/*      $NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $       */

/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: clock.c 1.18 91/01/21$
*
*      @(#)clock.c     7.6 (Berkeley) 5/7/91
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.64 2022/06/26 18:46:14 tsutsui Exp $");

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/proc.h>
#include <sys/event.h>
#include <sys/timetc.h>

#include <dev/clock_subr.h>

#include <machine/psl.h>
#include <machine/cpu.h>
#include <machine/iomap.h>
#include <machine/mfp.h>
#include <atari/dev/clockreg.h>
#include <atari/dev/clockvar.h>
#include <atari/atari/device.h>

#if defined(GPROF) && defined(PROFTIMER)
#include <machine/profile.h>
#endif

#include "ioconf.h"

static int      atari_rtc_get(todr_chip_handle_t, struct clock_ymdhms *);
static int      atari_rtc_set(todr_chip_handle_t, struct clock_ymdhms *);

/*
* The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
* of 200. Therefore the timer runs at an effective rate of:
* 2457600/200 = 12288Hz.
*/
#define CLOCK_HZ        12288

static u_int clk_getcounter(struct timecounter *);

static struct timecounter clk_timecounter = {
       .tc_get_timecount = clk_getcounter,
       .tc_counter_mask = ~0u,
       .tc_frequency = CLOCK_HZ,
       .tc_name = "clock",
       .tc_quality = 100,
};

/*
* Machine-dependent clock routines.
*
* Inittodr initializes the time of day hardware which provides
* date functions.
*
* Resettodr restores the time of day hardware after a time change.
*/

struct clock_softc {
       device_t        sc_dev;
       int             sc_flags;
       struct todr_chip_handle sc_handle;
};

/*
*  'sc_flags' state info. Only used by the rtc-device functions.
*/
#define RTC_OPEN        1

static dev_type_open(rtcopen);
static dev_type_close(rtcclose);
static dev_type_read(rtcread);
static dev_type_write(rtcwrite);

static void     clockattach(device_t, device_t, void *);
static int      clockmatch(device_t, cfdata_t, void *);

CFATTACH_DECL_NEW(clock, sizeof(struct clock_softc),
   clockmatch, clockattach, NULL, NULL);

const struct cdevsw rtc_cdevsw = {
       .d_open = rtcopen,
       .d_close = rtcclose,
       .d_read = rtcread,
       .d_write = rtcwrite,
       .d_ioctl = noioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = 0
};

void statintr(struct clockframe);

static int      twodigits(char *, int);

static int      divisor;        /* Systemclock divisor  */

/*
* Statistics and profile clock intervals and variances. Variance must
* be a power of 2. Since this gives us an even number, not an odd number,
* we discard one case and compensate. That is, a variance of 64 would
* give us offsets in [0..63]. Instead, we take offsets in [1..63].
* This is symmetric around the point 32, or statvar/2, and thus averages
* to that value (assuming uniform random numbers).
*/
#ifdef STATCLOCK
static int      statvar = 32;   /* {stat,prof}clock variance            */
static int      statmin;        /* statclock divisor - variance/2       */
static int      profmin;        /* profclock divisor - variance/2       */
static int      clk2min;        /* current, from above choices          */
#endif

static int
clockmatch(device_t parent, cfdata_t cf, void *aux)
{

       if (!strcmp("clock", aux))
               return 1;
       return 0;
}

/*
* Start the real-time clock.
*/
static void
clockattach(device_t parent, device_t self, void *aux)
{
       struct clock_softc *sc = device_private(self);
       struct todr_chip_handle *tch;

       sc->sc_dev = self;
       tch = &sc->sc_handle;
       tch->todr_gettime_ymdhms = atari_rtc_get;
       tch->todr_settime_ymdhms = atari_rtc_set;
       tch->todr_setwen = NULL;

       todr_attach(tch);

       sc->sc_flags = 0;

