = 0;
TIMESPEC_TO_TIMEVAL((struct timeval *)data,
&sc->ppsinfo.clear_timestamp);
#endif
mutex_spin_exit(&timecounter_lock);
break;
default:
error = EPASSTHROUGH;
break;
}
mutex_spin_exit(&sc->sc_lock);
#ifdef PLCOM_DEBUG
if (plcom_debug)
plcomstatus(sc, "plcomioctl ");
#endif
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
ospeed = pl010comspeed(t->c_ospeed, sc->sc_frequency);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
ospeed = pl011comspeed(t->c_ospeed, sc->sc_frequency);
break;
}
/* Check requested parameters. */
if (ospeed < 0)
return EINVAL;
if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
return EINVAL;
/*
* For the console, always force CLOCAL and !HUPCL, so that the port
* is always active.
*/
if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
ISSET(sc->sc_hwflags, PLCOM_HW_CONSOLE)) {
SET(t->c_cflag, CLOCAL);
CLR(t->c_cflag, HUPCL);
}
/*
* If there were no changes, don't do anything. This avoids dropping
* input and improves performance when all we did was frob things like
* VMIN and VTIME.
*/
if (tp->t_ospeed == t->c_ospeed &&
tp->t_cflag == t->c_cflag)
return 0;
/*
* If we're not in a mode that assumes a connection is present, then
* ignore carrier changes.
*/
if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
sc->sc_msr_dcd = 0;
else
sc->sc_msr_dcd = PL01X_MSR_DCD;
/*
* Set the flow control pins depending on the current flow control
* mode.
*/
if (ISSET(t->c_cflag, CRTSCTS)) {
sc->sc_mcr_dtr = PL01X_MCR_DTR;
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
sc->sc_mcr_rts = PL01X_MCR_RTS;
sc->sc_msr_cts = PL01X_MSR_CTS;
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
sc->sc_mcr_rts = 0;
sc->sc_msr_cts = 0;
SET(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
break;
}
} else if (ISSET(t->c_cflag, MDMBUF)) {
/*
* For DTR/DCD flow control, make sure we don't toggle DTR for
* carrier detection.
*/
sc->sc_mcr_dtr = 0;
sc->sc_mcr_rts = PL01X_MCR_DTR;
sc->sc_msr_cts = PL01X_MSR_DCD;
switch (pi->pi_type) {
case PLCOM_TYPE_PL011:
CLR(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
break;
}
} else {
/*
* If no flow control, then always set RTS. This will make
* the other side happy if it mistakenly thinks we're doing
* RTS/CTS flow control.
*/
sc->sc_mcr_dtr = PL01X_MCR_DTR | PL01X_MCR_RTS;
sc->sc_mcr_rts = 0;
sc->sc_msr_cts = 0;
if (ISSET(sc->sc_mcr, PL01X_MCR_DTR))
SET(sc->sc_mcr, PL01X_MCR_RTS);
else
CLR(sc->sc_mcr, PL01X_MCR_RTS);
switch (pi->pi_type) {
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
CLR(sc->sc_cr, PL011_CR_CTSEN | PL011_CR_RTSEN);
break;
}
}
sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
/* And copy to tty. */
tp->t_ispeed = t->c_ospeed;
tp->t_ospeed = t->c_ospeed;
tp->t_cflag = t->c_cflag;
if (!sc->sc_heldchange) {
if (sc->sc_tx_busy) {
sc->sc_heldtbc = sc->sc_tbc;
sc->sc_tbc = 0;
sc->sc_heldchange = 1;
} else
plcom_loadchannelregs(sc);
}
if (!ISSET(t->c_cflag, CHWFLOW)) {
/* Disable the high water mark. */
sc->sc_r_hiwat = 0;
sc->sc_r_lowat = 0;
if (ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED)) {
CLR(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
plcom_schedrx(sc);
}
if (ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED)) {
CLR(sc->sc_rx_flags, RX_TTY_BLOCKED|RX_IBUF_BLOCKED);
plcom_hwiflow(sc);
}
} else {
sc->sc_r_hiwat = plcom_rbuf_hiwat;
sc->sc_r_lowat = plcom_rbuf_lowat;
}
mutex_spin_exit(&sc->sc_lock);
/*
* Update the tty layer's idea of the carrier bit, in case we changed
* CLOCAL or MDMBUF. We don't hang up here; we only do that by
* explicit request.
