/*      $NetBSD: flsc.c,v 1.47 2019/01/08 19:41:09 jdolecek Exp $ */

/*
* Copyright (c) 1997 Michael L. Hitch
* Copyright (c) 1995 Daniel Widenfalk
* Copyright (c) 1994 Christian E. Hopps
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Daniel Widenfalk
*      and Michael L. Hitch.
* 4. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* Initial amiga Fastlane driver by Daniel Widenfalk.  Conversion to
* 53c9x MI driver by Michael L. Hitch ([email protected]).
*/

#include "opt_ddb.h"
#ifdef __m68k__
#include "opt_m68k_arch.h"
#endif

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: flsc.c,v 1.47 2019/01/08 19:41:09 jdolecek Exp $");

#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/queue.h>

#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>

#include <machine/cpu.h>

#include <dev/ic/ncr53c9xreg.h>
#include <dev/ic/ncr53c9xvar.h>

#include <amiga/amiga/isr.h>
#include <amiga/dev/flscvar.h>
#include <amiga/dev/zbusvar.h>

int     flscmatch(device_t, cfdata_t, void *);
void    flscattach(device_t, device_t, void *);

/* Linkup to the rest of the kernel */
CFATTACH_DECL_NEW(flsc, sizeof(struct flsc_softc),
   flscmatch, flscattach, NULL, NULL);

/*
* Functions and the switch for the MI code.
*/
uint8_t flsc_read_reg(struct ncr53c9x_softc *, int);
void    flsc_write_reg(struct ncr53c9x_softc *, int, uint8_t);
int     flsc_dma_isintr(struct ncr53c9x_softc *);
void    flsc_dma_reset(struct ncr53c9x_softc *);
int     flsc_dma_intr(struct ncr53c9x_softc *);
int     flsc_dma_setup(struct ncr53c9x_softc *, uint8_t **,
           size_t *, int, size_t *);
void    flsc_dma_go(struct ncr53c9x_softc *);
void    flsc_dma_stop(struct ncr53c9x_softc *);
int     flsc_dma_isactive(struct ncr53c9x_softc *);
void    flsc_clear_latched_intr(struct ncr53c9x_softc *);

struct ncr53c9x_glue flsc_glue = {
       flsc_read_reg,
       flsc_write_reg,
       flsc_dma_isintr,
       flsc_dma_reset,
       flsc_dma_intr,
       flsc_dma_setup,
       flsc_dma_go,
       flsc_dma_stop,
       flsc_dma_isactive,
       flsc_clear_latched_intr,
};

/* Maximum DMA transfer length to reduce impact on high-speed serial input */
u_long flsc_max_dma = 1024;
extern int ser_open_speed;

extern int ncr53c9x_debug;
extern u_long scsi_nosync;
extern int shift_nosync;

/*
* if we are an Advanced Systems & Software FastlaneZ3
*/
int
flscmatch(device_t parent, cfdata_t cf, void *aux)
{
       struct zbus_args *zap;

       if (!is_a4000() && !is_a3000())
               return 0;

       zap = aux;
       if (zap->manid == 0x2140 && zap->prodid == 11
           && iszthreepa(zap->pa))
               return 1;

       return 0;
}

/*
* Attach this instance, and then all the sub-devices
*/
void
flscattach(device_t parent, device_t self, void *aux)
{
       struct flsc_softc *fsc = device_private(self);
       struct ncr53c9x_softc *sc = &fsc->sc_ncr53c9x;
       struct zbus_args  *zap;

       /*
        * Set up the glue for MI code early; we use some of it here.
        */
       sc->sc_dev = self;
       sc->sc_glue = &flsc_glue;

       /*
        * Save the regs
        */
       zap = aux;
       fsc->sc_dmabase = (volatile uint8_t *)zap->va;
       fsc->sc_reg = &((volatile uint8_t *)zap->va)[0x1000001];

       sc->sc_freq = 40;               /* Clocked at 40 MHz */

       aprint_normal(": address %p", fsc->sc_reg);

       sc->sc_id = 7;

       /*
        * It is necessary to try to load the 2nd config register here,
        * to find out what rev the flsc chip is, else the flsc_reset
        * will not set up the defaults correctly.
        */
       sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
       sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
       sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
       sc->sc_rev = NCR_VARIANT_FAS216;

