/*      $NetBSD: pthread_mutex.c,v 1.83 2022/04/10 10:38:33 riastradh Exp $     */

/*-
* Copyright (c) 2001, 2003, 2006, 2007, 2008, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, by Jason R. Thorpe, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* To track threads waiting for mutexes to be released, we use lockless
* lists built on atomic operations and memory barriers.
*
* A simple spinlock would be faster and make the code easier to
* follow, but spinlocks are problematic in userspace.  If a thread is
* preempted by the kernel while holding a spinlock, any other thread
* attempting to acquire that spinlock will needlessly busy wait.
*
* There is no good way to know that the holding thread is no longer
* running, nor to request a wake-up once it has begun running again.
* Of more concern, threads in the SCHED_FIFO class do not have a
* limited time quantum and so could spin forever, preventing the
* thread holding the spinlock from getting CPU time: it would never
* be released.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: pthread_mutex.c,v 1.83 2022/04/10 10:38:33 riastradh Exp $");

/* Need to use libc-private names for atomic operations. */
#include "../../common/lib/libc/atomic/atomic_op_namespace.h"

#include <sys/types.h>
#include <sys/lwpctl.h>
#include <sys/sched.h>
#include <sys/lock.h>

#include <errno.h>
#include <limits.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#include <stdio.h>

#include "pthread.h"
#include "pthread_int.h"
#include "reentrant.h"

#define MUTEX_RECURSIVE_BIT             ((uintptr_t)0x02)
#define MUTEX_PROTECT_BIT               ((uintptr_t)0x08)
#define MUTEX_THREAD                    ((uintptr_t)~0x0f)

#define MUTEX_RECURSIVE(x)              ((uintptr_t)(x) & MUTEX_RECURSIVE_BIT)
#define MUTEX_PROTECT(x)                ((uintptr_t)(x) & MUTEX_PROTECT_BIT)
#define MUTEX_OWNER(x)                  ((uintptr_t)(x) & MUTEX_THREAD)

#define MUTEX_GET_TYPE(x)               \
   ((int)(((uintptr_t)(x) & 0x000000ff) >> 0))
#define MUTEX_SET_TYPE(x, t)            \
   (x) = (void *)(((uintptr_t)(x) & ~0x000000ff) | ((t) << 0))
#define MUTEX_GET_PROTOCOL(x)           \
   ((int)(((uintptr_t)(x) & 0x0000ff00) >> 8))
#define MUTEX_SET_PROTOCOL(x, p)        \
   (x) = (void *)(((uintptr_t)(x) & ~0x0000ff00) | ((p) << 8))
#define MUTEX_GET_CEILING(x)            \
   ((int)(((uintptr_t)(x) & 0x00ff0000) >> 16))
#define MUTEX_SET_CEILING(x, c) \
   (x) = (void *)(((uintptr_t)(x) & ~0x00ff0000) | ((c) << 16))

#if __GNUC_PREREQ__(3, 0)
#define NOINLINE                __attribute ((noinline))
#else
#define NOINLINE                /* nothing */
#endif

struct waiter {
       struct waiter   *volatile next;
       lwpid_t         volatile lid;
};

static void     pthread__mutex_wakeup(pthread_t, struct pthread__waiter *);
static int      pthread__mutex_lock_slow(pthread_mutex_t *,
   const struct timespec *);
static void     pthread__mutex_pause(void);

int             _pthread_mutex_held_np(pthread_mutex_t *);
pthread_t       _pthread_mutex_owner_np(pthread_mutex_t *);

__weak_alias(pthread_mutex_held_np,_pthread_mutex_held_np)
__weak_alias(pthread_mutex_owner_np,_pthread_mutex_owner_np)

__strong_alias(__libc_mutex_init,pthread_mutex_init)
__strong_alias(__libc_mutex_lock,pthread_mutex_lock)
__strong_alias(__libc_mutex_trylock,pthread_mutex_trylock)
__strong_alias(__libc_mutex_unlock,pthread_mutex_unlock)
__strong_alias(__libc_mutex_destroy,pthread_mutex_destroy)

__strong_alias(__libc_mutexattr_init,pthread_mutexattr_init)
__strong_alias(__libc_mutexattr_destroy,pthread_mutexattr_destroy)
__strong_alias(__libc_mutexattr_settype,pthread_mutexattr_settype)

int
pthread_mutex_init(pthread_mutex_t *ptm, const pthread_mutexattr_t *attr)
{
       uintptr_t type, proto, val, ceil;