*/
(void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, PL01X_MSR_DCD));
#ifdef PLCOM_DEBUG
if (plcom_debug)
plcomstatus(sc, "plcomparam ");
#endif
if (!ISSET(t->c_cflag, CHWFLOW)) {
if (sc->sc_tx_stopped) {
sc->sc_tx_stopped = 0;
plcomstart(tp);
}
}
return 0;
}
void
plcom_iflush(struct plcom_softc *sc)
{
struct plcom_instance *pi = &sc->sc_pi;
#ifdef DIAGNOSTIC
int reg;
#endif
int timo;
end = sc->sc_ebuf;
get = sc->sc_rbget;
scc = cc = plcom_rbuf_size - sc->sc_rbavail;
if (cc == plcom_rbuf_size) {
sc->sc_floods++;
if (sc->sc_errors++ == 0)
callout_reset(&sc->sc_diag_callout, 60 * hz,
plcomdiag, sc);
}
while (cc) {
code = get[0];
rsr = get[1];
if (ISSET(rsr, PL01X_RSR_ERROR)) {
if (ISSET(rsr, PL01X_RSR_OE)) {
sc->sc_overflows++;
if (sc->sc_errors++ == 0)
callout_reset(&sc->sc_diag_callout,
60 * hz, plcomdiag, sc);
}
if (ISSET(rsr, PL01X_RSR_BE | PL01X_RSR_FE))
SET(code, TTY_FE);
if (ISSET(rsr, PL01X_RSR_PE))
SET(code, TTY_PE);
}
if ((*rint)(code, tp) == -1) {
/*
* The line discipline's buffer is out of space.
*/
if (!ISSET(sc->sc_rx_flags, RX_TTY_BLOCKED)) {
/*
* We're either not using flow control, or the
* line discipline didn't tell us to block for
* some reason. Either way, we have no way to
* know when there's more space available, so
* just drop the rest of the data.
*/
get += cc << 1;
if (get >= end)
get -= plcom_rbuf_size << 1;
cc = 0;
} else {
/*
* Don't schedule any more receive processing
* until the line discipline tells us there's
* space available (through plcomhwiflow()).
* Leave the rest of the data in the input
* buffer.
*/
SET(sc->sc_rx_flags, RX_TTY_OVERFLOWED);
}
break;
}
get += 2;
if (get >= end)
get = sc->sc_rbuf;
cc--;
}
if (cc != scc) {
sc->sc_rbget = get;
mutex_spin_enter(&sc->sc_lock);
cc = sc->sc_rbavail += scc - cc;
/* Buffers should be ok again, release possible block. */
if (cc >= sc->sc_r_lowat) {
if (ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
CLR(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
SET(sc->sc_cr,
PL010_CR_RIE | PL010_CR_RTIE);
PWRITE1(pi, PL010COM_CR, sc->sc_cr);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
SET(sc->sc_imsc,
PL011_INT_RX | PL011_INT_RT);
PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
break;
}
}
if (ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED)) {
CLR(sc->sc_rx_flags, RX_IBUF_BLOCKED);
plcom_hwiflow(sc);
}
}
mutex_spin_exit(&sc->sc_lock);
}
}
if (sc->sc_rx_ready) {
sc->sc_rx_ready = 0;
plcom_rxsoft(sc, tp);
}
if (sc->sc_st_check) {
sc->sc_st_check = 0;
plcom_stsoft(sc, tp);
}
if (sc->sc_tx_done) {
sc->sc_tx_done = 0;
plcom_txsoft(sc, tp);
}
}
bool
plcom_intstatus(struct plcom_instance *pi, u_int *istatus)
{
bool ret = false;
u_int stat = 0;
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
stat = PREAD1(pi, PL010COM_IIR);
ret = ISSET(stat, PL010_IIR_IMASK);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
stat = PREAD4(pi, PL011COM_MIS);
ret = ISSET(stat, PL011_INT_ALLMASK);
break;
}
*istatus = stat;
