/*      $NetBSD: clock.c,v 1.59 2023/12/20 00:40:42 thorpej Exp $ */

/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: clock.c 1.18 91/01/21$
*
*      @(#)clock.c     7.6 (Berkeley) 5/7/91
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.59 2023/12/20 00:40:42 thorpej Exp $");

#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/timetc.h>
#include <machine/psl.h>
#include <machine/cpu.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/custom.h>
#include <amiga/amiga/cia.h>
#ifdef DRACO
#include <amiga/amiga/drcustom.h>
#include <m68k/include/asm_single.h>
#endif
#include <amiga/dev/rtc.h>
#include <amiga/dev/zbusvar.h>

#if defined(PROF) && defined(PROFTIMER)
#include <sys/PROF.h>
#endif

/*
* Machine-dependent clock routines.
*
* Startrtclock restarts the real-time clock, which provides
* hardclock interrupts to kern_clock.c.
*
* Inittodr initializes the time of day hardware which provides
* date functions.
*
* Resettodr restores the time of day hardware after a time change.
*
* A note on the real-time clock:
* We actually load the clock with amiga_clk_interval-1 instead of amiga_clk_interval.
* This is because the counter decrements to zero after N+1 enabled clock
* periods where N is the value loaded into the counter.
*/

int clockmatch(device_t, cfdata_t, void *);
void clockattach(device_t, device_t, void *);
void cpu_initclocks(void);
static void calibrate_delay(device_t);

/* the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz.
  We're using a 100 Hz clock. */
int amiga_clk_interval;
int eclockfreq;
struct CIA *clockcia;

static u_int clk_getcounter(struct timecounter *);

static struct timecounter clk_timecounter = {
       .tc_get_timecount = clk_getcounter,
       .tc_counter_mask = ~0u,
       .tc_quality = 100,
};

CFATTACH_DECL_NEW(clock, 0,
   clockmatch, clockattach, NULL, NULL);

int
clockmatch(device_t parent, cfdata_t cf, void *aux)
{
       if (matchname("clock", aux))
               return(1);
       return(0);
}

/*
* Start the real-time clock.
*/
void
clockattach(device_t parent, device_t self, void *aux)
{
       const char *clockchip;
       unsigned short interval;
       int chipfreq;
#ifdef DRACO
       u_char dracorev;
#endif

       if (eclockfreq == 0)
               eclockfreq = 715909;    /* guess NTSC */

       chipfreq = eclockfreq;

#ifdef DRACO
       dracorev = is_draco();
       if (dracorev >= 4) {
               chipfreq = eclockfreq / 7;
               clockchip = "QuickLogic";
       } else if (dracorev) {
               clockcia = (struct CIA *)CIAAbase;
               clockchip = "CIA A";
       } else
#endif
       {
               clockcia = (struct CIA *)CIABbase;
               clockchip = "CIA B";
       }

       /* round nearest to mitigate clock drift for PAL */
       amiga_clk_interval = chipfreq / hz;
       if (chipfreq % hz >= hz / 2)
               amiga_clk_interval++;

       if (self != NULL) {     /* real autoconfig? */
               printf(": %s system hz %d hardware hz %d\n", clockchip, hz,
                   chipfreq);

               clk_timecounter.tc_name = clockchip;
               clk_timecounter.tc_frequency = chipfreq;
               tc_init(&clk_timecounter);
       }

#ifdef DRACO
       if (dracorev >= 4) {
               /*
                * can't preload anything beforehand, timer is free_running;
                * but need this for delay calibration.
                */

               draco_ioct->io_timerlo = amiga_clk_interval & 0xff;
               draco_ioct->io_timerhi = amiga_clk_interval >> 8;

               calibrate_delay(self);

               return;
       }
#endif
       /*
        * stop timer A
        */
       clockcia->cra = clockcia->cra & 0xc0;
       clockcia->icr = 1 << 0;         /* disable timer A interrupt */
       interval = clockcia->icr;               /* and make sure it's clear */

       /*
        * load interval into registers.
        * the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz
        */
       interval = amiga_clk_interval - 1;