       /*
        * Initialize Timer-A in the ST-MFP. We use a divisor of 200.
        * The MFP clock runs at 2457600Hz. Therefore the timer runs
        * at an effective rate of: 2457600/200 = 12288Hz. The
        * following expression works for 48, 64 or 96 hz.
        */
       divisor       = CLOCK_HZ/hz;
       MFP->mf_tacr  = 0;              /* Stop timer                   */
       MFP->mf_iera &= ~IA_TIMA;       /* Disable timer interrupts     */
       MFP->mf_tadr  = divisor;        /* Set divisor                  */

       clk_timecounter.tc_frequency = CLOCK_HZ;

       if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
               aprint_normal(": illegal value %d for systemclock, reset to %d\n\t",
                                                               hz, 64);
               hz = 64;
       }
       aprint_normal(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
       tc_init(&clk_timecounter);

#ifdef STATCLOCK
       if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
               stathz = hz;
       if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
               profhz = hz << 1;

       MFP->mf_tcdcr &= 0x7;                   /* Stop timer           */
       MFP->mf_ierb  &= ~IB_TIMC;              /* Disable timer inter. */
       MFP->mf_tcdr   = CLOCK_HZ/stathz;       /* Set divisor          */

       statmin  = (CLOCK_HZ/stathz) - (statvar >> 1);
       profmin  = (CLOCK_HZ/profhz) - (statvar >> 1);
       clk2min  = statmin;
#endif /* STATCLOCK */
}

void
cpu_initclocks(void)
{

       MFP->mf_tacr  = T_Q200;         /* Start timer                  */
       MFP->mf_ipra  = (u_int8_t)~IA_TIMA;/* Clear pending interrupts  */
       MFP->mf_iera |= IA_TIMA;        /* Enable timer interrupts      */
       MFP->mf_imra |= IA_TIMA;        /*    .....                     */

#ifdef STATCLOCK
       MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start   */
       MFP->mf_iprb  = (u_int8_t)~IB_TIMC;/* Clear pending interrupts  */
       MFP->mf_ierb |= IB_TIMC;        /* Enable timer interrupts      */
       MFP->mf_imrb |= IB_TIMC;        /*    .....                     */
#endif /* STATCLOCK */
}

void
setstatclockrate(int newhz)
{

#ifdef STATCLOCK
       if (newhz == stathz)
               clk2min = statmin;
       else clk2min = profmin;
#endif /* STATCLOCK */
}

#ifdef STATCLOCK
void
statintr(struct clockframe frame)
{
       register int    var, r;

       var = statvar - 1;
       do {
               r = random() & var;
       } while (r == 0);

       /*
        * Note that we are always lagging behind as the new divisor
        * value will not be loaded until the next interrupt. This
        * shouldn't disturb the median frequency (I think ;-) ) as
        * only the value used when switching frequencies is used
        * twice. This shouldn't happen very often.
        */
       MFP->mf_tcdr = clk2min + r;

       statclock(&frame);
}
#endif /* STATCLOCK */

static u_int
clk_getcounter(struct timecounter *tc)
{
       uint32_t delta, count, cur_hardclock;
       uint8_t ipra, tadr;
       int s;
       static uint32_t lastcount;

       s = splhigh();
       cur_hardclock = getticks();
       ipra = MFP->mf_ipra;
       tadr = MFP->mf_tadr;
       delta = divisor - tadr;

       if (ipra & IA_TIMA)
               delta += divisor;
       splx(s);

       count = (divisor * cur_hardclock) + delta;
       if ((int32_t)(count - lastcount) < 0) {
               /* XXX wrapped; maybe hardclock() is blocked more than 2/HZ */
               count = lastcount + 1;
       }
       lastcount = count;

       return count;
}

#define TIMB_FREQ       614400
#define TIMB_LIMIT      256

void
init_delay(void)
{

       /*
        * Initialize Timer-B in the ST-MFP. This timer is used by
        * the 'delay' function below. This timer is setup to be
        * continueously counting from 255 back to zero at a
        * frequency of 614400Hz. We do this *early* in the
        * initialisation process.
        */
       MFP->mf_tbcr  = 0;              /* Stop timer                   */
       MFP->mf_iera &= ~IA_TIMB;       /* Disable timer interrupts     */
       MFP->mf_tbdr  = 0;
       MFP->mf_tbcr  = T_Q004; /* Start timer                  */
}