/* don't need RI here*/
fr = PREAD1(pi, PL01XCOM_FR);
if (!ISSET(fr, PL01X_FR_RXFE) &&
!ISSET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED)) {
while (cc > 0) {
int cn_trapped = 0;
put[0] = PREAD1(pi, PL01XCOM_DR);
rsr = PREAD1(pi, PL01XCOM_RSR);
/* Clear any error status. */
if (ISSET(rsr, PL01X_RSR_ERROR))
PWRITE1(pi, PL01XCOM_ECR, 0);
if (ISSET(rsr, PL01X_RSR_BE)) {
cn_trapped = 0;
cn_check_magic(sc->sc_tty->t_dev,
CNC_BREAK, plcom_cnm_state);
if (cn_trapped)
continue;
#if defined(KGDB)
if (ISSET(sc->sc_hwflags,
PLCOM_HW_KGDB)) {
kgdb_connect(1);
continue;
}
#endif
}
put[1] = rsr;
cn_trapped = 0;
cn_check_magic(sc->sc_tty->t_dev, put[0],
plcom_cnm_state);
if (cn_trapped) {
fr = PREAD1(pi, PL01XCOM_FR);
if (ISSET(fr, PL01X_FR_RXFE))
break;
continue;
}
put += 2;
if (put >= end)
put = sc->sc_rbuf;
cc--;
/* don't need RI here*/
fr = PREAD1(pi, PL01XCOM_FR);
if (ISSET(fr, PL01X_FR_RXFE))
break;
}
/*
* Current string of incoming characters ended because
* no more data was available or we ran out of space.
* Schedule a receive event if any data was received.
* If we're out of space, turn off receive interrupts.
*/
sc->sc_rbput = put;
sc->sc_rbavail = cc;
if (!ISSET(sc->sc_rx_flags, RX_TTY_OVERFLOWED))
sc->sc_rx_ready = 1;
/*
* See if we are in danger of overflowing a buffer. If
* so, use hardware flow control to ease the pressure.
*/
if (!ISSET(sc->sc_rx_flags, RX_IBUF_BLOCKED) &&
cc < sc->sc_r_hiwat) {
SET(sc->sc_rx_flags, RX_IBUF_BLOCKED);
plcom_hwiflow(sc);
}
/*
* If we're out of space, disable receive interrupts
* until the queue has drained a bit.
*/
if (!cc) {
SET(sc->sc_rx_flags, RX_IBUF_OVERFLOWED);
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
CLR(sc->sc_cr,
PL010_CR_RIE | PL010_CR_RTIE);
PWRITE1(pi, PL010COM_CR, sc->sc_cr);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
CLR(sc->sc_imsc,
PL011_INT_RT | PL011_INT_RX);
PWRITE4(pi, PL011COM_IMSC, sc->sc_imsc);
break;
}
}
} else {
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
rxintr = ISSET(istatus, PL010_IIR_RIS);
if (rxintr) {
PWRITE1(pi, PL010COM_CR, 0);
delay(10);
PWRITE1(pi, PL010COM_CR, sc->sc_cr);
continue;
}
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
rxintr = ISSET(istatus, PL011_INT_RX);
if (rxintr) {
PWRITE2(pi, PL011COM_CR, 0);
delay(10);
PWRITE2(pi, PL011COM_CR, sc->sc_cr);
continue;
}
break;
}
}
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
msr = PREAD1(pi, PL01XCOM_FR);
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
msr = PREAD4(pi, PL01XCOM_FR);
break;
}
delta = msr ^ sc->sc_msr;
sc->sc_msr = msr;
/* Clear any pending modem status interrupt. */
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
msintr = ISSET(istatus, PL010_IIR_MIS);
if (msintr) {
PWRITE1(pi, PL010COM_ICR, 0);
}
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
msintr = ISSET(istatus, PL011_INT_MSMASK);
if (msintr) {
PWRITE4(pi, PL011COM_ICR, PL011_INT_MSMASK);
}
break;
}
/*
* Pulse-per-second (PSS) signals on edge of DCD?
