/*      $NetBSD: n_log.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $ */
/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: n_log.c,v 1.9 2024/07/16 14:52:50 riastradh Exp $");

#ifndef lint
#if 0
static char sccsid[] = "@(#)log.c       8.2 (Berkeley) 11/30/93";
#endif
#endif /* not lint */

#include "namespace.h"

#include <math.h>
#include <errno.h>

#include "mathimpl.h"

__weak_alias(logl, _logl)
__strong_alias(_logl, _log)

/* Table-driven natural logarithm.
*
* This code was derived, with minor modifications, from:
*      Peter Tang, "Table-Driven Implementation of the
*      Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
*      Math Software, vol 16. no 4, pp 378-400, Dec 1990).
*
* Calculates log(2^m*F*(1+f/F)), |f/j| <= 1/256,
* where F = j/128 for j an integer in [0, 128].
*
* log(2^m) = log2_hi*m + log2_tail*m
* since m is an integer, the dominant term is exact.
* m has at most 10 digits (for subnormal numbers),
* and log2_hi has 11 trailing zero bits.
*
* log(F) = logF_hi[j] + logF_lo[j] is in tabular form in log_table.h
* logF_hi[] + 512 is exact.
*
* log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
* the leading term is calculated to extra precision in two
* parts, the larger of which adds exactly to the dominant
* m and F terms.
* There are two cases:
*      1. when m, j are non-zero (m | j), use absolute
*         precision for the leading term.
*      2. when m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
*         In this case, use a relative precision of 24 bits.
* (This is done differently in the original paper)
*
* Special cases:
*      0       return signalling -Inf
*      neg     return signalling NaN
*      +Inf    return +Inf
*/

#if defined(__vax__) || defined(tahoe)
#define _IEEE           0
#define TRUNC(x)        x = (double) (float) (x)
#else
#define _IEEE           1
#define endian          (((*(int *) &one)) ? 1 : 0)
#define TRUNC(x)        *(((int *) &x) + endian) &= 0xf8000000
#define infnan(x)       0.0
#endif

#define N 128

/* Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
* Used for generation of extend precision logarithms.
* The constant 35184372088832 is 2^45, so the divide is exact.
* It ensures correct reading of logF_head, even for inaccurate
* decimal-to-binary conversion routines.  (Everybody gets the
* right answer for integers less than 2^53.)
* Values for log(F) were generated using error < 10^-57 absolute
* with the bc -l package.
*/
static const double     A1 =      .08333333333333178827;
static const double     A2 =      .01250000000377174923;
static const double     A3 =     .002232139987919447809;
static const double     A4 =    .0004348877777076145742;

static const double logF_head[N+1] = {
       0.,
       .007782140442060381246,
       .015504186535963526694,
       .023167059281547608406,
       .030771658666765233647,
       .038318864302141264488,
       .045809536031242714670,
       .053244514518837604555,
       .060624621816486978786,
       .067950661908525944454,
       .075223421237524235039,
       .082443669210988446138,
       .089612158689760690322,
       .096729626458454731618,
       .103796793681567578460,
       .110814366340264314203,
       .117783035656430001836,
       .124703478501032805070,
       .131576357788617315236,
       .138402322859292326029,
       .145182009844575077295,
       .151916042025732167530,
       .158605030176659056451,
       .165249572895390883786,
       .171850256926518341060,
       .178407657472689606947,
       .184922338493834104156,
       .191394852999565046047,
       .197825743329758552135,
       .204215541428766300668,
       .210564769107350002741,
       .216873938300523150246,
       .223143551314024080056,
       .229374101064877322642,
       .235566071312860003672,
       .241719936886966024758,
       .247836163904594286577,
       .253915209980732470285,
       .259957524436686071567,
       .265963548496984003577,
       .271933715484010463114,
       .277868451003087102435,
       .283768173130738432519,
       .289633292582948342896,
       .295464212893421063199,
       .301261330578199704177,
       .307025035294827830512,
       .312755710004239517729,
       .318453731118097493890,
       .324119468654316733591,
       .329753286372579168528,
       .335355541920762334484,
       .340926586970454081892,
       .346466767346100823488,
       .351976423156884266063,
       .357455888922231679316,
       .362905493689140712376,
       .368325561158599157352,
       .373716409793814818840,
       .379078352934811846353,
       .384411698910298582632,
       .389716751140440464951,
       .394993808240542421117,
       .400243164127459749579,
       .405465108107819105498,
       .410659924985338875558,
       .415827895143593195825,
       .420969294644237379543,
       .426084395310681429691,
       .431173464818130014464,
       .436236766774527495726,
       .441274560805140936281,
       .446287102628048160113,
       .451274644139630254358,
       .456237433481874177232,
       .461175715122408291790,
       .466089729924533457960,
       .470979715219073113985,
       .475845904869856894947,
       .480688529345570714212,
       .485507815781602403149,
       .490303988045525329653,
       .495077266798034543171,
       .499827869556611403822,
       .504556010751912253908,
       .509261901790523552335,
       .513945751101346104405,
       .518607764208354637958,
       .523248143765158602036,
       .527867089620485785417,
       .532464798869114019908,
       .537041465897345915436,
       .541597282432121573947,
       .546132437597407260909,
       .550647117952394182793,
       .555141507540611200965,
       .559615787935399566777,
       .564070138285387656651,
       .568504735352689749561,
       .572919753562018740922,
       .577315365035246941260,
       .581691739635061821900,
       .586049045003164792433,
       .590387446602107957005,
       .594707107746216934174,
       .599008189645246602594,
       .603290851438941899687,
       .607555250224322662688,
       .611801541106615331955,
       .616029877215623855590,
       .620240409751204424537,
       .624433288012369303032,
       .628608659422752680256,
       .632766669570628437213,
       .636907462236194987781,
       .641031179420679109171,
       .645137961373620782978,
       .649227946625615004450,
       .653301272011958644725,
       .657358072709030238911,
       .661398482245203922502,
       .665422632544505177065,
       .669430653942981734871,
       .673422675212350441142,
       .677398823590920073911,
       .681359224807238206267,
       .685304003098281100392,
       .689233281238557538017,
       .693147180560117703862
};