       /*
        * order of setting is important !
        */
       clockcia->talo = interval & 0xff;
       clockcia->tahi = interval >> 8;
       /*
        * start timer A in continuous mode
        */
       clockcia->cra = (clockcia->cra & 0xc0) | 1;

       calibrate_delay(self);
}

void
cpu_initclocks(void)
{
#ifdef DRACO
       unsigned char dracorev;
       dracorev = is_draco();
       if (dracorev >= 4) {
               draco_ioct->io_timerlo = amiga_clk_interval & 0xFF;
               draco_ioct->io_timerhi = amiga_clk_interval >> 8;
               draco_ioct->io_timerrst = 0;    /* any value resets */
               single_inst_bset_b(draco_ioct->io_status2, DRSTAT2_TMRINTENA);

               return;
       }
#endif
       /*
        * enable interrupts for timer A
        */
       clockcia->icr = (1<<7) | (1<<0);

       /*
        * start timer A in continuous shot mode
        */
       clockcia->cra = (clockcia->cra & 0xc0) | 1;

       /*
        * and globally enable interrupts for ciab
        */
#ifdef DRACO
       if (dracorev)           /* we use cia a on DraCo */
               single_inst_bset_b(*draco_intena, DRIRQ_INT2);
       else
#endif
               custom.intena = INTF_SETCLR | INTF_EXTER;

}

void
setstatclockrate(int hertz)
{
}

/*
* Returns ticks since last recorded clock "tick"
* (i.e. clock interrupt).
*/
static u_int
clk_gettick(void)
{
       u_int interval;
       u_char hi, hi2, lo;

#ifdef DRACO
       if (is_draco() >= 4) {
               hi2 = draco_ioct->io_chiprev;   /* latch timer */
               hi = draco_ioct->io_timerhi;
               lo = draco_ioct->io_timerlo;
               interval = ((hi<<8) | lo);
               if (interval > amiga_clk_interval)      /* timer underflow */
                       interval = 65536 + amiga_clk_interval - interval;
               else
                       interval = amiga_clk_interval - interval;

       } else
#endif
       {
               hi  = clockcia->tahi;
               lo  = clockcia->talo;
               hi2 = clockcia->tahi;
               if (hi != hi2) {
                       lo = clockcia->talo;
                       hi = hi2;
               }

               interval = (amiga_clk_interval - 1) - ((hi<<8) | lo);

               /*
                * should read ICR and if there's an int pending, adjust
                * interval. However, since reading ICR clears the interrupt,
                * we'd lose a hardclock int, and this is not tolerable.
                */
       }

       return interval;
}

static u_int
clk_getcounter(struct timecounter *tc)
{
       static int prev_hardclock;
       static u_int prev_counter;
       int cur_hardclock;
       u_int counter;

       do {
               cur_hardclock = getticks();
               counter = clk_gettick();
       } while (cur_hardclock != getticks());

       /*
        * Handle the situation of a wrapped interval counter, while
        * the hardclock() interrupt was not yet executed to update
        * hardclock_ticks.
        */
       if (cur_hardclock < prev_hardclock)
               cur_hardclock = prev_hardclock;
       if (counter < prev_counter && cur_hardclock == prev_hardclock)
               cur_hardclock++;

       prev_hardclock = cur_hardclock;
       prev_counter = counter;

       return cur_hardclock * amiga_clk_interval + counter;
}

/*
* Calibrate delay loop.
* We use two iterations because we don't have enough bits to do a factor of
* 8 with better than 1%.
*
* XXX Note that we MUST stay below 1 tick if using clk_gettick(), even for
* underestimated values of delaydivisor.
*
* XXX the "ns" below is only correct for a shift of 10 bits, and even then
* off by 2.4%
*/
static void
calibrate_delay(device_t self)
{
       unsigned long t1, t2;
       extern u_int32_t delaydivisor;
               /* XXX this should be defined elsewhere */

       if (self)
               printf("Calibrating delay loop... ");

       do {
               t1 = clk_gettick();
               delay(1024);
               t2 = clk_gettick();
       } while (t2 <= t1);
       t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
       delaydivisor = (delaydivisor * t2 + 1023) >> 10;
#ifdef DEBUG
       if (self)
               printf("\ndiff %ld us, new divisor %u/1024 us\n", t2,
                   delaydivisor);
       do {
               t1 = clk_gettick();
               delay(1024);
               t2 = clk_gettick();
       } while (t2 <= t1);
       t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
       delaydivisor = (delaydivisor * t2 + 1023) >> 10;
       if (self)
               printf("diff %ld us, new divisor %u/1024 us\n", t2,
                   delaydivisor);
#endif
       do {
               t1 = clk_gettick();
               delay(1024);
               t2 = clk_gettick();
       } while (t2 <= t1);
       t2 = ((t2 - t1) * 1000000) / (amiga_clk_interval * hz);
       delaydivisor = (delaydivisor * t2 + 1023) >> 10;
#ifdef DEBUG
       if (self)
               printf("diff %ld us, new divisor ", t2);
#endif
       if (self)
               printf("%u/1024 us\n", delaydivisor);
}