#if 0
       /*
        * Always initialize the mutex structure, maybe be used later
        * and the cost should be minimal.
        */
       if (__predict_false(__uselibcstub))
               return __libc_mutex_init_stub(ptm, attr);
#endif

       pthread__error(EINVAL, "Invalid mutes attribute",
           attr == NULL || attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       if (attr == NULL) {
               type = PTHREAD_MUTEX_NORMAL;
               proto = PTHREAD_PRIO_NONE;
               ceil = 0;
       } else {
               val = (uintptr_t)attr->ptma_private;

               type = MUTEX_GET_TYPE(val);
               proto = MUTEX_GET_PROTOCOL(val);
               ceil = MUTEX_GET_CEILING(val);
       }
       switch (type) {
       case PTHREAD_MUTEX_ERRORCHECK:
               __cpu_simple_lock_set(&ptm->ptm_errorcheck);
               ptm->ptm_owner = NULL;
               break;
       case PTHREAD_MUTEX_RECURSIVE:
               __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
               ptm->ptm_owner = (void *)MUTEX_RECURSIVE_BIT;
               break;
       default:
               __cpu_simple_lock_clear(&ptm->ptm_errorcheck);
               ptm->ptm_owner = NULL;
               break;
       }
       switch (proto) {
       case PTHREAD_PRIO_PROTECT:
               val = (uintptr_t)ptm->ptm_owner;
               val |= MUTEX_PROTECT_BIT;
               ptm->ptm_owner = (void *)val;
               break;

       }
       ptm->ptm_magic = _PT_MUTEX_MAGIC;
       ptm->ptm_waiters = NULL;
       ptm->ptm_recursed = 0;
       ptm->ptm_ceiling = (unsigned char)ceil;

       return 0;
}

int
pthread_mutex_destroy(pthread_mutex_t *ptm)
{

       if (__predict_false(__uselibcstub))
               return __libc_mutex_destroy_stub(ptm);

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);
       pthread__error(EBUSY, "Destroying locked mutex",
           MUTEX_OWNER(ptm->ptm_owner) == 0);

       ptm->ptm_magic = _PT_MUTEX_DEAD;
       return 0;
}

int
pthread_mutex_lock(pthread_mutex_t *ptm)
{
       pthread_t self;
       void *val;

       if (__predict_false(__uselibcstub))
               return __libc_mutex_lock_stub(ptm);

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

       self = pthread__self();
       val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
       if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_enter();
#endif
               return 0;
       }
       return pthread__mutex_lock_slow(ptm, NULL);
}

int
pthread_mutex_timedlock(pthread_mutex_t* ptm, const struct timespec *ts)
{
       pthread_t self;
       void *val;

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

       self = pthread__self();
       val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
       if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_enter();
#endif
               return 0;
       }
       return pthread__mutex_lock_slow(ptm, ts);
}

/* We want function call overhead. */
NOINLINE static void
pthread__mutex_pause(void)
{

       pthread__smt_pause();
}

/*
* Spin while the holder is running.  'lwpctl' gives us the true
* status of the thread.
*/
NOINLINE static void *
pthread__mutex_spin(pthread_mutex_t *ptm, pthread_t owner)
{
       pthread_t thread;
       unsigned int count, i;

       for (count = 2;; owner = ptm->ptm_owner) {
               thread = (pthread_t)MUTEX_OWNER(owner);
               if (thread == NULL)
                       break;
               if (thread->pt_lwpctl->lc_curcpu == LWPCTL_CPU_NONE)
                       break;
               if (count < 128)
                       count += count;
               for (i = count; i != 0; i--)
                       pthread__mutex_pause();
       }

       return owner;
}

NOINLINE static int
pthread__mutex_lock_slow(pthread_mutex_t *ptm, const struct timespec *ts)
{
       void *newval, *owner, *next;
       struct waiter waiter;
       pthread_t self;
       int serrno;
       int error;

       owner = ptm->ptm_owner;
       self = pthread__self();
       serrno = errno;

       pthread__assert(self->pt_lid != 0);