* Process these even if line discipline is ignoring DCD.
*/
if (delta & sc->sc_ppsmask) {
struct timeval tv;
mutex_spin_enter(&timecounter_lock);
if ((msr & sc->sc_ppsmask) == sc->sc_ppsassert) {
/* XXX nanotime() */
microtime(&tv);
TIMEVAL_TO_TIMESPEC(&tv,
&sc->ppsinfo.assert_timestamp);
if (sc->ppsparam.mode & PPS_OFFSETASSERT) {
timespecadd(&sc->ppsinfo.assert_timestamp,
&sc->ppsparam.assert_offset,
&sc->ppsinfo.assert_timestamp);
}
/*
* Process normal status changes
*/
if (ISSET(delta, sc->sc_msr_mask)) {
SET(sc->sc_msr_delta, delta);
/*
* Stop output immediately if we lose the output
* flow control signal or carrier detect.
*/
if (ISSET(~msr, sc->sc_msr_mask)) {
sc->sc_tbc = 0;
sc->sc_heldtbc = 0;
#ifdef PLCOM_DEBUG
if (plcom_debug)
plcomstatus(sc, "plcomintr ");
#endif
}
sc->sc_st_check = 1;
}
/*
* Done handling any receive interrupts. See if data
* can be transmitted as well. Schedule tx done
* event if no data left and tty was marked busy.
*/
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
txintr = ISSET(istatus, PL010_IIR_TIS);
break;
case PLCOM_TYPE_PL011:
txintr = ISSET(istatus, PL011_INT_TX);
break;
}
if (txintr) {
/*
* If we've delayed a parameter change, do it
* now, and restart * output.
*/
// PWRITE4(pi, PL011COM_ICR, PL011_INT_TX);
if (sc->sc_heldchange) {
plcom_loadchannelregs(sc);
sc->sc_heldchange = 0;
sc->sc_tbc = sc->sc_heldtbc;
sc->sc_heldtbc = 0;
}
/*
* Output the next chunk of the contiguous
* buffer, if any.
*/
if (sc->sc_tbc > 0) {
int n;
n = sc->sc_tbc;
if (n > sc->sc_burstlen)
n = sc->sc_burstlen;
PWRITEM1(pi, PL01XCOM_DR, sc->sc_tba, n);
sc->sc_tbc -= n;
sc->sc_tba += n;
} else {
/*
* Disable transmit completion
* interrupts if necessary.
*/
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
if (ISSET(sc->sc_cr, PL010_CR_TIE)) {
CLR(sc->sc_cr, PL010_CR_TIE);
PWRITE1(pi, PL010COM_CR,
sc->sc_cr);
}
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
if (ISSET(sc->sc_imsc, PL011_INT_TX)) {
CLR(sc->sc_imsc, PL011_INT_TX);
PWRITE4(pi, PL011COM_IMSC,
sc->sc_imsc);
}
break;
}
if (sc->sc_tx_busy) {
sc->sc_tx_busy = 0;
sc->sc_tx_done = 1;
}
}
}
} while (plcom_intstatus(pi, &istatus));
mutex_spin_exit(&sc->sc_lock);
/* Wake up the poller. */
if ((sc->sc_rx_ready | sc->sc_st_check | sc->sc_tx_done) != 0)
softint_schedule(sc->sc_si);
/*
* The following functions are polled getc and putc routines, shared
* by the console and kgdb glue.
*
* The read-ahead code is so that you can detect pending in-band
* cn_magic in polled mode while doing output rather than having to
* wait until the kernel decides it needs input.
