/*      $NetBSD: n_lgamma.c,v 1.8 2024/06/09 14:09:27 riastradh Exp $ */
/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)lgamma.c    8.2 (Berkeley) 11/30/93";
#endif
#endif /* not lint */

/*
* Coded by Peter McIlroy, Nov 1992;
*
* The financial support of UUNET Communications Services is gratefully
* acknowledged.
*/

#include <math.h>
#include <errno.h>

#include "mathimpl.h"

/* Log gamma function.
* Error:  x > 0 error < 1.3ulp.
*         x > 4, error < 1ulp.
*         x > 9, error < .6ulp.
*         x < 0, all bets are off. (When G(x) ~ 1, log(G(x)) ~ 0)
* Method:
*      x > 6:
*              Use the asymptotic expansion (Stirling's Formula)
*      0 < x < 6:
*              Use gamma(x+1) = x*gamma(x) for argument reduction.
*              Use rational approximation in
*              the range 1.2, 2.5
*              Two approximations are used, one centered at the
*              minimum to ensure monotonicity; one centered at 2
*              to maintain small relative error.
*      x < 0:
*              Use the reflection formula,
*              G(1-x)G(x) = PI/sin(PI*x)
* Special values:
*      non-positive integer    returns +Inf.
*      NaN                     returns NaN
*/
#if defined(__vax__) || defined(tahoe)
#define _IEEE           0
/* double and float have same size exponent field */
#define TRUNC(x)        x = (double) (float) (x)
#else
static int endian;
#define _IEEE           1
#define TRUNC(x)        *(((int *) &x) + endian) &= 0xf8000000
#define infnan(x)       0.0
#endif

static double small_lgam(double);
static double large_lgam(double);
static double neg_lgam(double, int *);
static const double one = 1.0;
int signgam;

#define UNDERFL (1e-1020 * 1e-1020)

#define LEFT    (1.0 - (x0 + .25))
#define RIGHT   (x0 - .218)
/*
* Constants for approximation in [1.244,1.712]
*/
#define x0      0.461632144968362356785
#define x0_lo   -.000000000000000015522348162858676890521
#define a0_hi   -0.12148629128932952880859
#define a0_lo   .0000000007534799204229502
#define r0      -2.771227512955130520e-002
#define r1      -2.980729795228150847e-001
#define r2      -3.257411333183093394e-001
#define r3      -1.126814387531706041e-001
#define r4      -1.129130057170225562e-002
#define r5      -2.259650588213369095e-005
#define s0       1.714457160001714442e+000
#define s1       2.786469504618194648e+000
#define s2       1.564546365519179805e+000
#define s3       3.485846389981109850e-001
#define s4       2.467759345363656348e-002
/*
* Constants for approximation in [1.71, 2.5]
*/
#define a1_hi   4.227843350984671344505727574870e-01
#define a1_lo   4.670126436531227189e-18
#define p0      3.224670334241133695662995251041e-01
#define p1      3.569659696950364669021382724168e-01
#define p2      1.342918716072560025853732668111e-01
#define p3      1.950702176409779831089963408886e-02
#define p4      8.546740251667538090796227834289e-04
#define q0      1.000000000000000444089209850062e+00
#define q1      1.315850076960161985084596381057e+00
#define q2      6.274644311862156431658377186977e-01
#define q3      1.304706631926259297049597307705e-01
#define q4      1.102815279606722369265536798366e-02
#define q5      2.512690594856678929537585620579e-04
#define q6      -1.003597548112371003358107325598e-06
/*
* Stirling's Formula, adjusted for equal-ripple. x in [6,Inf].
*/
#define lns2pi  .418938533204672741780329736405
#define pb0      8.33333333333333148296162562474e-02
#define pb1     -2.77777777774548123579378966497e-03
#define pb2      7.93650778754435631476282786423e-04
#define pb3     -5.95235082566672847950717262222e-04
#define pb4      8.41428560346653702135821806252e-04
#define pb5     -1.89773526463879200348872089421e-03
#define pb6      5.69394463439411649408050664078e-03
#define pb7     -1.44705562421428915453880392761e-02

__weak_alias(lgammal, lgamma)
__weak_alias(lgammal_r, lgamma_r)

double
lgamma(double x)
{

       return lgamma_r(x, &signgam);
}

double
lgamma_r(double x, int *signgamp)
{
       double r;

