/*      $NetBSD: bztzsc.c,v 1.38 2019/01/08 19:41:09 jdolecek Exp $ */

/*
* Copyright (c) 1997 Michael L. Hitch
* Copyright (c) 1996 Ignatios Souvatzis
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/

/*
* Initial amiga Blizzard 2060 driver by Ingatios Souvatzis.  Conversion to
* 53c9x MI driver by Michael L. Hitch ([email protected]).
*/

#ifdef __m68k__
#include "opt_m68k_arch.h"
#endif

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bztzsc.c,v 1.38 2019/01/08 19:41:09 jdolecek Exp $");

#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/queue.h>

#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>

#include <machine/cpu.h>

#include <dev/ic/ncr53c9xreg.h>
#include <dev/ic/ncr53c9xvar.h>

#include <amiga/amiga/isr.h>
#include <amiga/dev/bztzscvar.h>
#include <amiga/dev/zbusvar.h>

#ifdef __powerpc__
#define badaddr(a)      badaddr_read(a, 2, NULL)
#endif

int     bztzscmatch(device_t, cfdata_t, void *);
void    bztzscattach(device_t, device_t, void *);

/* Linkup to the rest of the kernel */
CFATTACH_DECL_NEW(bztzsc, sizeof(struct bztzsc_softc),
   bztzscmatch, bztzscattach, NULL, NULL);

/*
* Functions and the switch for the MI code.
*/
uint8_t bztzsc_read_reg(struct ncr53c9x_softc *, int);
void    bztzsc_write_reg(struct ncr53c9x_softc *, int, uint8_t);
int     bztzsc_dma_isintr(struct ncr53c9x_softc *);
void    bztzsc_dma_reset(struct ncr53c9x_softc *);
int     bztzsc_dma_intr(struct ncr53c9x_softc *);
int     bztzsc_dma_setup(struct ncr53c9x_softc *, uint8_t **,
           size_t *, int, size_t *);
void    bztzsc_dma_go(struct ncr53c9x_softc *);
void    bztzsc_dma_stop(struct ncr53c9x_softc *);
int     bztzsc_dma_isactive(struct ncr53c9x_softc *);

struct ncr53c9x_glue bztzsc_glue = {
       bztzsc_read_reg,
       bztzsc_write_reg,
       bztzsc_dma_isintr,
       bztzsc_dma_reset,
       bztzsc_dma_intr,
       bztzsc_dma_setup,
       bztzsc_dma_go,
       bztzsc_dma_stop,
       bztzsc_dma_isactive,
       NULL,
};

/* Maximum DMA transfer length to reduce impact on high-speed serial input */
u_long bztzsc_max_dma = 1024;
extern int ser_open_speed;

u_long bztzsc_cnt_pio = 0;      /* number of PIO transfers */
u_long bztzsc_cnt_dma = 0;      /* number of DMA transfers */
u_long bztzsc_cnt_dma2 = 0;     /* number of DMA transfers broken up */
u_long bztzsc_cnt_dma3 = 0;     /* number of pages combined */

#ifdef DEBUG
struct {
       uint8_t hardbits;
       uint8_t status;
       uint8_t xx;
       uint8_t yy;
} bztzsc_trace[128];
int bztzsc_trace_ptr = 0;
int bztzsc_trace_enable = 1;
void bztzsc_dump(void);
#endif

/*
* if we are a Phase5 Blizzard 2060 SCSI
*/
int
bztzscmatch(device_t parent, cfdata_t cf, void *aux)
{
       struct zbus_args *zap;
       volatile uint8_t *regs;

       zap = aux;
       if (zap->manid != 0x2140 || zap->prodid != 24)
               return 0;
       regs = &((volatile uint8_t *)zap->va)[0x1ff00];
       if (badaddr((void *)__UNVOLATILE(regs)))
               return 0;
       regs[NCR_CFG1 * 4] = 0;
       regs[NCR_CFG1 * 4] = NCRCFG1_PARENB | 7;
       delay(5);
       if (regs[NCR_CFG1 * 4] != (NCRCFG1_PARENB | 7))
               return 0;
       return 1;
}

