/*      $NetBSD: fd.c,v 1.52 2023/08/29 21:55:11 andvar Exp $   */
/*      $OpenBSD: fd.c,v 1.6 1998/10/03 21:18:57 millert Exp $  */
/*      NetBSD: fd.c,v 1.78 1995/07/04 07:23:09 mycroft Exp     */

/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)fd.c        7.4 (Berkeley) 5/25/91
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.52 2023/08/29 21:55:11 andvar Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/syslog.h>
#include <sys/queue.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>

#include <sys/bus.h>
#include <machine/cpu.h>

#include <arc/jazz/fdreg.h>
#include <arc/jazz/fdcvar.h>

#include "ioconf.h"
#include "locators.h"

#define FDUNIT(dev)     DISKUNIT(dev)
#define FDTYPE(dev)     DISKPART(dev)

/* controller driver configuration */
static int fdprint(void *, const char *);

/*
* Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how
* we tell them apart.
*/
struct fd_type {
       int     sectrac;        /* sectors per track */
       int     heads;          /* number of heads */
       int     seccyl;         /* sectors per cylinder */
       int     secsize;        /* size code for sectors */
       int     datalen;        /* data len when secsize = 0 */
       int     steprate;       /* step rate and head unload time */
       int     gap1;           /* gap len between sectors */
       int     gap2;           /* formatting gap */
       int     cyls;           /* total num of cylinders */
       int     size;           /* size of disk in sectors */
       int     step;           /* steps per cylinder */
       int     rate;           /* transfer speed code */
       const char *name;
};

/* The order of entries in the following table is important -- BEWARE! */
const static struct fd_type fd_types[] = {
       /* 1.44MB diskette */
       { 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB"    },
       /* 1.2 MB AT-diskettes */
       { 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB"    },
       /* 360kB in 1.2MB drive */
       {  9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" },
       /* 360kB PC diskettes */
       {  9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" },
       /* 3.5" 720kB diskette */
       {  9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB"    },
       /* 720kB in 1.2MB drive */
       {  9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x"  },
       /* 360kB in 720kB drive */
       {  9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x"  },
};

/* software state, per disk (with up to 4 disks per ctlr) */
struct fd_softc {
       device_t sc_dev;
       struct disk sc_dk;

       const struct fd_type *sc_deftype; /* default type descriptor */
       struct fd_type *sc_type;        /* current type descriptor */
       struct fd_type sc_type_copy;    /* copy for fiddling when formatting */

       struct callout sc_motoron_ch;
       struct callout sc_motoroff_ch;

       daddr_t sc_blkno;       /* starting block number */
       int sc_bcount;          /* byte count left */
       int sc_opts;            /* user-set options */
       int sc_skip;            /* bytes already transferred */
       int sc_nblks;           /* number of blocks currently transferring */
       int sc_nbytes;          /* number of bytes currently transferring */

       int sc_drive;           /* physical unit number */
       int sc_flags;
#define FD_OPEN         0x01            /* it's open */
#define FD_MOTOR        0x02            /* motor should be on */
#define FD_MOTOR_WAIT   0x04            /* motor coming up */
       int sc_cylin;           /* where we think the head is */

       TAILQ_ENTRY(fd_softc) sc_drivechain;
       int sc_ops;             /* I/O ops since last switch */
       struct bufq_state *sc_q;/* pending I/O requests */
       int sc_active;          /* number of active I/O operations */
};

/* floppy driver configuration */
static int fdprobe(device_t, cfdata_t, void *);
static void fdattach(device_t, device_t, void *);