       /*
        * This is the value used to start sync negotiations
        * Note that the NCR register "SYNCTP" is programmed
        * in "clocks per byte", and has a minimum value of 4.
        * The SCSI period used in negotiation is one-fourth
        * of the time (in nanoseconds) needed to transfer one byte.
        * Since the chip's clock is given in MHz, we have the following
        * formula: 4 * period = (1000 / freq) * 4
        */
       sc->sc_minsync = 1000 / sc->sc_freq;

       if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
               sc->sc_minsync = 0;

       /* Really no limit, but since we want to fit into the TCR... */
       sc->sc_maxxfer = 64 * 1024;

       fsc->sc_portbits = 0xa0 | FLSC_PB_EDI | FLSC_PB_ESI;
       fsc->sc_hardbits = fsc->sc_reg[0x40];

       fsc->sc_alignbuf = (uint8_t *)((u_long)fsc->sc_unalignbuf & -4);

       device_cfdata(self)->cf_flags |=
           (scsi_nosync >> shift_nosync) & 0xffff;
       shift_nosync += 16;
       ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
       shift_nosync += 16;

       /*
        * Configure interrupts.
        */
       fsc->sc_isr.isr_intr = ncr53c9x_intr;
       fsc->sc_isr.isr_arg  = sc;
       fsc->sc_isr.isr_ipl  = 2;
       add_isr(&fsc->sc_isr);

       fsc->sc_reg[0x40] = fsc->sc_portbits;

       /*
        * Now try to attach all the sub-devices
        */
       sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
       sc->sc_adapter.adapt_minphys = minphys;
       ncr53c9x_attach(sc);
}

/*
* Glue functions.
*/

uint8_t
flsc_read_reg(struct ncr53c9x_softc *sc, int reg)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;

       return fsc->sc_reg[reg * 4];
}

void
flsc_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;
       struct ncr53c9x_tinfo *ti;
       uint8_t v = val;

       if (fsc->sc_piomode && reg == NCR_CMD &&
           v == (NCRCMD_TRANS | NCRCMD_DMA)) {
               v = NCRCMD_TRANS;
       }
       /*
        * Can't do synchronous transfers in XS_CTL_POLL mode:
        * If starting XS_CTL_POLL command, clear defer sync negotiation
        * by clearing the T_NEGOTIATE flag.  If starting XS_CTL_POLL and
        * the device is currently running synchronous, force another
        * T_NEGOTIATE with 0 offset.
        */
       if (reg == NCR_SELID) {
               ti = &sc->sc_tinfo[
                   sc->sc_nexus->xs->xs_periph->periph_target];
               if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
                       if (ti->flags & T_SYNCMODE) {
                               ti->flags ^= T_SYNCMODE | T_NEGOTIATE;
                       } else if (ti->flags & T_NEGOTIATE) {
                               ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
                               /* save T_NEGOTIATE in private flags? */
                       }
               } else {
                       /*
                        * If we haven't attempted sync negotiation yet,
                        * do it now.
                        */
                       if ((ti->flags & (T_SYNCMODE | T_SYNCHOFF)) ==
                           T_SYNCHOFF &&
                           sc->sc_minsync != 0)        /* XXX */
                               ti->flags ^= T_NEGOTIATE | T_SYNCHOFF;
               }
       }
       if (reg == NCR_CMD && v == NCRCMD_SETATN  &&
           sc->sc_flags & NCR_SYNCHNEGO &&
            sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
               ti = &sc->sc_tinfo[
                   sc->sc_nexus->xs->xs_periph->periph_target];
               ti->offset = 0;
       }
       fsc->sc_reg[reg * 4] = v;
}

int
flsc_dma_isintr(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;
       unsigned int hardbits;

       hardbits = fsc->sc_reg[0x40];
       if ((hardbits & FLSC_HB_IACT) != 0)
               return (fsc->sc_csr = 0);

       if (sc->sc_state == NCR_CONNECTED || sc->sc_state == NCR_SELECTING)
               fsc->sc_portbits |= FLSC_PB_LED;
       else
               fsc->sc_portbits &= ~FLSC_PB_LED;

       if ((hardbits & FLSC_HB_CREQ) != 0 && (hardbits & FLSC_HB_MINT) == 0 &&
           (fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) != 0) {
               return 1;
       }
       /* Do I still need this? */
       if (fsc->sc_piomode && (fsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) != 0 &&
           (hardbits & FLSC_HB_MINT) == 0)
               return 1;

       fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
       fsc->sc_reg[0x40] = fsc->sc_portbits;
       return 0;
}

void
flsc_clear_latched_intr(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;

       fsc->sc_reg[0x40] = fsc->sc_portbits & ~FLSC_PB_INT_BITS;
       fsc->sc_reg[0x40] = fsc->sc_portbits;
}