static const double logF_tail[N+1] = {
       0.,
       -.00000000000000543229938420049,
        .00000000000000172745674997061,
       -.00000000000001323017818229233,
       -.00000000000001154527628289872,
       -.00000000000000466529469958300,
        .00000000000005148849572685810,
       -.00000000000002532168943117445,
       -.00000000000005213620639136504,
       -.00000000000001819506003016881,
        .00000000000006329065958724544,
        .00000000000008614512936087814,
       -.00000000000007355770219435028,
        .00000000000009638067658552277,
        .00000000000007598636597194141,
        .00000000000002579999128306990,
       -.00000000000004654729747598444,
       -.00000000000007556920687451336,
        .00000000000010195735223708472,
       -.00000000000017319034406422306,
       -.00000000000007718001336828098,
        .00000000000010980754099855238,
       -.00000000000002047235780046195,
       -.00000000000008372091099235912,
        .00000000000014088127937111135,
        .00000000000012869017157588257,
        .00000000000017788850778198106,
        .00000000000006440856150696891,
        .00000000000016132822667240822,
       -.00000000000007540916511956188,
       -.00000000000000036507188831790,
        .00000000000009120937249914984,
        .00000000000018567570959796010,
       -.00000000000003149265065191483,
       -.00000000000009309459495196889,
        .00000000000017914338601329117,
       -.00000000000001302979717330866,
        .00000000000023097385217586939,
        .00000000000023999540484211737,
        .00000000000015393776174455408,
       -.00000000000036870428315837678,
        .00000000000036920375082080089,
       -.00000000000009383417223663699,
        .00000000000009433398189512690,
        .00000000000041481318704258568,
       -.00000000000003792316480209314,
        .00000000000008403156304792424,
       -.00000000000034262934348285429,
        .00000000000043712191957429145,
       -.00000000000010475750058776541,
       -.00000000000011118671389559323,
        .00000000000037549577257259853,
        .00000000000013912841212197565,
        .00000000000010775743037572640,
        .00000000000029391859187648000,
       -.00000000000042790509060060774,
        .00000000000022774076114039555,
        .00000000000010849569622967912,
       -.00000000000023073801945705758,
        .00000000000015761203773969435,
        .00000000000003345710269544082,
       -.00000000000041525158063436123,
        .00000000000032655698896907146,
       -.00000000000044704265010452446,
        .00000000000034527647952039772,
       -.00000000000007048962392109746,
        .00000000000011776978751369214,
       -.00000000000010774341461609578,
        .00000000000021863343293215910,
        .00000000000024132639491333131,
        .00000000000039057462209830700,
       -.00000000000026570679203560751,
        .00000000000037135141919592021,
       -.00000000000017166921336082431,
       -.00000000000028658285157914353,
       -.00000000000023812542263446809,
        .00000000000006576659768580062,
       -.00000000000028210143846181267,
        .00000000000010701931762114254,
        .00000000000018119346366441110,
        .00000000000009840465278232627,
       -.00000000000033149150282752542,
       -.00000000000018302857356041668,
       -.00000000000016207400156744949,
        .00000000000048303314949553201,
       -.00000000000071560553172382115,
        .00000000000088821239518571855,
       -.00000000000030900580513238244,
       -.00000000000061076551972851496,
        .00000000000035659969663347830,
        .00000000000035782396591276383,
       -.00000000000046226087001544578,
        .00000000000062279762917225156,
        .00000000000072838947272065741,
        .00000000000026809646615211673,
       -.00000000000010960825046059278,
        .00000000000002311949383800537,
       -.00000000000058469058005299247,
       -.00000000000002103748251144494,
       -.00000000000023323182945587408,
       -.00000000000042333694288141916,
       -.00000000000043933937969737844,
        .00000000000041341647073835565,
        .00000000000006841763641591466,
        .00000000000047585534004430641,
        .00000000000083679678674757695,
       -.00000000000085763734646658640,
        .00000000000021913281229340092,
       -.00000000000062242842536431148,
       -.00000000000010983594325438430,
        .00000000000065310431377633651,
       -.00000000000047580199021710769,
       -.00000000000037854251265457040,
        .00000000000040939233218678664,
        .00000000000087424383914858291,
        .00000000000025218188456842882,
       -.00000000000003608131360422557,
       -.00000000000050518555924280902,
        .00000000000078699403323355317,
       -.00000000000067020876961949060,
        .00000000000016108575753932458,
        .00000000000058527188436251509,
       -.00000000000035246757297904791,
       -.00000000000018372084495629058,
        .00000000000088606689813494916,
        .00000000000066486268071468700,
        .00000000000063831615170646519,
        .00000000000025144230728376072,
       -.00000000000017239444525614834
};

