/*      $NetBSD: pthread_tsd.c,v 1.26 2025/03/01 18:21:49 christos Exp $        */

/*-
* Copyright (c) 2001, 2007, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, by Andrew Doran, and by Christos Zoulas.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_tsd.c,v 1.26 2025/03/01 18:21:49 christos Exp $");

/* Need to use libc-private names for atomic operations. */
#include "../../common/lib/libc/atomic/atomic_op_namespace.h"

/* Functions and structures dealing with thread-specific data */
#include <errno.h>
#include <sys/mman.h>

#include "pthread.h"
#include "pthread_int.h"
#include "reentrant.h"
#include "tsd.h"

int pthread_keys_max;
static pthread_mutex_t tsd_mutex = PTHREAD_MUTEX_INITIALIZER;
static int nextkey;

PTQ_HEAD(pthread__tsd_list, pt_specific) *pthread__tsd_list = NULL;
void (**pthread__tsd_destructors)(void *) = NULL;

__strong_alias(__libc_thr_keycreate,pthread_key_create)
__strong_alias(__libc_thr_keydelete,pthread_key_delete)

static void
/*ARGSUSED*/
null_destructor(void *p)
{
}

#include <err.h>
#include <stdlib.h>
#include <stdio.h>

static void
pthread_tsd_prefork(void)
{
       pthread_mutex_lock(&tsd_mutex);
}

static void
pthread_tsd_postfork(void)
{
       pthread_mutex_unlock(&tsd_mutex);
}

static void
pthread_tsd_postfork_child(void)
{
       pthread_mutex_init(&tsd_mutex, NULL);
}

void *
pthread_tsd_init(size_t *tlen)
{
       char *pkm;
       size_t alen;
       char *arena;

       /*
        * This pthread_atfork() call will not call malloc, since it
        * has a cache of 3 entries, specially for this purpose.
        */
       pthread_atfork(pthread_tsd_prefork, pthread_tsd_postfork,
           pthread_tsd_postfork_child);

       if ((pkm = pthread__getenv("PTHREAD_KEYS_MAX")) != NULL) {
               pthread_keys_max = (int)strtol(pkm, NULL, 0);
               if (pthread_keys_max < _POSIX_THREAD_KEYS_MAX)
                       pthread_keys_max = _POSIX_THREAD_KEYS_MAX;
       } else {
               pthread_keys_max = PTHREAD_KEYS_MAX;
       }

       /*
        * Can't use malloc here yet, because malloc will use the fake
        * libc thread functions to initialize itself, so mmap the space.
        */
       *tlen = sizeof(struct __pthread_st)
           + pthread_keys_max * sizeof(struct pt_specific);
       alen = *tlen
           + sizeof(*pthread__tsd_list) * pthread_keys_max
           + sizeof(*pthread__tsd_destructors) * pthread_keys_max;

       arena = mmap(NULL, alen, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
       if (arena == MAP_FAILED) {
               pthread_keys_max = 0;
               return NULL;
       }

       pthread__tsd_list = (void *)arena;
       arena += sizeof(*pthread__tsd_list) * pthread_keys_max;
       pthread__tsd_destructors = (void *)arena;
       arena += sizeof(*pthread__tsd_destructors) * pthread_keys_max;
       return arena;
}

int
pthread_key_create(pthread_key_t *key, void (*destructor)(void *))
{
       int i;

       if (__predict_false(__uselibcstub))
               return __libc_thr_keycreate_stub(key, destructor);

       /* Get a lock on the allocation list */
       pthread_mutex_lock(&tsd_mutex);

       /* Find an available slot:
        * The condition for an available slot is one with the destructor
        * not being NULL. If the desired destructor is NULL we set it to
        * our own internal destructor to satisfy the non NULL condition.
        */
       /* 1. Search from "nextkey" to the end of the list. */
       for (i = nextkey; i < pthread_keys_max; i++)
               if (pthread__tsd_destructors[i] == NULL)
                       break;

       if (i == pthread_keys_max) {
               /* 2. If that didn't work, search from the start
                *    of the list back to "nextkey".
                */
               for (i = 0; i < nextkey; i++)
                       if (pthread__tsd_destructors[i] == NULL)
                               break;

               if (i == nextkey) {
                       /* If we didn't find one here, there isn't one
                        * to be found.
                        */
                       pthread_mutex_unlock(&tsd_mutex);
                       return EAGAIN;
               }
       }

