/* $NetBSD: tlsb.c,v 1.42 2024/03/06 13:37:35 thorpej Exp $ */
/*
* Copyright (c) 1997 by Matthew Jacob
* NASA AMES Research Center.
* All rights reserved.
*
* Based in part upon a prototype version by Jason Thorpe
* Copyright (c) 1996, 1998 by Jason Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice immediately at the beginning of the file, without modification,
*    this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* Autoconfiguration and support routines for the TurboLaser System Bus
* found on AlphaServer 8200 and 8400 systems.
*/

#include <sys/cdefs.h>                  /* RCS ID & Copyright macro defns */

__KERNEL_RCSID(0, "$NetBSD: tlsb.c,v 1.42 2024/03/06 13:37:35 thorpej Exp $");

#include "opt_multiprocessor.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>

#include <machine/autoconf.h>
#include <machine/cpu.h>
#include <machine/cpuvar.h>
#include <machine/rpb.h>
#include <machine/pte.h>
#include <machine/alpha.h>

#include <alpha/tlsb/tlsbreg.h>
#include <alpha/tlsb/tlsbvar.h>

#include "locators.h"

#define KV(_addr)       ((void *)ALPHA_PHYS_TO_K0SEG((_addr)))

static int      tlsbmatch(device_t, cfdata_t, void *);
static void     tlsbattach(device_t, device_t, void *);

CFATTACH_DECL_NEW(tlsb, 0,
   tlsbmatch, tlsbattach, NULL, NULL);

extern struct cfdriver tlsb_cd;

static int      tlsbprint(void *, const char *);
static const char *tlsb_node_type_str(uint32_t, char *, size_t);

/*
* There can be only one TurboLaser, and we'll overload it
* with a bitmap of found turbo laser nodes. Note that
* these are just the actual hard TL node IDS that we
* discover here, not the virtual IDs that get assigned
* to CPUs. During TLSB specific error handling we
* only need to know which actual TLSB slots have boards
* in them (irrespective of how many CPUs they have).
*/
int     tlsb_found;

static int
tlsbprint(void *aux, const char *pnp)
{
       struct tlsb_dev_attach_args *tap = aux;
       char buf[64];

       if (pnp)
               aprint_normal("%s at %s node %d",
                   tlsb_node_type_str(tap->ta_dtype, buf, sizeof(buf)),
                   pnp, tap->ta_node);
       else
               aprint_normal(" node %d: %s", tap->ta_node,
                   tlsb_node_type_str(tap->ta_dtype, buf, sizeof(buf)));

       return (UNCONF);
}

static int
tlsbmatch(device_t parent, cfdata_t cf, void *aux)
{
       struct mainbus_attach_args *ma = aux;

       /* Make sure we're looking for a TurboLaser. */
       if (strcmp(ma->ma_name, tlsb_cd.cd_name) != 0)
               return (0);

       /*
        * Only one instance of TurboLaser allowed,
        * and only available on 21000 processor type
        * platforms.
        */
       if ((cputype != ST_DEC_21000) || tlsb_found)
               return (0);

       return (1);
}

static void
tlsbattach(device_t parent, device_t self, void *aux)
{
       struct tlsb_dev_attach_args ta;
       uint32_t tldev;
       int node;
       int ionodes = 0;
       int locs[TLSBCF_NLOCS];
       char buf[64];

       printf("\n");

       /*
        * Attempt to find all devices on the bus, including
        * CPUs, memory modules, and I/O modules.
        */