__weak_alias(log, _log)
double
log(double x)
{
       int m, j;
       double F, f, g, q, u, u2, v, zero = 0.0, one = 1.0;
       volatile double u1;

       /* Catch special cases */
       if (x <= 0) {
               if (_IEEE && x == zero) /* log(0) = -Inf */
                       return (-one/zero);
               else if (_IEEE)         /* log(neg) = NaN */
                       return (zero/zero);
               else if (x == zero)     /* NOT REACHED IF _IEEE */
                       return (infnan(-ERANGE));
               else
                       return (infnan(EDOM));
       } else if (!finite(x)) {
               if (_IEEE)              /* x = NaN, Inf */
                       return (x+x);
               else
                       return (infnan(ERANGE));
       }

       /* Argument reduction: 1 <= g < 2; x/2^m = g;   */
       /* y = F*(1 + f/F) for |f| <= 2^-8              */

       m = logb(x);
       g = ldexp(x, -m);
       if (_IEEE && m == -1022) {
               j = logb(g), m += j;
               g = ldexp(g, -j);
       }
       j = N*(g-1) + .5;
       F = (1.0/N) * j + 1;    /* F*128 is an integer in [128, 512] */
       f = g - F;

       /* Approximate expansion for log(1+f/F) ~= u + q */
       g = 1/(2*F+f);
       u = 2*f*g;
       v = u*u;
       q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));

   /* case 1: u1 = u rounded to 2^-43 absolute.  Since u < 2^-8,
    *         u1 has at most 35 bits, and F*u1 is exact, as F has < 8 bits.
    *         It also adds exactly to |m*log2_hi + log_F_head[j] | < 750
   */
       if (m | j)
               u1 = u + 513, u1 -= 513;

   /* case 2:  |1-x| < 1/256. The m- and j- dependent terms are zero;
    *          u1 = u to 24 bits.
   */
       else
               u1 = u, TRUNC(u1);
       u2 = (2.0*(f - F*u1) - u1*f) * g;
                       /* u1 + u2 = 2f/(2F+f) to extra precision.      */

       /* log(x) = log(2^m*F*(1+f/F)) =                                */
       /* (m*log2_hi+logF_head[j]+u1) + (m*log2_lo+logF_tail[j]+q);    */
       /* (exact) + (tiny)                                             */

       u1 += m*logF_head[N] + logF_head[j];            /* exact */
       u2 = (u2 + logF_tail[j]) + q;                   /* tiny */
       u2 += logF_tail[N]*m;
       return (u1 + u2);
}

/*
* Extra precision variant, returning struct {double a, b;};
* log(x) = a+b to 63 bits, with a is rounded to 26 bits.
*/
struct Double
__log__D(double x)
{
       int m, j;
       double F, f, g, q, u, v, u2;
       volatile double u1;
       struct Double r;

       /* Argument reduction: 1 <= g < 2; x/2^m = g;   */
       /* y = F*(1 + f/F) for |f| <= 2^-8              */

       m = logb(x);
       g = ldexp(x, -m);
       if (_IEEE && m == -1022) {
               j = logb(g), m += j;
               g = ldexp(g, -j);
       }
       j = N*(g-1) + .5;
       F = (1.0/N) * j + 1;
       f = g - F;

       g = 1/(2*F+f);
       u = 2*f*g;
       v = u*u;
       q = u*v*(A1 + v*(A2 + v*(A3 + v*A4)));
       if (m | j)
               u1 = u + 513, u1 -= 513;
       else
               u1 = u, TRUNC(u1);
       u2 = (2.0*(f - F*u1) - u1*f) * g;

       u1 += m*logF_head[N] + logF_head[j];

       u2 +=  logF_tail[j]; u2 += q;
       u2 += logF_tail[N]*m;
       r.a = u1 + u2;                  /* Only difference is here */
       TRUNC(r.a);
       r.b = (u1 - r.a) + u2;
       return (r);
}

__weak_alias(logf, _logf)
float
logf(float x)
{
       return(log((double)x));
}