       /* Got one. */
       pthread__assert(PTQ_EMPTY(&pthread__tsd_list[i]));
       pthread__tsd_destructors[i] = destructor ? destructor : null_destructor;

       nextkey = (i + 1) % pthread_keys_max;
       pthread_mutex_unlock(&tsd_mutex);
       *key = i;

       return 0;
}

/*
* Each thread holds an array of pthread_keys_max pt_specific list
* elements. When an element is used it is inserted into the appropriate
* key bucket of pthread__tsd_list. This means that ptqe_prev == NULL,
* means that the element is not threaded, ptqe_prev != NULL it is
* already part of the list. If a key is set to a non-NULL value for the
* first time, it is added to the list.
*
* We keep this global array of lists of threads that have called
* pthread_set_specific with non-null values, for each key so that
* we don't have to check all threads for non-NULL values in
* pthread_key_destroy.
*
* The assumption here is that a concurrent pthread_key_delete is already
* undefined behavior. The mutex is taken only once per thread/key
* combination.
*
* We could keep an accounting of the number of specific used
* entries per thread, so that we can update pt_havespecific when we delete
* the last one, but we don't bother for now
*/
int
pthread__add_specific(pthread_t self, pthread_key_t key, const void *value)
{
       struct pt_specific *pt;

       pthread__assert(key >= 0 && key < pthread_keys_max);

       pthread__assert(pthread__tsd_destructors[key] != NULL);
       pt = &self->pt_specific[key];
       self->pt_havespecific = 1;
       if (value && !pt->pts_next.ptqe_prev) {
               pthread_mutex_lock(&tsd_mutex);
               PTQ_INSERT_HEAD(&pthread__tsd_list[key], pt, pts_next);
               pthread_mutex_unlock(&tsd_mutex);
       }
       pt->pts_value = __UNCONST(value);

       return 0;
}

int
pthread_key_delete(pthread_key_t key)
{
       /*
        * This is tricky.  The standard says of pthread_key_create()
        * that new keys have the value NULL associated with them in
        * all threads.  According to people who were present at the
        * standardization meeting, that requirement was written
        * before pthread_key_delete() was introduced, and not
        * reconsidered when it was.
        *
        * See David Butenhof's article in comp.programming.threads:
        * Subject: Re: TSD key reusing issue
        * Message-ID: <[email protected]>
        * Date: Thu, 21 Feb 2002 09:06:17 -0500
        *       http://groups.google.com/groups?\
        *       hl=en&selm=u97d8.29%24fL6.200%40news.cpqcorp.net
        *
        * Given:
        *
        * 1: Applications are not required to clear keys in all
        *    threads before calling pthread_key_delete().
        * 2: Clearing pointers without running destructors is a
        *    memory leak.
        * 3: The pthread_key_delete() function is expressly forbidden
        *    to run any destructors.
        *
        * Option 1: Make this function effectively a no-op and
        * prohibit key reuse. This is a possible resource-exhaustion
        * problem given that we have a static storage area for keys,
        * but having a non-static storage area would make
        * pthread_setspecific() expensive (might need to realloc the
        * TSD array).
        *
        * Option 2: Ignore the specified behavior of
        * pthread_key_create() and leave the old values. If an
        * application deletes a key that still has non-NULL values in
        * some threads... it's probably a memory leak and hence
        * incorrect anyway, and we're within our rights to let the
        * application lose. However, it's possible (if unlikely) that
        * the application is storing pointers to non-heap data, or
        * non-pointers that have been wedged into a void pointer, so
        * we can't entirely write off such applications as incorrect.
        * This could also lead to running (new) destructors on old
        * data that was never supposed to be associated with that
        * destructor.
        *
        * Option 3: Follow the specified behavior of
        * pthread_key_create().  Either pthread_key_create() or
        * pthread_key_delete() would then have to clear the values in
        * every thread's slot for that key. In order to guarantee the
        * visibility of the NULL value in other threads, there would
        * have to be synchronization operations in both the clearer
        * and pthread_getspecific().  Putting synchronization in
        * pthread_getspecific() is a big performance lose.  But in
        * reality, only (buggy) reuse of an old key would require
        * this synchronization; for a new key, there has to be a
        * memory-visibility propagating event between the call to
        * pthread_key_create() and pthread_getspecific() with that
        * key, so setting the entries to NULL without synchronization
        * will work, subject to problem (2) above. However, it's kind
        * of slow.
        *
        * Note that the argument in option 3 only applies because we
        * keep TSD in ordinary memory which follows the pthreads
        * visibility rules. The visibility rules are not required by
        * the standard to apply to TSD, so the argument doesn't
        * apply in general, just to this implementation.
        */