       /*
        * Sigh. I would like to just start off nicely,
        * but I need to treat I/O modules differently-
        * The highest priority I/O node has to be in
        * node #8, and I want to find it *first*, since
        * it will have the primary disks (most likely)
        * on it.
        */
       for (node = 0; node <= TLSB_NODE_MAX; ++node) {
               /*
                * Check for invalid address.  This may not really
                * be necessary, but what the heck...
                */
               if (badaddr(TLSB_NODE_REG_ADDR(node, TLDEV), sizeof(uint32_t)))
                       continue;
               tldev = TLSB_GET_NODEREG(node, TLDEV);
               if (tldev == 0) {
                       /* Nothing at this node. */
                       continue;
               }
               /*
                * Store up that we found something at this node.
                * We do this so that we don't have to do something
                * silly at fault time like try a 'baddadr'...
                */
               tlsb_found |= __BIT(node);
               if (TLDEV_ISIOPORT(tldev)) {
                       ionodes |= __BIT(node);
                       continue;       /* not interested right now */
               }
               ta.ta_node = node;
               ta.ta_dtype = TLDEV_DTYPE(tldev);
               ta.ta_swrev = TLDEV_SWREV(tldev);
               ta.ta_hwrev = TLDEV_HWREV(tldev);

               /*
                * Deal with hooking CPU instances to TurboLaser nodes.
                */
               if (TLDEV_ISCPU(tldev)) {
                       aprint_normal("%s node %d: %s\n", device_xname(self),
                           node,
                           tlsb_node_type_str(tldev, buf, sizeof(buf)));
               }
               /*
                * Attach any children nodes, including a CPU's GBus
                */
               locs[TLSBCF_NODE] = node;

               config_found(self, &ta, tlsbprint,
                   CFARGS(.submatch = config_stdsubmatch,
                          .locators = locs));
       }
       /*
        * *Now* attach I/O nodes (in descending order).  We don't
        * need to bother using badaddr() here; we have a cheat sheet
        * from above.
        */
       while (--node >= 0) {
               if ((ionodes & __BIT(node)) == 0) {
                       continue;
               }
               tldev = TLSB_GET_NODEREG(node, TLDEV);
               if (tldev == 0) {
                       continue;
               }
#if defined(MULTIPROCESSOR)
               /*
                * XXX Eventually, we want to select a secondary
                * XXX processor on which to field interrupts for
                * XXX this node.  However, we just send them to
                * XXX the primary CPU for now.
                *
                * XXX Maybe multiple CPUs?  Does the hardware
                * XXX round-robin, or check the length of the
                * XXX per-CPU interrupt queue?
                */
               printf("%s node %d: routing interrupts to %s\n",
                 device_xname(self), node,
                 device_xname(cpu_info[hwrpb->rpb_primary_cpu_id]->ci_softc->sc_dev));
               TLSB_PUT_NODEREG(node, TLCPUMASK,
                   (1UL << hwrpb->rpb_primary_cpu_id));
#else
               /*
                * Make sure interrupts are sent to the primary CPU.
                */
               TLSB_PUT_NODEREG(node, TLCPUMASK,
                   (1UL << hwrpb->rpb_primary_cpu_id));
#endif /* MULTIPROCESSOR */

               ta.ta_node = node;
               ta.ta_dtype = TLDEV_DTYPE(tldev);
               ta.ta_swrev = TLDEV_SWREV(tldev);
               ta.ta_hwrev = TLDEV_HWREV(tldev);

               locs[TLSBCF_NODE] = node;

               config_found(self, &ta, tlsbprint,
                   CFARGS(.submatch = config_stdsubmatch,
                          .locators = locs));
       }
}

static const char *
tlsb_node_type_str(uint32_t dtype, char *buf, size_t buflen)
{
       switch (dtype & TLDEV_DTYPE_MASK) {
       case TLDEV_DTYPE_KFTHA:
               return ("KFTHA I/O interface");

       case TLDEV_DTYPE_KFTIA:
               return ("KFTIA I/O interface");

       case TLDEV_DTYPE_MS7CC:
               return ("MS7CC Memory Module");

       case TLDEV_DTYPE_SCPU4:
               return ("Single CPU, 4MB cache");

       case TLDEV_DTYPE_SCPU16:
               return ("Single CPU, 16MB cache");

       case TLDEV_DTYPE_DCPU4:
               return ("Dual CPU, 4MB cache");

       case TLDEV_DTYPE_DCPU16:
               return ("Dual CPU, 16MB cache");

       default:
               snprintf(buf, buflen, "unknown, dtype 0x%04x", dtype);
               return (buf);
       }
       /* NOTREACHED */
}