CFATTACH_DECL_NEW(fd, sizeof(struct fd_softc), fdprobe, fdattach, NULL, NULL);

dev_type_open(fdopen);
dev_type_close(fdclose);
dev_type_read(fdread);
dev_type_write(fdwrite);
dev_type_ioctl(fdioctl);
dev_type_strategy(fdstrategy);

const struct bdevsw fd_bdevsw = {
       .d_open = fdopen,
       .d_close = fdclose,
       .d_strategy = fdstrategy,
       .d_ioctl = fdioctl,
       .d_dump = nodump,
       .d_psize = nosize,
       .d_discard = nodiscard,
       .d_flag = D_DISK
};

const struct cdevsw fd_cdevsw = {
       .d_open = fdopen,
       .d_close = fdclose,
       .d_read = fdread,
       .d_write = fdwrite,
       .d_ioctl = fdioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_DISK
};

static void fdstart(struct fd_softc *);

struct dkdriver fddkdriver = {
       .d_strategy = fdstrategy
};

static bool fd_shutdown(device_t, int);
#if 0
static const struct fd_type *fd_nvtotype(char *, int, int);
#endif
static void fd_set_motor(struct fdc_softc *, int);
static void fd_motor_off(void *);
static void fd_motor_on(void *);
static int fdcresult(struct fdc_softc *);
static void fdcstart(struct fdc_softc *);
static void fdcstatus(device_t, int, const char *);
static void fdctimeout(void *);
static void fdcpseudointr(void *);
static void fdcretry(struct fdc_softc *);
static void fdfinish(struct fd_softc *, struct buf *);
static const struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t);
static void fd_mountroot_hook(device_t);

/*
* Arguments passed between fdcattach and fdprobe.
*/
struct fdc_attach_args {
       int fa_drive;
       const struct fd_type *fa_deftype;
};

/*
* Print the location of a disk drive (called just before attaching the
* the drive).  If `fdc' is not NULL, the drive was found but was not
* in the system config file; print the drive name as well.
* Return QUIET (config_find ignores this if the device was configured) to
* avoid printing `fdN not configured' messages.
*/
static int
fdprint(void *aux, const char *fdc)
{
       struct fdc_attach_args *fa = aux;

       if (fdc == NULL)
               aprint_normal(" drive %d", fa->fa_drive);
       return QUIET;
}

void
fdcattach(struct fdc_softc *fdc)
{
       struct fdc_attach_args fa;
       int type;

       callout_init(&fdc->sc_timo_ch, 0);
       callout_init(&fdc->sc_intr_ch, 0);

       fdc->sc_state = DEVIDLE;
       TAILQ_INIT(&fdc->sc_drives);

       /*
        * No way yet to determine default disk types.
        * we assume 1.44 3.5" type for the moment.
        */
       type = 0;

       /* physical limit: two drives per controller. */
       for (fa.fa_drive = 0; fa.fa_drive < 2; fa.fa_drive++) {
               fa.fa_deftype = &fd_types[type];
               (void)config_found(fdc->sc_dev, (void *)&fa, fdprint,
                   CFARGS_NONE);
       }
}

static int
fdprobe(device_t parent, cfdata_t cf , void *aux)
{
       struct fdc_softc *fdc = device_private(parent);
       struct fdc_attach_args *fa = aux;
       int drive = fa->fa_drive;
       bus_space_tag_t iot = fdc->sc_iot;
       bus_space_handle_t ioh = fdc->sc_ioh;
       int n;

       if (cf->cf_loc[FDCCF_DRIVE] != FDCCF_DRIVE_DEFAULT &&
           cf->cf_loc[FDCCF_DRIVE] != drive)
               return 0;

       /* select drive and turn on motor */
       bus_space_write_1(iot, ioh, FDOUT, drive | FDO_FRST | FDO_MOEN(drive));
       /* wait for motor to spin up */
       delay(250000);
       out_fdc(iot, ioh, NE7CMD_RECAL);
       out_fdc(iot, ioh, drive);
       /* wait for recalibrate */
       delay(2000000);
       out_fdc(iot, ioh, NE7CMD_SENSEI);
       n = fdcresult(fdc);
#ifdef FD_DEBUG
       {
               int i;
               aprint_debug("%s: status", __func__);
               for (i = 0; i < n; i++)
                       aprint_debug(" %x", fdc->sc_status[i]);
               aprint_debug("\n");
       }
#endif
       if (n != 2 || (fdc->sc_status[0] & 0xf8) != 0x20)
               return 0;
       /* turn off motor */
       bus_space_write_1(iot, ioh, FDOUT, FDO_FRST);