       /* Recursive or errorcheck? */
       if (MUTEX_OWNER(owner) == (uintptr_t)self) {
               if (MUTEX_RECURSIVE(owner)) {
                       if (ptm->ptm_recursed == INT_MAX)
                               return EAGAIN;
                       ptm->ptm_recursed++;
                       return 0;
               }
               if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck))
                       return EDEADLK;
       }

       /* priority protect */
       if (MUTEX_PROTECT(owner) && _sched_protect(ptm->ptm_ceiling) == -1) {
               error = errno;
               errno = serrno;
               return error;
       }

       for (;;) {
               /* If it has become free, try to acquire it again. */
               if (MUTEX_OWNER(owner) == 0) {
                       newval = (void *)((uintptr_t)self | (uintptr_t)owner);
                       next = atomic_cas_ptr(&ptm->ptm_owner, owner, newval);
                       if (__predict_false(next != owner)) {
                               owner = next;
                               continue;
                       }
                       errno = serrno;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
                       membar_enter();
#endif
                       return 0;
               } else if (MUTEX_OWNER(owner) != (uintptr_t)self) {
                       /* Spin while the owner is running. */
                       owner = pthread__mutex_spin(ptm, owner);
                       if (MUTEX_OWNER(owner) == 0) {
                               continue;
                       }
               }

               /*
                * Nope, still held.  Add thread to the list of waiters.
                * Issue a memory barrier to ensure stores to 'waiter'
                * are visible before we enter the list.
                */
               waiter.next = ptm->ptm_waiters;
               waiter.lid = self->pt_lid;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_producer();
#endif
               next = atomic_cas_ptr(&ptm->ptm_waiters, waiter.next, &waiter);
               if (next != waiter.next) {
                       owner = ptm->ptm_owner;
                       continue;
               }

               /*
                * If the mutex has become free since entering self onto the
                * waiters list, need to wake everybody up (including self)
                * and retry.  It's possible to race with an unlocking
                * thread, so self may have already been awoken.
                */
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_enter();
#endif
               if (MUTEX_OWNER(ptm->ptm_owner) == 0) {
                       pthread__mutex_wakeup(self,
                           atomic_swap_ptr(&ptm->ptm_waiters, NULL));
               }

               /*
                * We must not proceed until told that we are no longer
                * waiting (via waiter.lid being set to zero).  Otherwise
                * it's unsafe to re-enter "waiter" onto the waiters list.
                */
               while (waiter.lid != 0) {
                       error = _lwp_park(CLOCK_REALTIME, TIMER_ABSTIME,
                           __UNCONST(ts), 0, NULL, NULL);
                       if (error < 0 && errno == ETIMEDOUT) {
                               /* Remove self from waiters list */
                               pthread__mutex_wakeup(self,
                                   atomic_swap_ptr(&ptm->ptm_waiters, NULL));

                               /*
                                * Might have raced with another thread to
                                * do the wakeup.  In any case there will be
                                * a wakeup for sure.  Eat it and wait for
                                * waiter.lid to clear.
                                */
                               while (waiter.lid != 0) {
                                       (void)_lwp_park(CLOCK_MONOTONIC, 0,
                                           NULL, 0, NULL, NULL);
                               }

                               /* Priority protect */
                               if (MUTEX_PROTECT(owner))
                                       (void)_sched_protect(-1);
                               errno = serrno;
                               return ETIMEDOUT;
                       }
               }
               owner = ptm->ptm_owner;
       }
}

int
pthread_mutex_trylock(pthread_mutex_t *ptm)
{
       pthread_t self;
       void *val, *new, *next;

       if (__predict_false(__uselibcstub))
               return __libc_mutex_trylock_stub(ptm);

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

       self = pthread__self();
       val = atomic_cas_ptr(&ptm->ptm_owner, NULL, self);
       if (__predict_true(val == NULL)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_enter();
#endif
               return 0;
       }

       if (MUTEX_RECURSIVE(val)) {
               if (MUTEX_OWNER(val) == 0) {
                       new = (void *)((uintptr_t)self | (uintptr_t)val);
                       next = atomic_cas_ptr(&ptm->ptm_owner, val, new);
                       if (__predict_true(next == val)) {
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
                               membar_enter();
#endif
                               return 0;
                       }
               }
               if (MUTEX_OWNER(val) == (uintptr_t)self) {
                       if (ptm->ptm_recursed == INT_MAX)
                               return EAGAIN;
                       ptm->ptm_recursed++;
                       return 0;
               }
       }

       return EBUSY;
}

int
pthread_mutex_unlock(pthread_mutex_t *ptm)
{
       pthread_t self;
       void *val, *newval;
       int error;

       if (__predict_false(__uselibcstub))
               return __libc_mutex_unlock_stub(ptm);