#if notyet

/* implement this later. I'd suggest using both timers in CIA-A, they're
  not yet used. */

#include "clock.h"
#if NCLOCK > 0
/*
* /dev/clock: mappable high resolution timer.
*
* This code implements a 32-bit recycling counter (with a 4 usec period)
* using timers 2 & 3 on the 6840 clock chip.  The counter can be mapped
* RO into a user's address space to achieve low overhead (no system calls),
* high-precision timing.
*
* Note that timer 3 is also used for the high precision profiling timer
* (PROFTIMER code above).  Care should be taken when both uses are
* configured as only a token effort is made to avoid conflicting use.
*/
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/ioctl.h>
#include <uvm/uvm_extern.h>
#include <amiga/amiga/clockioctl.h>
#include <sys/specdev.h>
#include <sys/vnode.h>
#include <sys/mman.h>

int clockon = 0;                /* non-zero if high-res timer enabled */
#ifdef PROFTIMER
int  profprocs = 0;             /* # of procs using profiling timer */
#endif
#ifdef DEBUG
int clockdebug = 0;
#endif

/*ARGSUSED*/
int
clockopen(dev_t dev, int flags)
{
#ifdef PROFTIMER
#ifdef PROF
       /*
        * Kernel profiling enabled, give up.
        */
       if (profiling)
               return(EBUSY);
#endif
       /*
        * If any user processes are profiling, give up.
        */
       if (profprocs)
               return(EBUSY);
#endif
       if (!clockon) {
               startclock();
               clockon++;
       }
       return(0);
}

/*ARGSUSED*/
int
clockclose(dev_t dev, int flags)
{
       (void) clockunmmap(dev, (void *)0, curproc);    /* XXX */
       stopclock();
       clockon = 0;
       return(0);
}

/*ARGSUSED*/
int
clockioctl(dev_t dev, u_long cmd, void *data, int flag, struct proc *p)
{
       int error = 0;

       switch (cmd) {

       case CLOCKMAP:
               error = clockmmap(dev, (void **)data, p);
               break;

       case CLOCKUNMAP:
               error = clockunmmap(dev, *(void **)data, p);
               break;

       case CLOCKGETRES:
               *(int *)data = CLK_RESOLUTION;
               break;

       default:
               error = EINVAL;
               break;
       }
       return(error);
}

/*ARGSUSED*/
void
clockmap(dev_t dev, int off, int prot)
{
       return MD_BTOP(off + (INTIOBASE+CLKBASE+CLKSR-1));
}

int
clockmmap(dev_t dev, void **addrp, struct proc *p)
{
       int error;
       struct vnode vn;
       struct specinfo si;
       int flags;

       flags = MAP_FILE|MAP_SHARED;
       if (*addrp)
               flags |= MAP_FIXED;
       else
               *addrp = (void *)0x1000000;     /* XXX */
       vn.v_type = VCHR;                       /* XXX */
       vn.v_specinfo = &si;                    /* XXX */
       vn.v_rdev = dev;                        /* XXX */
       error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
                       PAGE_SIZE, VM_PROT_ALL, flags, (void *)&vn, 0);
       return(error);
}

int
clockunmmap(dev_t dev, void *addr, struct proc *p)
{
       int rv;

       if (addr == 0)
               return(EINVAL);         /* XXX: how do we deal with this? */
       uvm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
       return 0;
}

void
startclock(void)
{
       register struct clkreg *clk = (struct clkreg *)clkstd[0];

       clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
       clk->clk_msb3 = -1; clk->clk_lsb3 = -1;

       clk->clk_cr2 = CLK_CR3;
       clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
       clk->clk_cr2 = CLK_CR1;
       clk->clk_cr1 = CLK_IENAB;
}

void
stopclock(void)
{
       register struct clkreg *clk = (struct clkreg *)clkstd[0];

       clk->clk_cr2 = CLK_CR3;
       clk->clk_cr3 = 0;
       clk->clk_cr2 = CLK_CR1;
       clk->clk_cr1 = CLK_IENAB;
}
#endif