       *signgamp = 1;
#if _IEEE
       endian = ((*(int *) &one)) ? 1 : 0;
#endif

       if (!finite(x)) {
               if (_IEEE)
                       return (x+x);
               else return (infnan(EDOM));
       }

       if (x > 6 + RIGHT) {
               r = large_lgam(x);
               return (r);
       } else if (x > 1e-16)
               return (small_lgam(x));
       else if (x > -1e-16) {
               if (x < 0)
                       *signgamp = -1, x = -x;
               return (-log(x));
       } else
               return (neg_lgam(x, signgamp));
}

static double
large_lgam(double x)
{
       double z, p, x1;
       struct Double t, u, v;
       u = __log__D(x);
       u.a -= 1.0;
       if (x > 1e15) {
               v.a = x - 0.5;
               TRUNC(v.a);
               v.b = (x - v.a) - 0.5;
               t.a = u.a*v.a;
               t.b = x*u.b + v.b*u.a;
               if (_IEEE == 0 && !finite(t.a))
                       return(infnan(ERANGE));
               return(t.a + t.b);
       }
       x1 = 1./x;
       z = x1*x1;
       p = pb0+z*(pb1+z*(pb2+z*(pb3+z*(pb4+z*(pb5+z*(pb6+z*pb7))))));
                                       /* error in approximation = 2.8e-19 */

       p = p*x1;                       /* error < 2.3e-18 absolute */
                                       /* 0 < p < 1/64 (at x = 5.5) */
       v.a = x = x - 0.5;
       TRUNC(v.a);                     /* truncate v.a to 26 bits. */
       v.b = x - v.a;
       t.a = v.a*u.a;                  /* t = (x-.5)*(log(x)-1) */
       t.b = v.b*u.a + x*u.b;
       t.b += p; t.b += lns2pi;        /* return t + lns2pi + p */
       return (t.a + t.b);
}

static double
small_lgam(double x)
{
       int x_int;
       double y, z, t, r = 0, p, q, hi, lo;
       struct Double rr;
       x_int = (x + .5);
       y = x - x_int;
       if (x_int <= 2 && y > RIGHT) {
               t = y - x0;
               y--; x_int++;
               goto CONTINUE;
       } else if (y < -LEFT) {
               t = y +(1.0-x0);
CONTINUE:
               z = t - x0_lo;
               p = r0+z*(r1+z*(r2+z*(r3+z*(r4+z*r5))));
               q = s0+z*(s1+z*(s2+z*(s3+z*s4)));
               r = t*(z*(p/q) - x0_lo);
               t = .5*t*t;
               z = 1.0;
               switch (x_int) {
               case 6: z  = (y + 5); /* FALLTHROUGH */
               case 5: z *= (y + 4); /* FALLTHROUGH */
               case 4: z *= (y + 3); /* FALLTHROUGH */
               case 3: z *= (y + 2);
                       rr = __log__D(z);
                       rr.b += a0_lo; rr.a += a0_hi;
                       return(((r+rr.b)+t+rr.a));
               case 2: return(((r+a0_lo)+t)+a0_hi);
               case 0: r -= log1p(x); /* FALLTHROUGH */
               default: rr = __log__D(x);
                       rr.a -= a0_hi; rr.b -= a0_lo;
                       return(((r - rr.b) + t) - rr.a);
               }
       } else {
               p = p0+y*(p1+y*(p2+y*(p3+y*p4)));
               q = q0+y*(q1+y*(q2+y*(q3+y*(q4+y*(q5+y*q6)))));
               p = p*(y/q);
               t = (double)(float) y;
               z = y-t;
               hi = (double)(float) (p+a1_hi);
               lo = a1_hi - hi; lo += p; lo += a1_lo;
               r = lo*y + z*hi;        /* q + r = y*(a0+p/q) */
               q = hi*t;
               z = 1.0;
               switch (x_int) {
               case 6: z  = (y + 5); /* FALLTHROUGH */
               case 5: z *= (y + 4); /* FALLTHROUGH */
               case 4: z *= (y + 3); /* FALLTHROUGH */
               case 3: z *= (y + 2);
                       rr = __log__D(z);
                       r += rr.b; r += q;
                       return(rr.a + r);
               case 2: return (q+ r);
               case 0: rr = __log__D(x);
                       r -= rr.b; r -= log1p(x);
                       r += q; r-= rr.a;
                       return(r);
               default: rr = __log__D(x);
                       r -= rr.b;
                       q -= rr.a;
                       return (r+q);
               }
       }
}

static double
neg_lgam(double x, int *signgamp)
{
       int xi;
       double y, z, zero = 0.0;

       /* avoid destructive cancellation as much as possible */
       if (x > -170) {
               xi = x;
               if (xi == x) {
                       if (_IEEE)
                               return(one/zero);
                       else
                               return(infnan(ERANGE));
               }
               y = gamma(x);
               if (y < 0)
                       y = -y, *signgamp = -1;
               return (log(y));
       }
       z = floor(x + .5);
       if (z == x) {           /* convention: G(-(integer)) -> +Inf */
               if (_IEEE)
                       return (one/zero);
               else
                       return (infnan(ERANGE));
       }
       y = .5*ceil(x);
       if (y == ceil(y))
               *signgamp = -1;
       x = -x;
       z = fabs(x + z);        /* 0 < z <= .5 */
       if (z < .25)
               z = sin(M_PI*z);
       else
               z = cos(M_PI*(0.5-z));
       z = log(M_PI/(z*x));
       y = large_lgam(x);
       return (z - y);
}