       /*
        * We do option 3; we find the list of all pt_specific structures
        * threaded on the key we are deleting, unthread them, and set the
        * pointer to NULL. Finally we unthread the entry, freeing it for
        * further use.
        *
        * We don't call the destructor here, it is the responsibility
        * of the application to cleanup the storage:
        *      http://pubs.opengroup.org/onlinepubs/9699919799/functions/\
        *      pthread_key_delete.html
        */
       struct pt_specific *pt;

       if (__predict_false(__uselibcstub))
               return __libc_thr_keydelete_stub(key);

       pthread__assert(key >= 0 && key < pthread_keys_max);

       pthread_mutex_lock(&tsd_mutex);

       pthread__assert(pthread__tsd_destructors[key] != NULL);

       while ((pt = PTQ_FIRST(&pthread__tsd_list[key])) != NULL) {
               PTQ_REMOVE(&pthread__tsd_list[key], pt, pts_next);
               pt->pts_value = NULL;
               pt->pts_next.ptqe_prev = NULL;
       }

       pthread__tsd_destructors[key] = NULL;
       pthread_mutex_unlock(&tsd_mutex);

       return 0;
}

/* Perform thread-exit-time destruction of thread-specific data. */
void
pthread__destroy_tsd(pthread_t self)
{
       int i, done, iterations;
       void *val;
       void (*destructor)(void *);

       if (!self->pt_havespecific)
               return;

       /* Butenhof, section 5.4.2 (page 167):
        *
        * ``Also, Pthreads sets the thread-specific data value for a
        * key to NULL before calling that key's destructor (passing
        * the previous value of the key) when a thread terminates [*].
        * ...
        * [*] That is, unfortunately, not what the standard
        * says. This is one of the problems with formal standards -
        * they say what they say, not what they were intended to
        * say. Somehow, an error crept in, and the sentence
        * specifying that "the implementation clears the
        * thread-specific data value before calling the destructor"
        * was deleted. Nobody noticed, and the standard was approved
        * with the error. So the standard says (by omission) that if
        * you want to write a portable application using
        * thread-specific data, that will not hang on thread
        * termination, you must call pthread_setspecific within your
        * destructor function to change the value to NULL. This would
        * be silly, and any serious implementation of Pthreads will
        * violate the standard in this respect. Of course, the
        * standard will be fixed, probably by the 1003.1n amendment
        * (assorted corrections to 1003.1c-1995), but that will take
        * a while.''
        */

       /* We're not required to try very hard */
       iterations = PTHREAD_DESTRUCTOR_ITERATIONS;
       do {
               done = 1;
               for (i = 0; i < pthread_keys_max; i++) {
                       struct pt_specific *pt = &self->pt_specific[i];
                       if (pt->pts_next.ptqe_prev == NULL)
                               continue;
                       pthread_mutex_lock(&tsd_mutex);

                       if (pt->pts_next.ptqe_prev != NULL)  {
                               PTQ_REMOVE(&pthread__tsd_list[i], pt, pts_next);
                               val = pt->pts_value;
                               pt->pts_value = NULL;
                               pt->pts_next.ptqe_prev = NULL;
                               destructor = pthread__tsd_destructors[i];
                       } else
                               destructor = NULL;

                       pthread_mutex_unlock(&tsd_mutex);
                       if (destructor != NULL && val != NULL) {
                               done = 0;
                               (*destructor)(val);
                       }
               }
       } while (!done && --iterations);

       self->pt_havespecific = 0;
}

void
pthread__copy_tsd(pthread_t self)
{
       for (size_t key = 0; key < TSD_KEYS_MAX; key++) {

               if (__libc_tsd[key].tsd_inuse == 0)
                       continue;

               pthread__assert(pthread__tsd_destructors[key] == NULL);
               pthread__tsd_destructors[key] = __libc_tsd[key].tsd_dtor ?
                   __libc_tsd[key].tsd_dtor : null_destructor;
               nextkey = (key + 1) % pthread_keys_max;

               self->pt_havespecific = 1;
               struct pt_specific *pt = &self->pt_specific[key];
               pt->pts_value = __libc_tsd[key].tsd_val;
               __libc_tsd[key].tsd_inuse = 0;
       }
}