/*
* Attach this instance, and then all the sub-devices
*/
void
bztzscattach(device_t parent, device_t self, void *aux)
{
       struct bztzsc_softc *bsc = device_private(self);
       struct ncr53c9x_softc *sc = &bsc->sc_ncr53c9x;
       struct zbus_args  *zap;
       extern u_long scsi_nosync;
       extern int shift_nosync;
       extern int ncr53c9x_debug;

       /*
        * Set up the glue for MI code early; we use some of it here.
        */
       sc->sc_dev = self;
       sc->sc_glue = &bztzsc_glue;

       /*
        * Save the regs
        */
       zap = aux;
       bsc->sc_reg = &((volatile uint8_t *)zap->va)[0x1ff00];
       bsc->sc_dmabase = &bsc->sc_reg[0xf0];

       sc->sc_freq = 40;               /* Clocked at 40 MHz */

       aprint_normal(": address %p", bsc->sc_reg);

       sc->sc_id = 7;

       /*
        * It is necessary to try to load the 2nd config register here,
        * to find out what rev the FAS chip is, else the ncr53c9x_reset
        * will not set up the defaults correctly.
        */
       sc->sc_cfg1 = sc->sc_id | NCRCFG1_PARENB;
       sc->sc_cfg2 = NCRCFG2_SCSI2 | NCRCFG2_FE;
       sc->sc_cfg3 = 0x08 /*FCLK*/ | NCRESPCFG3_FSCSI | NCRESPCFG3_CDB;
       sc->sc_rev = NCR_VARIANT_FAS216;

       /*
        * This is the value used to start sync negotiations
        * Note that the NCR register "SYNCTP" is programmed
        * in "clocks per byte", and has a minimum value of 4.
        * The SCSI period used in negotiation is one-fourth
        * of the time (in nanoseconds) needed to transfer one byte.
        * Since the chip's clock is given in MHz, we have the following
        * formula: 4 * period = (1000 / freq) * 4
        */
       sc->sc_minsync = 1000 / sc->sc_freq;

       /*
        * get flags from -I argument and set cf_flags.
        * NOTE: low 8 bits are to disable disconnect, and the next
        *       8 bits are to disable sync.
        */
       device_cfdata(self)->cf_flags |= (scsi_nosync >> shift_nosync)
           & 0xffff;
       shift_nosync += 16;

       /* Use next 16 bits of -I argument to set ncr53c9x_debug flags */
       ncr53c9x_debug |= (scsi_nosync >> shift_nosync) & 0xffff;
       shift_nosync += 16;

#if 1
       if (((scsi_nosync >> shift_nosync) & 0xff00) == 0xff00)
               sc->sc_minsync = 0;
#endif

       /* Really no limit, but since we want to fit into the TCR... */
       sc->sc_maxxfer = 64 * 1024;

       bsc->sc_reg[0xe0] = BZTZSC_PB_LED;      /* Turn LED off */

       /*
        * Configure interrupts.
        */
       bsc->sc_isr.isr_intr = ncr53c9x_intr;
       bsc->sc_isr.isr_arg  = sc;
       bsc->sc_isr.isr_ipl  = 2;
       add_isr(&bsc->sc_isr);

       /*
        * Now try to attach all the sub-devices
        */
       sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
       sc->sc_adapter.adapt_minphys = minphys;
       ncr53c9x_attach(sc);
}

/*
* Glue functions.
*/

uint8_t
bztzsc_read_reg(struct ncr53c9x_softc *sc, int reg)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;

       return bsc->sc_reg[reg * 4];
}

void
bztzsc_write_reg(struct ncr53c9x_softc *sc, int reg, uint8_t val)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;
       uint8_t v = val;

       bsc->sc_reg[reg * 4] = v;
#ifdef DEBUG
if (bztzsc_trace_enable/* && sc->sc_nexus && sc->sc_nexus->xs->xs_control & XS_CTL_POLL*/ &&
 reg == NCR_CMD/* && bsc->sc_active*/) {
 bztzsc_trace[(bztzsc_trace_ptr - 1) & 127].yy = v;
/*  printf(" cmd %x", v);*/
}
#endif
}

int
bztzsc_dma_isintr(struct ncr53c9x_softc *sc)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;

       if ((bsc->sc_reg[NCR_STAT * 4] & NCRSTAT_INT) == 0)
               return 0;

       if (sc->sc_state == NCR_CONNECTED)
               bsc->sc_reg[0xe0] = 0;                  /* Turn LED on */
       else
               bsc->sc_reg[0xe0] = BZTZSC_PB_LED;      /* Turn LED off */