       return 1;
}

/*
* Controller is working, and drive responded.  Attach it.
*/
void
fdattach(device_t parent, device_t self, void *aux)
{
       struct fdc_softc *fdc = device_private(parent);
       struct fd_softc *fd = device_private(self);
       struct fdc_attach_args *fa = aux;
       const struct fd_type *type = fa->fa_deftype;
       int drive = fa->fa_drive;

       fd->sc_dev = self;

       callout_init(&fd->sc_motoron_ch, 0);
       callout_init(&fd->sc_motoroff_ch, 0);

       /* XXX Allow `flags' to override device type? */

       if (type)
               printf(": %s, %d cyl, %d head, %d sec\n", type->name,
                   type->cyls, type->heads, type->sectrac);
       else
               printf(": density unknown\n");

       bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER);
       fd->sc_cylin = -1;
       fd->sc_drive = drive;
       fd->sc_deftype = type;
       fdc->sc_fd[drive] = fd;

       /*
        * Initialize and attach the disk structure.
        */
       disk_init(&fd->sc_dk, device_xname(fd->sc_dev), &fddkdriver);
       disk_attach(&fd->sc_dk);

       /* Establish a mountroot hook. */
       mountroothook_establish(fd_mountroot_hook, fd->sc_dev);

       /* Needed to power off if the motor is on when we halt. */
       if (!pmf_device_register1(self, NULL, NULL, fd_shutdown))
               aprint_error_dev(self, "couldn't establish power handler\n");
}

bool
fd_shutdown(device_t self, int howto)
{
       struct fd_softc *fd;

       fd = device_private(self);
       fd_motor_off(fd);

       return true;
}

#if 0
/*
* Translate nvram type into internal data structure.  Return NULL for
* none/unknown/unusable.
*/
static const struct fd_type *
fd_nvtotype(char *fdc, int nvraminfo, int drive)
{
       int type;

       type = (drive == 0 ? nvraminfo : nvraminfo << 4) & 0xf0;
#if 0
       switch (type) {
       case NVRAM_DISKETTE_NONE:
               return NULL;
       case NVRAM_DISKETTE_12M:
               return &fd_types[1];
       case NVRAM_DISKETTE_TYPE5:
       case NVRAM_DISKETTE_TYPE6:
               /* XXX We really ought to handle 2.88MB format. */
       case NVRAM_DISKETTE_144M:
               return &fd_types[0];
       case NVRAM_DISKETTE_360K:
               return &fd_types[3];
       case NVRAM_DISKETTE_720K:
               return &fd_types[4];
       default:
               printf("%s: drive %d: unknown device type 0x%x\n",
                   fdc, drive, type);
               return NULL;
       }
#else
       return &fd_types[0]; /* Use only 1.44 for now */
#endif
}
#endif

static const struct fd_type *
fd_dev_to_type(struct fd_softc *fd, dev_t dev)
{
       int type = FDTYPE(dev);

       if (type > __arraycount(fd_types))
               return NULL;
       return type ? &fd_types[type - 1] : fd->sc_deftype;
}

void
fdstrategy(struct buf *bp)
{
       struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(bp->b_dev));
       int sz;
       int s;

       /* Valid unit, controller, and request? */
       if (bp->b_blkno < 0 ||
           (bp->b_bcount % FDC_BSIZE) != 0) {
               bp->b_error = EINVAL;
               goto done;
       }

