/*      $NetBSD: n_jn.c,v 1.8 2018/03/05 23:00:55 christos Exp $        */
/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)jn.c        8.2 (Berkeley) 11/30/93";
#endif
#endif /* not lint */

/*
* 16 December 1992
* Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
*/

/*
* ====================================================
* Copyright (C) 1992 by Sun Microsystems, Inc.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* ******************* WARNING ********************
* This is an alpha version of SunPro's FDLIBM (Freely
* Distributable Math Library) for IEEE double precision
* arithmetic. FDLIBM is a basic math library written
* in C that runs on machines that conform to IEEE
* Standard 754/854. This alpha version is distributed
* for testing purpose. Those who use this software
* should report any bugs to
*
*              [email protected]
*
* -- K.C. Ng, Oct 12, 1992
* ************************************************
*/

/*
* jn(int n, double x), yn(int n, double x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
*      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
*      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
*      For n=0, j0(x) is called,
*      for n=1, j1(x) is called,
*      for n<x, forward recursion us used starting
*      from values of j0(x) and j1(x).
*      for n>x, a continued fraction approximation to
*      j(n,x)/j(n-1,x) is evaluated and then backward
*      recursion is used starting from a supposed value
*      for j(n,x). The resulting value of j(0,x) is
*      compared with the actual value to correct the
*      supposed value of j(n,x).
*
*      yn(n,x) is similar in all respects, except
*      that forward recursion is used for all
*      values of n>1.
*
*/

#include "mathimpl.h"
#include <float.h>
#include <errno.h>

#if defined(__vax__) || defined(tahoe)
#define _IEEE   0
#else
#define _IEEE   1
#define infnan(x) (0.0)
#endif

static const double
#if _IEEE
invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
#endif
two  = 2.0,
zero = 0.0,
one  = 1.0;

double
jn(int n, double x)
{
       int i, sgn;
       double a, b, temp;
       double z, w;