*/
#define MAX_READAHEAD 20
static int plcom_readahead[MAX_READAHEAD];
static int plcom_readaheadcount = 0;
int
plcom_common_getc(dev_t dev, struct plcom_instance *pi)
{
int s = splserial();
u_char c;
/* got a character from reading things earlier */
if (plcom_readaheadcount > 0) {
int i;
c = plcom_readahead[0];
for (i = 1; i < plcom_readaheadcount; i++) {
plcom_readahead[i-1] = plcom_readahead[i];
}
plcom_readaheadcount--;
splx(s);
return c;
}
if (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
splx(s);
return -1;
}
c = PREAD1(pi, PL01XCOM_DR);
{
int cn_trapped __unused = 0;
if (!db_active)
cn_check_magic(dev, c, plcom_cnm_state);
}
splx(s);
return c;
}
void
plcom_common_putc(dev_t dev, struct plcom_instance *pi, int c)
{
int s = splserial();
int timo;
int cin, stat;
if (plcom_readaheadcount < MAX_READAHEAD
&& !ISSET(stat = PREAD1(pi, PL01XCOM_FR), PL01X_FR_RXFE)) {
int cn_trapped __unused = 0;
cin = PREAD1(pi, PL01XCOM_DR);
cn_check_magic(dev, cin, plcom_cnm_state);
plcom_readahead[plcom_readaheadcount++] = cin;
}
/* wait for any pending transmission to finish */
timo = 150000;
while (ISSET(PREAD1(pi, PL01XCOM_FR), PL01X_FR_TXFF) && --timo)
continue;
/*
* Initialize UART for use as console or KGDB line.
*/
int
plcominit(struct plcom_instance *pi, int rate, int frequency, tcflag_t cflag)
{
uint32_t lcr;
switch (pi->pi_type) {
case PLCOM_TYPE_PL010:
if (pi->pi_size == 0)
pi->pi_size = PL010COM_UART_SIZE;
break;
case PLCOM_TYPE_PL011:
case PLCOM_TYPE_GENERIC_UART:
if (pi->pi_size == 0)
pi->pi_size = PL011COM_UART_SIZE;
break;
default:
panic("Unknown plcom type");
}
#if 0
/* Ought to do something like this, but we have no sc to
dereference. */
/* XXX device_unit() abuse */
sc->sc_set_mcr(sc->sc_set_mcr_arg, device_unit(sc->sc_dev),
PL01X_MCR_DTR | PL01X_MCR_RTS);
#endif
return 0;
}
/*
* Following are all routines needed for PLCOM to act as console
*/
struct consdev plcomcons = {
NULL, NULL, plcomcngetc, plcomcnputc, plcomcnpollc, NULL,
plcomcnhalt, NULL, NODEV, CN_NORMAL
};
int
plcomcnattach(struct plcom_instance *pi, int rate, int frequency,
tcflag_t cflag, int unit)
{
int res;
plcomcons_info = *pi;
res = plcominit(&plcomcons_info, rate, frequency, cflag);
if (res)
return res;
/* ARGSUSED */
void
plcom_kgdb_putc(void *arg, int c)
{
plcom_common_putc(NODEV, &plcomkgdb_info, c);
}
#endif /* KGDB */
/* helper function to identify the plcom ports used by
console or KGDB (and not yet autoconf attached) */
int
plcom_is_console(bus_space_tag_t iot, bus_addr_t iobase,
bus_space_handle_t *ioh)
{
bus_space_handle_t help;
if (!plcomconsattached &&
bus_space_is_equal(iot, plcomcons_info.pi_iot) &&
iobase == plcomcons_info.pi_iobase)
help = plcomcons_info.pi_ioh;
#ifdef KGDB
else if (!plcom_kgdb_attached &&
bus_space_is_equal(iot, plcomkgdb_info.pi_iot) &&
iobase == plcomkgdb_info.pi_iobase)
help = plcomkgdb_info.pi_ioh;
#endif
else
return 0;