void
flsc_dma_reset(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;
       struct ncr53c9x_tinfo *ti;

       if (sc->sc_nexus)
               ti = &sc->sc_tinfo[sc->sc_nexus->xs->xs_periph->periph_target];
       else
               ti = &sc->sc_tinfo[1];  /* XXX */
       if (fsc->sc_active) {
               printf("dmaaddr %p dmasize %d stat %x flags %x off %d ",
                   *fsc->sc_dmaaddr, fsc->sc_dmasize,
                   fsc->sc_reg[NCR_STAT * 4], ti->flags, ti->offset);
               printf("per %d ff %x intr %x\n",
                   ti->period, fsc->sc_reg[NCR_FFLAG * 4],
                   fsc->sc_reg[NCR_INTR * 4]);
#ifdef DDB
               Debugger();
#endif
       }
       fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
       fsc->sc_reg[0x40] = fsc->sc_portbits;
       fsc->sc_reg[0x80] = 0;
       *((volatile uint32_t *)fsc->sc_dmabase) = 0;
       fsc->sc_active = 0;
       fsc->sc_piomode = 0;
}

int
flsc_dma_intr(struct ncr53c9x_softc *sc)
{
       register struct flsc_softc *fsc = (struct flsc_softc *)sc;
       uint8_t *p;
       volatile uint8_t *cmdreg, *intrreg, *statreg, *fiforeg;
       u_int flscphase, flscstat, flscintr;
       int cnt;

       NCR_DMA(("flsc_dma_intr: pio %d cnt %d int %x stat %x fifo %d ",
           fsc->sc_piomode, fsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
           fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
       if ((fsc->sc_reg[0x40] & FLSC_HB_CREQ) == 0)
               printf("flsc_dma_intr: csr %x stat %x intr %x\n", fsc->sc_csr,
                   sc->sc_espstat, sc->sc_espintr);
       if (fsc->sc_active == 0) {
               printf("flsc_intr--inactive DMA\n");
               return -1;
       }

/* if DMA transfer, update sc_dmaaddr and sc_pdmalen, else PIO xfer */
       if (fsc->sc_piomode == 0) {
               fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
               fsc->sc_reg[0x40] = fsc->sc_portbits;
               fsc->sc_reg[0x80] = 0;
               *((volatile uint32_t *)fsc->sc_dmabase) = 0;
               cnt = fsc->sc_reg[NCR_TCL * 4];
               cnt += fsc->sc_reg[NCR_TCM * 4] << 8;
               cnt += fsc->sc_reg[NCR_TCH * 4] << 16;
               if (!fsc->sc_datain) {
                       cnt += fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
                       fsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
               }
               cnt = fsc->sc_dmasize - cnt;    /* number of bytes transferred */
               NCR_DMA(("DMA xferred %d\n", cnt));
               if (fsc->sc_xfr_align) {
                       int i;
                       for (i = 0; i < cnt; ++i)
                               (*fsc->sc_dmaaddr)[i] = fsc->sc_alignbuf[i];
                       fsc->sc_xfr_align = 0;
               }
               *fsc->sc_dmaaddr += cnt;
               *fsc->sc_pdmalen -= cnt;
               fsc->sc_active = 0;
               return 0;
       }

       if ((sc->sc_espintr & NCRINTR_BS) == 0) {
               fsc->sc_active = 0;
               fsc->sc_piomode = 0;
               NCR_DMA(("no NCRINTR_BS\n"));
               return 0;
       }

       cnt = fsc->sc_dmasize;
#if 0
       if (cnt == 0) {
               printf("data interrupt, but no count left.");
       }
#endif

       p = *fsc->sc_dmaaddr;
       flscphase = sc->sc_phase;
       flscstat = (u_int)sc->sc_espstat;
       flscintr = (u_int)sc->sc_espintr;
       cmdreg = fsc->sc_reg + NCR_CMD * 4;
       fiforeg = fsc->sc_reg + NCR_FIFO * 4;
       statreg = fsc->sc_reg + NCR_STAT * 4;
       intrreg = fsc->sc_reg + NCR_INTR * 4;
       NCR_DMA(("PIO %d datain %d phase %d stat %x intr %x\n",
           cnt, fsc->sc_datain, flscphase, flscstat, flscintr));
       do {
               if (fsc->sc_datain) {
                       *p++ = *fiforeg;
                       cnt--;
                       if (flscphase == DATA_IN_PHASE) {
                               *cmdreg = NCRCMD_TRANS;
                       } else {
                               fsc->sc_active = 0;
                       }
               } else {
NCR_DMA(("flsc_dma_intr: PIO out- phase %d cnt %d active %d\n", flscphase, cnt,
   fsc->sc_active));
                       if (   (flscphase == DATA_OUT_PHASE)
                           || (flscphase == MESSAGE_OUT_PHASE)) {
                               int n;
                               n = 16 - (fsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF);
                               if (n > cnt)
                                       n = cnt;
                               cnt -= n;
                               while (n-- > 0)
                                       *fiforeg = *p++;
                               *cmdreg = NCRCMD_TRANS;
                       } else {
                               fsc->sc_active = 0;
                       }
               }