/*
* Wait "n" microseconds.
* Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
* Note: timer had better have been programmed before this is first used!
*/
void
delay(unsigned int n)
{
       int     ticks, otick, remaining;

       /*
        * Read the counter first, so that the rest of the setup overhead is
        * counted.
        */
       otick = MFP->mf_tbdr;

       if (n <= UINT_MAX / TIMB_FREQ) {
               /*
                * For unsigned arithmetic, division can be replaced with
                * multiplication with the inverse and a shift.
                */
               remaining = n * TIMB_FREQ / 1000000;
       } else {
               /* This is a very long delay.
                * Being slow here doesn't matter.
                */
               remaining = (unsigned long long) n * TIMB_FREQ / 1000000;
       }

       while (remaining > 0) {
               ticks = MFP->mf_tbdr;
               if (ticks > otick)
                       remaining -= TIMB_LIMIT - (ticks - otick);
               else
                       remaining -= otick - ticks;
               otick = ticks;
       }
}

#ifdef GPROF
/*
* profclock() is expanded in line in lev6intr() unless profiling kernel.
* Assumes it is called with clock interrupts blocked.
*/
profclock(void *pc, int ps)
{

       /*
        * Came from user mode.
        * If this process is being profiled record the tick.
        */
       if (USERMODE(ps)) {
               if (p->p_stats.p_prof.pr_scale)
                       addupc(pc, &curproc->p_stats.p_prof, 1);
       }
       /*
        * Came from kernel (supervisor) mode.
        * If we are profiling the kernel, record the tick.
        */
       else if (profiling < 2) {
               register int s = pc - s_lowpc;

               if (s < s_textsize)
                       kcount[s / (HISTFRACTION * sizeof(*kcount))]++;
       }
       /*
        * Kernel profiling was on but has been disabled.
        * Mark as no longer profiling kernel and if all profiling done,
        * disable the clock.
        */
       if (profiling && (profon & PRF_KERNEL)) {
               profon &= ~PRF_KERNEL;
               if (profon == PRF_NONE)
                       stopprofclock();
       }
}
#endif

/***********************************************************************
*                   Real Time Clock support                           *
***********************************************************************/

u_int mc146818_read(void *cookie, u_int regno)
{
       struct rtc *rtc = cookie;

       rtc->rtc_regno = regno;
       return rtc->rtc_data & 0xff;
}

void mc146818_write(void *cookie, u_int regno, u_int value)
{
       struct rtc *rtc = cookie;

       rtc->rtc_regno = regno;
       rtc->rtc_data  = value;
}

static int
atari_rtc_get(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
       int                     sps;
       mc_todregs              clkregs;
       u_int                   regb;

       sps = splhigh();
       regb = mc146818_read(RTC, MC_REGB);
       MC146818_GETTOD(RTC, &clkregs);
       splx(sps);

       regb &= MC_REGB_24HR|MC_REGB_BINARY;
       if (regb != (MC_REGB_24HR|MC_REGB_BINARY)) {
               printf("Error: Nonstandard RealTimeClock Configuration -"
                       " value ignored\n"
                       "       A write to /dev/rtc will correct this.\n");
                       return 0;
       }
       if (clkregs[MC_SEC] > 59)
               return -1;
       if (clkregs[MC_MIN] > 59)
               return -1;
       if (clkregs[MC_HOUR] > 23)
               return -1;
       if (range_test(clkregs[MC_DOM], 1, 31))
               return -1;
       if (range_test(clkregs[MC_MONTH], 1, 12))
               return -1;
       if (clkregs[MC_YEAR] > 99)
               return -1;

       dtp->dt_year = clkregs[MC_YEAR] + GEMSTARTOFTIME;
       dtp->dt_mon  = clkregs[MC_MONTH];
       dtp->dt_day  = clkregs[MC_DOM];
       dtp->dt_hour = clkregs[MC_HOUR];
       dtp->dt_min  = clkregs[MC_MIN];
       dtp->dt_sec  = clkregs[MC_SEC];