       /* If it's a null transfer, return immediately. */
       if (bp->b_bcount == 0)
               goto done;

       sz = howmany(bp->b_bcount, FDC_BSIZE);

       if (bp->b_blkno + sz > fd->sc_type->size) {
               sz = fd->sc_type->size - bp->b_blkno;
               if (sz == 0) {
                       /* If exactly at end of disk, return EOF. */
                       goto done;
               }
               if (sz < 0) {
                       /* If past end of disk, return EINVAL. */
                       bp->b_error = EINVAL;
                       goto done;
               }
               /* Otherwise, truncate request. */
               bp->b_bcount = sz << DEV_BSHIFT;
       }

       bp->b_rawblkno = bp->b_blkno;
       bp->b_cylinder =
           bp->b_blkno / (FDC_BSIZE / DEV_BSIZE) / fd->sc_type->seccyl;

#ifdef FD_DEBUG
       printf("%s: b_blkno %" PRId64 " b_bcount %d blkno %" PRId64
           " cylin %d sz %d\n", __func__,
           bp->b_blkno, bp->b_bcount, fd->sc_blkno, bp->b_cylinder, sz);
#endif

       /* Queue transfer on drive, activate drive and controller if idle. */
       s = splbio();
       bufq_put(fd->sc_q, bp);
       callout_stop(&fd->sc_motoroff_ch);              /* a good idea */
       if (fd->sc_active == 0)
               fdstart(fd);
#ifdef DIAGNOSTIC
       else {
               struct fdc_softc *fdc =
                   device_private(device_parent(fd->sc_dev));
               if (fdc->sc_state == DEVIDLE) {
                       printf("%s: controller inactive\n", __func__);
                       fdcstart(fdc);
               }
       }
#endif
       splx(s);
       return;

done:
       /* Toss transfer; we're done early. */
       bp->b_resid = bp->b_bcount;
       biodone(bp);
}

void
fdstart(struct fd_softc *fd)
{
       struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
       int active = TAILQ_FIRST(&fdc->sc_drives) != 0;

       /* Link into controller queue. */
       fd->sc_active = 1;
       TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);

       /* If controller not already active, start it. */
       if (!active)
               fdcstart(fdc);
}

void
fdfinish(struct fd_softc *fd, struct buf *bp)
{
       struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));

       /*
        * Move this drive to the end of the queue to give others a `fair'
        * chance.  We only force a switch if N operations are completed while
        * another drive is waiting to be serviced, since there is a long motor
        * startup delay whenever we switch.
        */
       (void)bufq_get(fd->sc_q);
       if (TAILQ_NEXT(fd, sc_drivechain) && ++fd->sc_ops >= 8) {
               fd->sc_ops = 0;
               TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
               if (bufq_peek(fd->sc_q) != NULL)
                       TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
               else
                       fd->sc_active = 0;
       }
       bp->b_resid = fd->sc_bcount;
       fd->sc_skip = 0;
       biodone(bp);
       /* turn off motor 5s from now */
       callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd);
       fdc->sc_state = DEVIDLE;
}

int
fdread(dev_t dev, struct uio *uio, int flags)
{

       return physio(fdstrategy, NULL, dev, B_READ, minphys, uio);
}

int
fdwrite(dev_t dev, struct uio *uio, int flags)
{

       return physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio);
}

void
fd_set_motor(struct fdc_softc *fdc, int reset)
{
       struct fd_softc *fd;
       u_char status;
       int n;

       if ((fd = TAILQ_FIRST(&fdc->sc_drives)) != NULL)
               status = fd->sc_drive;
       else
               status = 0;
       if (!reset)
               status |= FDO_FRST | FDO_FDMAEN;
       for (n = 0; n < 4; n++)
               if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR))
                       status |= FDO_MOEN(n);
       bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, FDOUT, status);
}

void
fd_motor_off(void *arg)
{
       struct fd_softc *fd = arg;
       struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
       int s;

       s = splbio();
       fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
       fd_set_motor(fdc, 0);
       splx(s);
}

void
fd_motor_on(void *arg)
{
       struct fd_softc *fd = arg;
       struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
       int s;

       s = splbio();
       fd->sc_flags &= ~FD_MOTOR_WAIT;
       if ((TAILQ_FIRST(&fdc->sc_drives) == fd) &&
           (fdc->sc_state == MOTORWAIT))
               (void)fdcintr(fdc);
       splx(s);
}