               if (fsc->sc_active && cnt) {
                       while ((*statreg & 0x80) == 0)
                               ;
                       flscstat = *statreg;
                       flscintr = *intrreg;
                       flscphase = (flscintr & NCRINTR_DIS)
                                   ? /* Disconnected */ BUSFREE_PHASE
                                   : flscstat & PHASE_MASK;
               }
       } while (cnt && fsc->sc_active && (flscintr & NCRINTR_BS) != 0);
#if 1
if (fsc->sc_dmasize < 8 && cnt)
 printf("flsc_dma_intr: short transfer: dmasize %d cnt %d\n",
   fsc->sc_dmasize, cnt);
#endif
       NCR_DMA(("flsc_dma_intr: PIO transfer [%d], %d->%d phase %d stat %x intr %x\n",
           *fsc->sc_pdmalen, fsc->sc_dmasize, cnt, flscphase, flscstat, flscintr));
       sc->sc_phase = flscphase;
       sc->sc_espstat = (uint8_t)flscstat;
       sc->sc_espintr = (uint8_t)flscintr;
       *fsc->sc_dmaaddr = p;
       *fsc->sc_pdmalen -= fsc->sc_dmasize - cnt;
       fsc->sc_dmasize = cnt;

       if (*fsc->sc_pdmalen == 0) {
               sc->sc_espstat |= NCRSTAT_TC;
               fsc->sc_piomode = 0;
       }
       return 0;
}

int
flsc_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
              int datain, size_t *dmasize)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;
       paddr_t pa;
       uint8_t *ptr;
       size_t xfer;

       fsc->sc_dmaaddr = addr;
       fsc->sc_pdmalen = len;
       fsc->sc_datain = datain;
       fsc->sc_dmasize = *dmasize;
       if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
               /* polling mode, use PIO */
               *dmasize = fsc->sc_dmasize;
               NCR_DMA(("pfsc_dma_setup: PIO %p/%d [%d]\n", *addr,
                   fsc->sc_dmasize, *len));
               fsc->sc_piomode = 1;
               if (datain == 0) {
                       int n;
                       n = fsc->sc_dmasize;
                       if (n > 16)
                               n = 16;
                       while (n-- > 0) {
                               fsc->sc_reg[NCR_FIFO * 4] = **fsc->sc_dmaaddr;
                               (*fsc->sc_pdmalen)--;
                               (*fsc->sc_dmaaddr)++;
                               --fsc->sc_dmasize;
                       }
               }
               return 0;
       }
       /*
        * DMA can be nasty for high-speed serial input, so limit the
        * size of this DMA operation if the serial port is running at
        * a high speed (higher than 19200 for now - should be adjusted
        * based on CPU type and speed?).
        * XXX - add serial speed check XXX
        */
       if (ser_open_speed > 19200 && flsc_max_dma != 0 &&
           fsc->sc_dmasize > flsc_max_dma)
               fsc->sc_dmasize = flsc_max_dma;
       ptr = *addr;                    /* Kernel virtual address */
       pa = kvtop(ptr);                /* Physical address of DMA */
       xfer = uimin(fsc->sc_dmasize, PAGE_SIZE - (pa & (PAGE_SIZE - 1)));
       fsc->sc_xfr_align = 0;
       fsc->sc_piomode = 0;
       fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
       fsc->sc_reg[0x40] = fsc->sc_portbits;
       fsc->sc_reg[0x80] = 0;
       *((volatile uint32_t *)fsc->sc_dmabase) = 0;