       return 0;
}

static int
atari_rtc_set(todr_chip_handle_t todr, struct clock_ymdhms *dtp)
{
       int s;
       mc_todregs clkregs;

       clkregs[MC_YEAR] = dtp->dt_year - GEMSTARTOFTIME;
       clkregs[MC_MONTH] = dtp->dt_mon;
       clkregs[MC_DOM] = dtp->dt_day;
       clkregs[MC_HOUR] = dtp->dt_hour;
       clkregs[MC_MIN] = dtp->dt_min;
       clkregs[MC_SEC] = dtp->dt_sec;

       s = splclock();
       MC146818_PUTTOD(RTC, &clkregs);
       splx(s);

       return 0;
}

/***********************************************************************
*                   RTC-device support                                *
***********************************************************************/
static int
rtcopen(dev_t dev, int flag, int mode, struct lwp *l)
{
       int                     unit = minor(dev);
       struct clock_softc      *sc;

       sc = device_lookup_private(&clock_cd, unit);
       if (sc == NULL)
               return ENXIO;
       if (sc->sc_flags & RTC_OPEN)
               return EBUSY;

       sc->sc_flags = RTC_OPEN;
       return 0;
}

static int
rtcclose(dev_t dev, int flag, int mode, struct lwp *l)
{
       int                     unit = minor(dev);
       struct clock_softc      *sc = device_lookup_private(&clock_cd, unit);

       sc->sc_flags = 0;
       return 0;
}

static int
rtcread(dev_t dev, struct uio *uio, int flags)
{
       mc_todregs              clkregs;
       int                     s, length;
       char                    buffer[16 + 1];

       s = splhigh();
       MC146818_GETTOD(RTC, &clkregs);
       splx(s);

       snprintf(buffer, sizeof(buffer), "%4d%02d%02d%02d%02d.%02d\n",
           clkregs[MC_YEAR] + GEMSTARTOFTIME,
           clkregs[MC_MONTH], clkregs[MC_DOM],
           clkregs[MC_HOUR], clkregs[MC_MIN], clkregs[MC_SEC]);

       if (uio->uio_offset > strlen(buffer))
               return 0;

       length = strlen(buffer) - uio->uio_offset;
       if (length > uio->uio_resid)
               length = uio->uio_resid;

       return uiomove((void *)buffer, length, uio);
}

static int
twodigits(char *buffer, int pos)
{
       int result = 0;

       if (buffer[pos] >= '0' && buffer[pos] <= '9')
               result = (buffer[pos] - '0') * 10;
       if (buffer[pos+1] >= '0' && buffer[pos+1] <= '9')
               result += (buffer[pos+1] - '0');
       return result;
}

static int
rtcwrite(dev_t dev, struct uio *uio, int flags)
{
       mc_todregs              clkregs;
       int                     s, length, error;
       char                    buffer[16];

       /*
        * We require atomic updates!
        */
       length = uio->uio_resid;
       if (uio->uio_offset || (length != sizeof(buffer)
           && length != sizeof(buffer) - 1))
               return EINVAL;

       if ((error = uiomove((void *)buffer, sizeof(buffer), uio)))
               return error;

       if (length == sizeof(buffer) && buffer[sizeof(buffer) - 1] != '\n')
               return EINVAL;

       s = splclock();
       mc146818_write(RTC, MC_REGB,
           mc146818_read(RTC, MC_REGB) | MC_REGB_24HR | MC_REGB_BINARY);
       MC146818_GETTOD(RTC, &clkregs);
       splx(s);

       clkregs[MC_SEC]   = twodigits(buffer, 13);
       clkregs[MC_MIN]   = twodigits(buffer, 10);
       clkregs[MC_HOUR]  = twodigits(buffer, 8);
       clkregs[MC_DOM]   = twodigits(buffer, 6);
       clkregs[MC_MONTH] = twodigits(buffer, 4);
       s = twodigits(buffer, 0) * 100 + twodigits(buffer, 2);
       clkregs[MC_YEAR]  = s - GEMSTARTOFTIME;

       s = splclock();
       MC146818_PUTTOD(RTC, &clkregs);
       splx(s);

       return 0;
}