int
fdcresult(struct fdc_softc *fdc)
{
       bus_space_tag_t iot = fdc->sc_iot;
       bus_space_handle_t ioh = fdc->sc_ioh;
       u_char i;
       int j, n = 0;

       for (j = 100000; j; j--) {
               i = bus_space_read_1(iot, ioh, FDSTS) &
                   (NE7_DIO | NE7_RQM | NE7_CB);
               if (i == NE7_RQM)
                       return n;
               if (i == (NE7_DIO | NE7_RQM | NE7_CB)) {
                       if (n >= sizeof(fdc->sc_status)) {
                               log(LOG_ERR, "%s: overrun\n", __func__);
                               return -1;
                       }
                       fdc->sc_status[n++] =
                           bus_space_read_1(iot, ioh, FDDATA);
               }
               delay(10);
       }
       log(LOG_ERR, "%s: timeout\n", __func__);
       return -1;
}

int
out_fdc(bus_space_tag_t iot, bus_space_handle_t ioh, uint8_t x)
{
       int i = 100000;

       while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_DIO) && i-- > 0);
       if (i <= 0)
               return -1;
       while ((bus_space_read_1(iot, ioh, FDSTS) & NE7_RQM) == 0 && i-- > 0);
       if (i <= 0)
               return -1;
       bus_space_write_1(iot, ioh, FDDATA, x);
       return 0;
}

int
fdopen(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct fd_softc *fd;
       const struct fd_type *type;

       fd = device_lookup_private(&fd_cd, FDUNIT(dev));
       if (fd == NULL)
               return ENXIO;

       type = fd_dev_to_type(fd, dev);
       if (type == NULL)
               return ENXIO;

       if ((fd->sc_flags & FD_OPEN) != 0 &&
           memcmp(fd->sc_type, type, sizeof(*type)))
               return EBUSY;

       fd->sc_type_copy = *type;
       fd->sc_type = &fd->sc_type_copy;
       fd->sc_cylin = -1;
       fd->sc_flags |= FD_OPEN;

       return 0;
}

int
fdclose(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev));

       fd->sc_flags &= ~FD_OPEN;
       return 0;
}

void
fdcstart(struct fdc_softc *fdc)
{

#ifdef DIAGNOSTIC
       /* only got here if controller's drive queue was inactive; should
          be in idle state */
       if (fdc->sc_state != DEVIDLE) {
               printf("%s: not idle\n", __func__);
               return;
       }
#endif
       (void)fdcintr(fdc);
}

static void
fdcpstatus(int n, struct fdc_softc *fdc)
{
       char bits[64];

       switch (n) {
       case 0:
               printf("\n");
               break;
       case 2:
               snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
               printf(" (st0 %s cyl %d)\n", bits, fdc->sc_status[1]);
               break;
       case 7:
               snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
               printf(" (st0 %s", bits);
               snprintb(bits, sizeof(bits), NE7_ST1BITS, fdc->sc_status[1]);
               printf(" st1 %s", bits);
               snprintb(bits, sizeof(bits), NE7_ST2BITS, fdc->sc_status[2]);
               printf(" st2 %s", bits);
               printf(" cyl %d head %d sec %d)\n",
                   fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
               break;
#ifdef DIAGNOSTIC
       default:
               printf("\nfdcstatus: weird size");
               break;
#endif
       }
}

void
fdcstatus(device_t dev, int n, const char *s)
{
       struct fdc_softc *fdc = device_private(device_parent(dev));

       if (n == 0) {
               out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
               (void)fdcresult(fdc);
               n = 2;
       }

       printf("%s: %s", device_xname(dev), s);
       fdcpstatus(n, fdc);
}

void
fdctimeout(void *arg)
{
       struct fdc_softc *fdc = arg;
       struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives);
       int s;

       s = splbio();
#ifdef DEBUG
       log(LOG_ERR, "%s: state %d\n", __func__, fdc->sc_state);
#endif
       fdcstatus(fd->sc_dev, 0, "timeout");

       if (bufq_peek(fd->sc_q) != NULL)
               fdc->sc_state++;
       else
               fdc->sc_state = DEVIDLE;