       /*
        * If output and length < 16, copy to fifo
        */
       if (datain == 0 && fsc->sc_dmasize < 16) {
               int n;
               for (n = 0; n < fsc->sc_dmasize; ++n)
                       fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
               NCR_DMA(("flsc_dma_setup: %d bytes written to fifo\n", n));
               fsc->sc_piomode = 1;
               fsc->sc_active = 1;
               *fsc->sc_pdmalen -= fsc->sc_dmasize;
               *fsc->sc_dmaaddr += fsc->sc_dmasize;
               *dmasize = fsc->sc_dmasize;
               fsc->sc_dmasize = 0;
               return 0;               /* All done */
       }
       /*
        * If output and unaligned, copy unaligned data to fifo
        */
       else if (datain == 0 && (int)ptr & 3) {
               int n = 4 - ((int)ptr & 3);
               NCR_DMA(("flsc_dma_setup: align %d bytes written to fifo\n", n));
               pa += n;
               xfer -= n;
               while (n--)
                       fsc->sc_reg[NCR_FIFO * 4] = *ptr++;
       }
       /*
        * If unaligned address, read unaligned bytes into alignment buffer
        */
       else if ((int)ptr & 3 || xfer & 3) {
               pa = kvtop((void *)fsc->sc_alignbuf);
               xfer = fsc->sc_dmasize = uimin(xfer, sizeof(fsc->sc_unalignbuf));
               NCR_DMA(("flsc_dma_setup: align read by %d bytes\n", xfer));
               fsc->sc_xfr_align = 1;
       }
       /*
        * If length smaller than longword, read into alignment buffer
        * XXX doesn't work for 1 or 2 bytes !!!!
        */
       else if (fsc->sc_dmasize < 4) {
               NCR_DMA(("flsc_dma_setup: read remaining %d bytes\n",
                   fsc->sc_dmasize));
               pa = kvtop((void *)fsc->sc_alignbuf);
               fsc->sc_xfr_align = 1;
       }
       /*
        * Finally, limit transfer length to multiple of 4 bytes.
        */
       else {
               fsc->sc_dmasize &= -4;
               xfer &= -4;
       }

       while (xfer < fsc->sc_dmasize) {
               if ((pa + xfer) != kvtop(*addr + xfer))
                       break;
               if ((fsc->sc_dmasize - xfer) < PAGE_SIZE)
                       xfer = fsc->sc_dmasize;
               else
                       xfer += PAGE_SIZE;
       }

       fsc->sc_dmasize = xfer;
       *dmasize = fsc->sc_dmasize;
       fsc->sc_pa = pa;
#if defined(M68040) || defined(M68060)
       if (mmutype == MMU_68040) {
               if (fsc->sc_xfr_align) {
                       int n;
                       for (n = 0; n < sizeof(fsc->sc_unalignbuf); ++n)
                               fsc->sc_alignbuf[n] = n | 0x80;
                       dma_cachectl(fsc->sc_alignbuf,
                           sizeof(fsc->sc_unalignbuf));
               }
               else
                       dma_cachectl(*fsc->sc_dmaaddr, fsc->sc_dmasize);
       }
#endif
       fsc->sc_reg[0x80] = 0;
       *((volatile uint32_t *)(fsc->sc_dmabase + (pa & 0x00fffffc))) = pa;
       fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
       fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
           (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
       fsc->sc_reg[0x40] = fsc->sc_portbits;
       NCR_DMA(("flsc_dma_setup: DMA %p->%lx/%d [%d]\n",
           ptr, pa, fsc->sc_dmasize, *len));
       fsc->sc_active = 1;
       return 0;
}

void
flsc_dma_go(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;

       NCR_DMA(("flsc_dma_go: datain %d size %d\n", fsc->sc_datain,
           fsc->sc_dmasize));
       if (sc->sc_nexus->xs->xs_control & XS_CTL_POLL) {
               fsc->sc_active = 1;
               return;
       } else if (fsc->sc_piomode == 0) {
               fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
               fsc->sc_portbits |= FLSC_PB_ENABLE_DMA |
                   (fsc->sc_datain ? FLSC_PB_DMA_READ : FLSC_PB_DMA_WRITE);
               fsc->sc_reg[0x40] = fsc->sc_portbits;
       }
}

void
flsc_dma_stop(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;

       fsc->sc_portbits &= ~FLSC_PB_DMA_BITS;
       fsc->sc_reg[0x40] = fsc->sc_portbits;

       fsc->sc_reg[0x80] = 0;
       *((volatile uint32_t *)fsc->sc_dmabase) = 0;
       fsc->sc_piomode = 0;
}

int
flsc_dma_isactive(struct ncr53c9x_softc *sc)
{
       struct flsc_softc *fsc = (struct flsc_softc *)sc;

       return fsc->sc_active;
}