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

#ifndef PTHREAD__ATOMIC_IS_MEMBAR
       membar_exit();
#endif
       error = 0;
       self = pthread__self();
       newval = NULL;

       val = atomic_cas_ptr(&ptm->ptm_owner, self, newval);
       if (__predict_false(val != self)) {
               bool weown = (MUTEX_OWNER(val) == (uintptr_t)self);
               if (__SIMPLELOCK_LOCKED_P(&ptm->ptm_errorcheck)) {
                       if (!weown) {
                               error = EPERM;
                               newval = val;
                       } else {
                               newval = NULL;
                       }
               } else if (MUTEX_RECURSIVE(val)) {
                       if (!weown) {
                               error = EPERM;
                               newval = val;
                       } else if (ptm->ptm_recursed) {
                               ptm->ptm_recursed--;
                               newval = val;
                       } else {
                               newval = (pthread_t)MUTEX_RECURSIVE_BIT;
                       }
               } else {
                       pthread__error(EPERM,
                           "Unlocking unlocked mutex", (val != NULL));
                       pthread__error(EPERM,
                           "Unlocking mutex owned by another thread", weown);
                       newval = NULL;
               }

               /*
                * Release the mutex.  If there appear to be waiters, then
                * wake them up.
                */
               if (newval != val) {
                       val = atomic_swap_ptr(&ptm->ptm_owner, newval);
                       if (__predict_false(MUTEX_PROTECT(val))) {
                               /* restore elevated priority */
                               (void)_sched_protect(-1);
                       }
               }
       }

       /*
        * Finally, wake any waiters and return.
        */
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
       membar_enter();
#endif
       if (MUTEX_OWNER(newval) == 0 && ptm->ptm_waiters != NULL) {
               pthread__mutex_wakeup(self,
                   atomic_swap_ptr(&ptm->ptm_waiters, NULL));
       }
       return error;
}

/*
* pthread__mutex_wakeup: unpark threads waiting for us
*/

static void
pthread__mutex_wakeup(pthread_t self, struct pthread__waiter *cur)
{
       lwpid_t lids[PTHREAD__UNPARK_MAX];
       const size_t mlid = pthread__unpark_max;
       struct pthread__waiter *next;
       size_t nlid;

       /*
        * Pull waiters from the queue and add to our list.  Use a memory
        * barrier to ensure that we safely read the value of waiter->next
        * before the awoken thread sees waiter->lid being cleared.
        */
       membar_datadep_consumer(); /* for alpha */
       for (nlid = 0; cur != NULL; cur = next) {
               if (nlid == mlid) {
                       (void)_lwp_unpark_all(lids, nlid, NULL);
                       nlid = 0;
               }
               next = cur->next;
               pthread__assert(cur->lid != 0);
               lids[nlid++] = cur->lid;
               membar_exit();
               cur->lid = 0;
               /* No longer safe to touch 'cur' */
       }
       if (nlid == 1) {
               (void)_lwp_unpark(lids[0], NULL);
       } else if (nlid > 1) {
               (void)_lwp_unpark_all(lids, nlid, NULL);
       }
}

int
pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
#if 0
       if (__predict_false(__uselibcstub))
               return __libc_mutexattr_init_stub(attr);
#endif

       attr->ptma_magic = _PT_MUTEXATTR_MAGIC;
       attr->ptma_private = (void *)PTHREAD_MUTEX_DEFAULT;
       return 0;
}

int
pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
       if (__predict_false(__uselibcstub))
               return __libc_mutexattr_destroy_stub(attr);

       pthread__error(EINVAL, "Invalid mutex attribute",
           attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       attr->ptma_magic = _PT_MUTEXATTR_DEAD;

       return 0;
}

int
pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *typep)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
           attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       *typep = MUTEX_GET_TYPE(attr->ptma_private);
       return 0;
}

int
pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{

       if (__predict_false(__uselibcstub))
               return __libc_mutexattr_settype_stub(attr, type);