       (void)fdcintr(fdc);
       splx(s);
}

void
fdcpseudointr(void *arg)
{
       int s;

       /* Just ensure it has the right spl. */
       s = splbio();
       (void)fdcintr(arg);
       splx(s);
}

int
fdcintr(void *arg)
{
       struct fdc_softc *fdc = arg;
#define st0     fdc->sc_status[0]
#define cyl     fdc->sc_status[1]
       struct fd_softc *fd;
       struct buf *bp;
       bus_space_tag_t iot = fdc->sc_iot;
       bus_space_handle_t ioh = fdc->sc_ioh;
       int read, head, sec, i, nblks;
       struct fd_type *type;

loop:
       /* Is there a drive for the controller to do a transfer with? */
       fd = TAILQ_FIRST(&fdc->sc_drives);
       if (fd == NULL) {
               fdc->sc_state = DEVIDLE;
               return 1;
       }

       /* Is there a transfer to this drive?  If not, deactivate drive. */
       bp = bufq_peek(fd->sc_q);
       if (bp == NULL) {
               fd->sc_ops = 0;
               TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
               fd->sc_active = 0;
               goto loop;
       }

       switch (fdc->sc_state) {
       case DEVIDLE:
               fdc->sc_errors = 0;
               fd->sc_skip = 0;
               fd->sc_bcount = bp->b_bcount;
               fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE);
               callout_stop(&fd->sc_motoroff_ch);
               if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) {
                       fdc->sc_state = MOTORWAIT;
                       return 1;
               }
               if ((fd->sc_flags & FD_MOTOR) == 0) {
                       /* Turn on the motor, being careful about pairing. */
                       struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1];
                       if (ofd && ofd->sc_flags & FD_MOTOR) {
                               callout_stop(&ofd->sc_motoroff_ch);
                               ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
                       }
                       fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT;
                       fd_set_motor(fdc, 0);
                       fdc->sc_state = MOTORWAIT;
                       /* Allow .25s for motor to stabilize. */
                       callout_reset(&fd->sc_motoron_ch, hz / 4,
                           fd_motor_on, fd);
                       return 1;
               }
               /* Make sure the right drive is selected. */
               fd_set_motor(fdc, 0);

               /* fall through */
       case DOSEEK:
doseek:
               if (fd->sc_cylin == bp->b_cylinder)
                       goto doio;

               out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
               out_fdc(iot, ioh, fd->sc_type->steprate);
               out_fdc(iot, ioh, 6);           /* XXX head load time == 6ms */

               out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */
               out_fdc(iot, ioh, fd->sc_drive); /* drive number */
               out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step);

               fd->sc_cylin = -1;
               fdc->sc_state = SEEKWAIT;

               iostat_seek(fd->sc_dk.dk_stats);
               disk_busy(&fd->sc_dk);

               callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc);
               return 1;