#ifdef DEBUG
if (/*sc->sc_nexus && sc->sc_nexus->xs->xs_control & XS_CTL_POLL &&*/ bztzsc_trace_enable) {
 bztzsc_trace[bztzsc_trace_ptr].status = bsc->sc_reg[NCR_STAT * 4];
 bztzsc_trace[bztzsc_trace_ptr].xx = bsc->sc_reg[NCR_CMD * 4];
 bztzsc_trace[bztzsc_trace_ptr].yy = bsc->sc_active;
 bztzsc_trace_ptr = (bztzsc_trace_ptr + 1) & 127;
}
#endif
       return 1;
}

void
bztzsc_dma_reset(struct ncr53c9x_softc *sc)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;

       bsc->sc_active = 0;
}

int
bztzsc_dma_intr(struct ncr53c9x_softc *sc)
{
       register struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;
       register int    cnt;

       NCR_DMA(("bztzsc_dma_intr: cnt %d int %x stat %x fifo %d ",
           bsc->sc_dmasize, sc->sc_espintr, sc->sc_espstat,
           bsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF));
       if (bsc->sc_active == 0) {
               printf("bztzsc_intr--inactive DMA\n");
               return -1;
       }

       /* update sc_dmaaddr and sc_pdmalen */
       cnt = bsc->sc_reg[NCR_TCL * 4];
       cnt += bsc->sc_reg[NCR_TCM * 4] << 8;
       cnt += bsc->sc_reg[NCR_TCH * 4] << 16;
       if (!bsc->sc_datain) {
               cnt += bsc->sc_reg[NCR_FFLAG * 4] & NCRFIFO_FF;
               bsc->sc_reg[NCR_CMD * 4] = NCRCMD_FLUSH;
       }
       cnt = bsc->sc_dmasize - cnt;    /* number of bytes transferred */
       NCR_DMA(("DMA xferred %d\n", cnt));
       if (bsc->sc_xfr_align) {
               memcpy(*bsc->sc_dmaaddr, bsc->sc_alignbuf, cnt);
               bsc->sc_xfr_align = 0;
       }
       *bsc->sc_dmaaddr += cnt;
       *bsc->sc_pdmalen -= cnt;
       bsc->sc_active = 0;
       return 0;
}

int
bztzsc_dma_setup(struct ncr53c9x_softc *sc, uint8_t **addr, size_t *len,
                int datain, size_t *dmasize)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;
       paddr_t pa;
       uint8_t *ptr;
       size_t xfer;

       bsc->sc_dmaaddr = addr;
       bsc->sc_pdmalen = len;
       bsc->sc_datain = datain;
       bsc->sc_dmasize = *dmasize;
       /*
        * DMA can be nasty for high-speed serial input, so limit the
        * size of this DMA operation if the serial port is running at
        * a high speed (higher than 19200 for now - should be adjusted
        * based on CPU type and speed?).
        * XXX - add serial speed check XXX
        */
       if (ser_open_speed > 19200 && bztzsc_max_dma != 0 &&
           bsc->sc_dmasize > bztzsc_max_dma)
               bsc->sc_dmasize = bztzsc_max_dma;
       ptr = *addr;                    /* Kernel virtual address */
       pa = kvtop(ptr);                /* Physical address of DMA */
       xfer = uimin(bsc->sc_dmasize, PAGE_SIZE - (pa & (PAGE_SIZE - 1)));
       bsc->sc_xfr_align = 0;
       /*
        * If output and unaligned, stuff odd byte into FIFO
        */
       if (datain == 0 && (int)ptr & 1) {
               NCR_DMA(("bztzsc_dma_setup: align byte written to fifo\n"));
               pa++;
               xfer--;                 /* XXXX CHECK THIS !!!! XXXX */
               bsc->sc_reg[NCR_FIFO * 4] = *ptr++;
       }
       /*
        * If unaligned address, read unaligned bytes into alignment buffer
        */
       else if ((int)ptr & 1) {
               pa = kvtop((void *)&bsc->sc_alignbuf);
               xfer = bsc->sc_dmasize = uimin(xfer, sizeof(bsc->sc_alignbuf));
               NCR_DMA(("bztzsc_dma_setup: align read by %d bytes\n", xfer));
               bsc->sc_xfr_align = 1;
       }
++bztzsc_cnt_dma;               /* number of DMA operations */