       pthread__error(EINVAL, "Invalid mutex attribute",
           attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       switch (type) {
       case PTHREAD_MUTEX_NORMAL:
       case PTHREAD_MUTEX_ERRORCHECK:
       case PTHREAD_MUTEX_RECURSIVE:
               MUTEX_SET_TYPE(attr->ptma_private, type);
               return 0;
       default:
               return EINVAL;
       }
}

int
pthread_mutexattr_getprotocol(const pthread_mutexattr_t *attr, int*proto)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
           attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       *proto = MUTEX_GET_PROTOCOL(attr->ptma_private);
       return 0;
}

int
pthread_mutexattr_setprotocol(pthread_mutexattr_t* attr, int proto)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
           attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       switch (proto) {
       case PTHREAD_PRIO_NONE:
       case PTHREAD_PRIO_PROTECT:
               MUTEX_SET_PROTOCOL(attr->ptma_private, proto);
               return 0;
       case PTHREAD_PRIO_INHERIT:
               return ENOTSUP;
       default:
               return EINVAL;
       }
}

int
pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *attr, int *ceil)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
               attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       *ceil = MUTEX_GET_CEILING(attr->ptma_private);
       return 0;
}

int
pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr, int ceil)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
               attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       if (ceil & ~0xff)
               return EINVAL;

       MUTEX_SET_CEILING(attr->ptma_private, ceil);
       return 0;
}

#ifdef _PTHREAD_PSHARED
int
pthread_mutexattr_getpshared(const pthread_mutexattr_t * __restrict attr,
   int * __restrict pshared)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
               attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       *pshared = PTHREAD_PROCESS_PRIVATE;
       return 0;
}

int
pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int pshared)
{

       pthread__error(EINVAL, "Invalid mutex attribute",
               attr->ptma_magic == _PT_MUTEXATTR_MAGIC);

       switch(pshared) {
       case PTHREAD_PROCESS_PRIVATE:
               return 0;
       case PTHREAD_PROCESS_SHARED:
               return ENOSYS;
       }
       return EINVAL;
}
#endif

/*
* In order to avoid unnecessary contention on interlocking mutexes, we try
* to defer waking up threads until we unlock the mutex.  The threads will
* be woken up when the calling thread (self) releases the mutex.
*/
void
pthread__mutex_deferwake(pthread_t self, pthread_mutex_t *ptm,
   struct pthread__waiter *head)
{
       struct pthread__waiter *tail, *n, *o;

       pthread__assert(head != NULL);

       if (__predict_false(ptm == NULL ||
           MUTEX_OWNER(ptm->ptm_owner) != (uintptr_t)self)) {
               pthread__mutex_wakeup(self, head);
               return;
       }

       /* This is easy if no existing waiters on mutex. */
       if (atomic_cas_ptr(&ptm->ptm_waiters, NULL, head) == NULL) {
               return;
       }

       /* Oops need to append.  Find the tail of the new queue. */
       for (tail = head; tail->next != NULL; tail = tail->next) {
               /* nothing */
       }

       /* Append atomically. */
       for (o = ptm->ptm_waiters;; o = n) {
               tail->next = o;
#ifndef PTHREAD__ATOMIC_IS_MEMBAR
               membar_producer();
#endif
               n = atomic_cas_ptr(&ptm->ptm_waiters, o, head);
               if (__predict_true(n == o)) {
                       break;
               }
       }
}

int
pthread_mutex_getprioceiling(const pthread_mutex_t *ptm, int *ceil)
{

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

       *ceil = ptm->ptm_ceiling;
       return 0;
}

int
pthread_mutex_setprioceiling(pthread_mutex_t *ptm, int ceil, int *old_ceil)
{
       int error;

       pthread__error(EINVAL, "Invalid mutex",
           ptm->ptm_magic == _PT_MUTEX_MAGIC);

       error = pthread_mutex_lock(ptm);
       if (error == 0) {
               *old_ceil = ptm->ptm_ceiling;
               /*check range*/
               ptm->ptm_ceiling = ceil;
               pthread_mutex_unlock(ptm);
       }
       return error;
}

int
_pthread_mutex_held_np(pthread_mutex_t *ptm)
{

       return MUTEX_OWNER(ptm->ptm_owner) == (uintptr_t)pthread__self();
}

pthread_t
_pthread_mutex_owner_np(pthread_mutex_t *ptm)
{

       return (pthread_t)MUTEX_OWNER(ptm->ptm_owner);
}