       case DOIO:
doio:
               type = fd->sc_type;
               sec = fd->sc_blkno % type->seccyl;
               nblks = type->seccyl - sec;
               nblks = uimin(nblks, fd->sc_bcount / FDC_BSIZE);
               nblks = uimin(nblks, fdc->sc_maxiosize / FDC_BSIZE);
               fd->sc_nblks = nblks;
               fd->sc_nbytes = nblks * FDC_BSIZE;
               head = sec / type->sectrac;
               sec -= head * type->sectrac;
#ifdef DIAGNOSTIC
               {
                       int block;
                       block = (fd->sc_cylin * type->heads + head) *
                           type->sectrac + sec;
                       if (block != fd->sc_blkno) {
                               printf("%s: block %d != blkno %" PRId64
                                   "\n", __func__, block, fd->sc_blkno);
#ifdef DDB
                                Debugger();
#endif
                       }
               }
#endif
               read = (bp->b_flags & B_READ) != 0;
               FDCDMA_START(fdc, (uint8_t *)bp->b_data + fd->sc_skip,
                   fd->sc_nbytes, read);
               bus_space_write_1(iot, ioh, FDCTL, type->rate);
#ifdef FD_DEBUG
               printf("%s: %s drive %d track %d head %d sec %d nblks %d\n",
                   __func__, read ? "read" : "write", fd->sc_drive,
                   fd->sc_cylin, head, sec, nblks);
#endif
               if (read)
                       out_fdc(iot, ioh, NE7CMD_READ); /* READ */
               else
                       out_fdc(iot, ioh, NE7CMD_WRITE);/* WRITE */
               out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
               out_fdc(iot, ioh, fd->sc_cylin);        /* track */
               out_fdc(iot, ioh, head);
               out_fdc(iot, ioh, sec + 1);             /* sector + 1 */
               out_fdc(iot, ioh, type->secsize);       /* sector size */
               out_fdc(iot, ioh, type->sectrac);       /* sectors/track */
               out_fdc(iot, ioh, type->gap1);          /* gap1 size */
               out_fdc(iot, ioh, type->datalen);       /* data length */
               fdc->sc_state = IOCOMPLETE;

               disk_busy(&fd->sc_dk);

               /* allow 2 seconds for operation */
               callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
               return 1;                               /* will return later */

       case SEEKWAIT:
               callout_stop(&fdc->sc_timo_ch);
               fdc->sc_state = SEEKCOMPLETE;
               /* allow 1/50 second for heads to settle */
               callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc);
               return 1;

       case SEEKCOMPLETE:
               disk_unbusy(&fd->sc_dk, 0, 0);

               /* Make sure seek really happened. */
               out_fdc(iot, ioh, NE7CMD_SENSEI);
               if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 ||
                   cyl != bp->b_cylinder * fd->sc_type->step) {
#ifdef FD_DEBUG
                       fdcstatus(fd->sc_dev, 2, "seek failed");
#endif
                       fdcretry(fdc);
                       goto loop;
               }
               fd->sc_cylin = bp->b_cylinder;
               goto doio;

       case IOTIMEDOUT:
               FDCDMA_ABORT(fdc);

       case SEEKTIMEDOUT:
       case RECALTIMEDOUT:
       case RESETTIMEDOUT:
               fdcretry(fdc);
               goto loop;

       case IOCOMPLETE: /* IO DONE, post-analyze */
               callout_stop(&fdc->sc_timo_ch);

               disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid),
                   (bp->b_flags & B_READ));

               i = fdcresult(fdc);
               if (i != 7 || (st0 & 0xf8) != 0) {
                       FDCDMA_ABORT(fdc);
#ifdef FD_DEBUG
                       fdcstatus(fd->sc_dev, 7, bp->b_flags & B_READ ?
                           "read failed" : "write failed");
                       printf("blkno %" PRId64 " nblks %d\n",
                           fd->sc_blkno, fd->sc_nblks);
#endif
                       fdcretry(fdc);
                       goto loop;
               }
               FDCDMA_DONE(fdc);
               if (fdc->sc_errors) {
                       diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF,
                           fd->sc_skip / FDC_BSIZE, NULL);
                       printf("\n");
                       fdc->sc_errors = 0;
               }
               fd->sc_blkno += fd->sc_nblks;
               fd->sc_skip += fd->sc_nbytes;
               fd->sc_bcount -= fd->sc_nbytes;
               if (fd->sc_bcount > 0) {
                       bp->b_cylinder = fd->sc_blkno / fd->sc_type->seccyl;
                       goto doseek;
               }
               fdfinish(fd, bp);
               goto loop;

       case DORESET:
               /* try a reset, keep motor on */
               fd_set_motor(fdc, 1);
               delay(100);
               fd_set_motor(fdc, 0);
               fdc->sc_state = RESETCOMPLETE;
               callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc);
               return 1;                       /* will return later */

       case RESETCOMPLETE:
               callout_stop(&fdc->sc_timo_ch);
               /* clear the controller output buffer */
               for (i = 0; i < 4; i++) {
                       out_fdc(iot, ioh, NE7CMD_SENSEI);
                       (void)fdcresult(fdc);
               }