#endif


#ifdef PROFTIMER
/*
* This code allows the amiga kernel to use one of the extra timers on
* the clock chip for profiling, instead of the regular system timer.
* The advantage of this is that the profiling timer can be turned up to
* a higher interrupt rate, giving finer resolution timing. The profclock
* routine is called from the lev6intr in locore, and is a specialized
* routine that calls addupc. The overhead then is far less than if
* hardclock/softclock was called. Further, the context switch code in
* locore has been changed to turn the profile clock on/off when switching
* into/out of a process that is profiling (startprofclock/stopprofclock).
* This reduces the impact of the profiling clock on other users, and might
* possibly increase the accuracy of the profiling.
*/
int  profint   = PRF_INTERVAL;  /* Clock ticks between interrupts */
int  profscale = 0;             /* Scale factor from sys clock to prof clock */
char profon    = 0;             /* Is profiling clock on? */

/* profon values - do not change, locore.s assumes these values */
#define PRF_NONE        0x00
#define PRF_USER        0x01
#define PRF_KERNEL      0x80

void
initprofclock(void)
{
#if NCLOCK > 0
       struct proc *p = curproc;               /* XXX */

       /*
        * If the high-res timer is running, force profiling off.
        * Unfortunately, this gets reflected back to the user not as
        * an error but as a lack of results.
        */
       if (clockon) {
               p->p_stats->p_prof.pr_scale = 0;
               return;
       }
       /*
        * Keep track of the number of user processes that are profiling
        * by checking the scale value.
        *
        * XXX: this all assumes that the profiling code is well behaved;
        * i.e. profil() is called once per process with pcscale non-zero
        * to turn it on, and once with pcscale zero to turn it off.
        * Also assumes you don't do any forks or execs.  Oh well, there
        * is always adb...
        */
       if (p->p_stats->p_prof.pr_scale)
               profprocs++;
       else
               profprocs--;
#endif
       /*
        * The profile interrupt interval must be an even divisor
        * of the amiga_clk_interval so that scaling from a system clock
        * tick to a profile clock tick is possible using integer math.
        */
       if (profint > amiga_clk_interval || (amiga_clk_interval % profint) != 0)
               profint = amiga_clk_interval;
       profscale = amiga_clk_interval / profint;
}

void
startprofclock(void)
{
 unsigned short interval;

 /* stop timer B */
 clockcia->crb = clockcia->crb & 0xc0;

 /* load interval into registers.
    the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */

 interval = profint - 1;

 /* order of setting is important ! */
 clockcia->tblo = interval & 0xff;
 clockcia->tbhi = interval >> 8;

 /* enable interrupts for timer B */
 clockcia->icr = (1<<7) | (1<<1);

 /* start timer B in continuous shot mode */
 clockcia->crb = (clockcia->crb & 0xc0) | 1;
}

void
stopprofclock(void)
{
 /* stop timer B */
 clockcia->crb = clockcia->crb & 0xc0;
}

#ifdef PROF
/*
* profclock() is expanded in line in lev6intr() unless profiling kernel.
* Assumes it is called with clock interrupts blocked.
*/
void
profclock(void *pc, int ps)
{
       /*
        * Came from user mode.
        * If this process is being profiled record the tick.
        */
       if (USERMODE(ps)) {
               if (p->p_stats.p_prof.pr_scale)
                       addupc(pc, &curproc->p_stats.p_prof, 1);
       }
       /*
        * Came from kernel (supervisor) mode.
        * If we are profiling the kernel, record the tick.
        */
       else if (profiling < 2) {
               register int s = pc - s_lowpc;

               if (s < s_textsize)
                       kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
       }
       /*
        * Kernel profiling was on but has been disabled.
        * Mark as no longer profiling kernel and if all profiling done,
        * disable the clock.
        */
       if (profiling && (profon & PRF_KERNEL)) {
               profon &= ~PRF_KERNEL;
               if (profon == PRF_NONE)
                       stopprofclock();
       }
}
#endif
#endif