   /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
    * Thus, J(-n,x) = J(n,-x)
    */
   /* if J(n,NaN) is NaN */
#if _IEEE
       if (snan(x)) return x+x;
#endif
       if (n<0){
               n = -n;
               x = -x;
       }
       if (n==0) return(j0(x));
       if (n==1) return(j1(x));
       sgn = (n&1)&(x < zero);         /* even n -- 0, odd n -- sign(x) */
       x = fabs(x);
       if (x == 0 || !finite (x))      /* if x is 0 or inf */
           b = zero;
       else if ((double) n <= x) {
                       /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
#if _IEEE
           if (x >= 8.148143905337944345e+090) {
                                       /* x >= 2**302 */
   /* (x >> n**2)
    *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    *      Let s=sin(x), c=cos(x),
    *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    *
    *             n    sin(xn)*sqt2    cos(xn)*sqt2
    *          ----------------------------------
    *             0     s-c             c+s
    *             1    -s-c            -c+s
    *             2    -s+c            -c-s
    *             3     s+c             c-s
    */
               switch(n&3) {
                   case 0: temp =  cos(x)+sin(x); break;
                   case 1: temp = -cos(x)+sin(x); break;
                   case 2: temp = -cos(x)-sin(x); break;
                   case 3: temp =  cos(x)-sin(x); break;
               }
               b = invsqrtpi*temp/sqrt(x);
           } else
#endif
           {
               a = j0(x);
               b = j1(x);
               for(i=1;i<n;i++){
                   temp = b;
                   b = b*((double)(i+i)/x) - a; /* avoid underflow */
                   a = temp;
               }
           }
       } else {
           if (x < 1.86264514923095703125e-009) { /* x < 2**-29 */
   /* x is tiny, return the first Taylor expansion of J(n,x)
    * J(n,x) = 1/n!*(x/2)^n  - ...
    */
               if (n > 33)     /* underflow */
                   b = zero;
               else {
                   temp = x*0.5; b = temp;
                   for (a=one,i=2;i<=n;i++) {
                       a *= (double)i;         /* a = n! */
                       b *= temp;              /* b = (x/2)^n */
                   }
                   b = b/a;
               }
           } else {
               /* use backward recurrence */
               /*                      x      x^2      x^2
                *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
                *                      2n  - 2(n+1) - 2(n+2)
                *
                *                      1      1        1
                *  (for large x)   =  ----  ------   ------   .....
                *                      2n   2(n+1)   2(n+2)
                *                      -- - ------ - ------ -
                *                       x     x         x
                *
                * Let w = 2n/x and h=2/x, then the above quotient
                * is equal to the continued fraction:
                *                  1
                *      = -----------------------
                *                     1
                *         w - -----------------
                *                        1
                *              w+h - ---------
                *                     w+2h - ...
                *
                * To determine how many terms needed, let
                * Q(0) = w, Q(1) = w(w+h) - 1,
                * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
                * When Q(k) > 1e4      good for single
                * When Q(k) > 1e9      good for double
                * When Q(k) > 1e17     good for quadruple
                */
           /* determine k */
               double t,v;
               double q0,q1,h,tmp; int k,m;
               w  = (n+n)/(double)x; h = 2.0/(double)x;
               q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
               while (q1<1.0e9) {
                       k += 1; z += h;
                       tmp = z*q1 - q0;
                       q0 = q1;
                       q1 = tmp;
               }
               m = n+n;
               for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
               a = t;
               b = one;
               /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
                *  Hence, if n*(log(2n/x)) > ...
                *  single 8.8722839355e+01
                *  double 7.09782712893383973096e+02
                *  long double 1.1356523406294143949491931077970765006170e+04
                *  then recurrent value may overflow and the result will
                *  likely underflow to zero
                */
               tmp = n;
               v = two/x;
               tmp = tmp*log(fabs(v*tmp));
               for (i=n-1;i>0;i--){
                       temp = b;
                       b = ((i+i)/x)*b - a;
                       a = temp;
                   /* scale b to avoid spurious overflow */
#                       if defined(__vax__) || defined(tahoe)
#                               define BMAX 1e13
#                       else
#                               define BMAX 1e100
#                       endif /* defined(__vax__) || defined(tahoe) */
                       if (b > BMAX) {
                               a /= b;
                               t /= b;
                               b = one;
                       }
               }
               b = (t*j0(x)/b);
           }
       }
       return ((sgn == 1) ? -b : b);
}

double
yn(int n, double x)
{
       int i, sign;
       double a, b, temp;

   /* Y(n,NaN), Y(n, x < 0) is NaN */
       if (x <= 0 || (_IEEE && x != x))
               if (_IEEE && x < 0) return zero/zero;
               else if (x < 0)     return (infnan(EDOM));
               else if (_IEEE)     return -one/zero;
               else                return(infnan(-ERANGE));
       else if (!finite(x)) return(0);
       sign = 1;
       if (n<0){
               n = -n;
               sign = 1 - ((n&1)<<2);
       }
       if (n == 0) return(y0(x));
       if (n == 1) return(sign*y1(x));
#if _IEEE
       if(x >= 8.148143905337944345e+090) { /* x > 2**302 */
   /* (x >> n**2)
    *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
    *      Let s=sin(x), c=cos(x),
    *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
    *
    *             n    sin(xn)*sqt2    cos(xn)*sqt2
    *          ----------------------------------
    *             0     s-c             c+s
    *             1    -s-c            -c+s
    *             2    -s+c            -c-s
    *             3     s+c             c-s
    */
               switch (n&3) {
                   case 0: temp =  sin(x)-cos(x); break;
                   case 1: temp = -sin(x)-cos(x); break;
                   case 2: temp = -sin(x)+cos(x); break;
                   case 3: temp =  sin(x)+cos(x); break;
               }
               b = invsqrtpi*temp/sqrt(x);
       } else
#endif
       {
           a = y0(x);
           b = y1(x);
       /* quit if b is -inf */
           for (i = 1; i < n && !finite(b); i++){
               temp = b;
               b = ((double)(i+i)/x)*b - a;
               a = temp;
           }
       }
       if (!_IEEE && !finite(b))
               return (infnan(-sign * ERANGE));
       return ((sign > 0) ? b : -b);
}