               /* fall through */
       case DORECAL:
               out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */
               out_fdc(iot, ioh, fd->sc_drive);
               fdc->sc_state = RECALWAIT;
               callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc);
               return 1;                       /* will return later */

       case RECALWAIT:
               callout_stop(&fdc->sc_timo_ch);
               fdc->sc_state = RECALCOMPLETE;
               /* allow 1/30 second for heads to settle */
               callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc);
               return 1;                       /* will return later */

       case RECALCOMPLETE:
               out_fdc(iot, ioh, NE7CMD_SENSEI);
               if (fdcresult(fdc) != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) {
#ifdef FD_DEBUG
                       fdcstatus(fd->sc_dev, 2, "recalibrate failed");
#endif
                       fdcretry(fdc);
                       goto loop;
               }
               fd->sc_cylin = 0;
               goto doseek;

       case MOTORWAIT:
               if (fd->sc_flags & FD_MOTOR_WAIT)
                       return 1;               /* time's not up yet */
               goto doseek;

       default:
               fdcstatus(fd->sc_dev, 0, "stray interrupt");
               return 1;
       }
#ifdef DIAGNOSTIC
       panic("%s: impossible", __func__);
#endif
#undef  st0
#undef  cyl
}

void
fdcretry(struct fdc_softc *fdc)
{
       struct fd_softc *fd;
       struct buf *bp;

       fd = TAILQ_FIRST(&fdc->sc_drives);
       bp = bufq_peek(fd->sc_q);

       switch (fdc->sc_errors) {
       case 0:
               /* try again */
               fdc->sc_state = DOSEEK;
               break;

       case 1:
       case 2:
       case 3:
               /* didn't work; try recalibrating */
               fdc->sc_state = DORECAL;
               break;

       case 4:
               /* still no go; reset the bastard */
               fdc->sc_state = DORESET;
               break;

       default:
               diskerr(bp, "fd", "hard error", LOG_PRINTF,
                   fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL);

               fdcpstatus(7, fdc);
               bp->b_error = EIO;
               fdfinish(fd, bp);
       }
       fdc->sc_errors++;
}

int
fdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
       struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev));
       struct disklabel buffer;
       int error;

       switch (cmd) {
       case DIOCGDINFO:
               memset(&buffer, 0, sizeof(buffer));

               buffer.d_secpercyl = fd->sc_type->seccyl;
               buffer.d_type = DKTYPE_FLOPPY;
               buffer.d_secsize = FDC_BSIZE;

               if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL)
                       return EINVAL;

               *(struct disklabel *)addr = buffer;
               return 0;

       case DIOCWLABEL:
               if ((flag & FWRITE) == 0)
                       return EBADF;
               /* XXX do something */
               return 0;

       case DIOCWDINFO:
               if ((flag & FWRITE) == 0)
                       return EBADF;

               error = setdisklabel(&buffer, (struct disklabel *)addr,
                   0, NULL);
               if (error)
                       return error;

               error = writedisklabel(dev, fdstrategy, &buffer, NULL);
               return error;

       default:
               return ENOTTY;
       }

#ifdef DIAGNOSTIC
       panic("%s: impossible", __func__);
#endif
}

/*
* Mountroot hook: prompt the user to enter the root file system floppy.
*/
void
fd_mountroot_hook(device_t dev)
{
       int c;

       printf("Insert filesystem floppy and press return.");
       cnpollc(1);
       for (;;) {
               c = cngetc();
               if ((c == '\r') || (c == '\n')) {
                       printf("\n");
                       break;
               }
       }
       cnpollc(0);
}