       while (xfer < bsc->sc_dmasize) {
               if ((pa + xfer) != kvtop(*addr + xfer))
                       break;
               if ((bsc->sc_dmasize - xfer) < PAGE_SIZE)
                       xfer = bsc->sc_dmasize;
               else
                       xfer += PAGE_SIZE;
++bztzsc_cnt_dma3;
       }
if (xfer != *len)
 ++bztzsc_cnt_dma2;

       bsc->sc_dmasize = xfer;
       *dmasize = bsc->sc_dmasize;
       bsc->sc_pa = pa;
#if defined(M68040) || defined(M68060)
       if (mmutype == MMU_68040) {
               if (bsc->sc_xfr_align) {
                       dma_cachectl(bsc->sc_alignbuf,
                           sizeof(bsc->sc_alignbuf));
               }
               else
                       dma_cachectl(*bsc->sc_dmaaddr, bsc->sc_dmasize);
       }
#endif

       pa >>= 1;
       if (!bsc->sc_datain)
               pa |= 0x80000000;
       bsc->sc_dmabase[12] = (uint8_t)(pa);
       bsc->sc_dmabase[8] = (uint8_t)(pa >> 8);
       bsc->sc_dmabase[4] = (uint8_t)(pa >> 16);
       bsc->sc_dmabase[0] = (uint8_t)(pa >> 24);
       bsc->sc_active = 1;
       return 0;
}

void
bztzsc_dma_go(struct ncr53c9x_softc *sc)
{
}

void
bztzsc_dma_stop(struct ncr53c9x_softc *sc)
{
}

int
bztzsc_dma_isactive(struct ncr53c9x_softc *sc)
{
       struct bztzsc_softc *bsc = (struct bztzsc_softc *)sc;

       return bsc->sc_active;
}

#ifdef DEBUG
void
bztzsc_dump(void)
{
       int i;

       i = bztzsc_trace_ptr;
       printf("bztzsc_trace dump: ptr %x\n", bztzsc_trace_ptr);
       do {
               if (bztzsc_trace[i].hardbits == 0) {
                       i = (i + 1) & 127;
                       continue;
               }
               printf("%02x%02x%02x%02x(", bztzsc_trace[i].hardbits,
                   bztzsc_trace[i].status, bztzsc_trace[i].xx, bztzsc_trace[i].yy);
               if (bztzsc_trace[i].status & NCRSTAT_INT)
                       printf("NCRINT/");
               if (bztzsc_trace[i].status & NCRSTAT_TC)
                       printf("NCRTC/");
               switch(bztzsc_trace[i].status & NCRSTAT_PHASE) {
               case 0:
                       printf("dataout"); break;
               case 1:
                       printf("datain"); break;
               case 2:
                       printf("cmdout"); break;
               case 3:
                       printf("status"); break;
               case 6:
                       printf("msgout"); break;
               case 7:
                       printf("msgin"); break;
               default:
                       printf("phase%d?", bztzsc_trace[i].status & NCRSTAT_PHASE);
               }
               printf(") ");
               i = (i + 1) & 127;
       } while (i != bztzsc_trace_ptr);
       printf("\n");
}
#endif