/*      $NetBSD: n_j1.c,v 1.7 2011/11/02 02:34:56 christos Exp $        */
/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)j1.c        8.2 (Berkeley) 11/30/93";
#endif
#endif /* not lint */

/*
* 16 December 1992
* Minor modifications by Peter McIlroy to adapt non-IEEE architecture.
*/

/*
* ====================================================
* Copyright (C) 1992 by Sun Microsystems, Inc.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
* ******************* WARNING ********************
* This is an alpha version of SunPro's FDLIBM (Freely
* Distributable Math Library) for IEEE double precision
* arithmetic. FDLIBM is a basic math library written
* in C that runs on machines that conform to IEEE
* Standard 754/854. This alpha version is distributed
* for testing purpose. Those who use this software
* should report any bugs to
*
*              [email protected]
*
* -- K.C. Ng, Oct 12, 1992
* ************************************************
*/

/* double j1(double x), y1(double x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
*      1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
*      2. Reduce x to |x| since j1(x)=-j1(-x),  and
*         for x in (0,2)
*              j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
*         (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
*         for x in (2,inf)
*              j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
*              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
*         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
*         as follows:
*              cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
*                      =  1/sqrt(2) * (sin(x) - cos(x))
*              sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
*                      = -1/sqrt(2) * (sin(x) + cos(x))
*         (To avoid cancellation, use
*              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
*          to compute the worse one.)
*
*      3 Special cases
*              j1(nan)= nan
*              j1(0) = 0
*              j1(inf) = 0
*
* Method -- y1(x):
*      1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
*      2. For x<2.
*         Since
*              y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
*         therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
*         We use the following function to approximate y1,
*              y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
*         where for x in [0,2] (abs err less than 2**-65.89)
*              U(z) = u0 + u1*z + ... + u4*z^4
*              V(z) = 1  + v1*z + ... + v5*z^5
*         Note: For tiny x, 1/x dominate y1 and hence
*              y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
*      3. For x>=2.
*              y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
*         where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
*         by method mentioned above.
*/

#include "mathimpl.h"
#include <float.h>
#include <errno.h>

#if defined(__vax__) || defined(tahoe)
#define _IEEE   0
#else
#define _IEEE   1
#define infnan(x) (0.0)
#endif

static double pone (double), qone (double);

static const double
huge    = _HUGE,
zero    = 0.0,
one     = 1.0,
invsqrtpi= 5.641895835477562869480794515607725858441e-0001,
tpi     = 0.636619772367581343075535053490057448,

       /* R0/S0 on [0,2] */
r00 =  -6.250000000000000020842322918309200910191e-0002,
r01 =   1.407056669551897148204830386691427791200e-0003,
r02 =  -1.599556310840356073980727783817809847071e-0005,
r03 =   4.967279996095844750387702652791615403527e-0008,
s01 =   1.915375995383634614394860200531091839635e-0002,
s02 =   1.859467855886309024045655476348872850396e-0004,
s03 =   1.177184640426236767593432585906758230822e-0006,
s04 =   5.046362570762170559046714468225101016915e-0009,
s05 =   1.235422744261379203512624973117299248281e-0011;

#define two_129 6.80564733841876926e+038        /* 2^129 */
#define two_m54 5.55111512312578270e-017        /* 2^-54 */

double
j1(double x)
{
       double z, s,c,ss,cc,r,u,v,y;
       y = fabs(x);
       if (!finite(x)) {               /* Inf or NaN */
#if _IEEE
               if (x != x)
                       return(x);
               else
#endif
                       return (copysign(x, zero));
       }
       y = fabs(x);
       if (y >= 2) {                   /* |x| >= 2.0 */
               s = sin(y);
               c = cos(y);
               ss = -s-c;
               cc = s-c;
               if (y < .5*DBL_MAX) {   /* make sure y+y not overflow */
                   z = cos(y+y);
                   if ((s*c)<zero) cc = z/ss;
                   else            ss = z/cc;
               }
       /*
        * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
        * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
        */
#if !defined(__vax__) && !defined(tahoe)
               if (y > two_129)         /* x > 2^129 */
                       z = (invsqrtpi*cc)/sqrt(y);
               else
#endif /* defined(__vax__) || defined(tahoe) */
               {
                   u = pone(y); v = qone(y);
                   z = invsqrtpi*(u*cc-v*ss)/sqrt(y);
               }
               if (x < 0) return -z;
               else     return  z;
       }
       if (y < 7.450580596923828125e-009) {    /* |x|<2**-27 */
           if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
       }
       z = x*x;
       r =  z*(r00+z*(r01+z*(r02+z*r03)));
       s =  one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
       r *= x;
       return (x*0.5+r/s);
}

static const double u0[5] = {
 -1.960570906462389484206891092512047539632e-0001,
  5.044387166398112572026169863174882070274e-0002,
 -1.912568958757635383926261729464141209569e-0003,
  2.352526005616105109577368905595045204577e-0005,
  -9.190991580398788465315411784276789663849e-0008,
};
static const double v0[5] = {
  1.991673182366499064031901734535479833387e-0002,
  2.025525810251351806268483867032781294682e-0004,
  1.356088010975162198085369545564475416398e-0006,
  6.227414523646214811803898435084697863445e-0009,
  1.665592462079920695971450872592458916421e-0011,
};

double
y1(double x)
{
       double z, s, c, ss, cc, u, v;
   /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
       if (!finite(x)) {
#if _IEEE
               if (x < 0)
                       return(zero/zero);
               else if (x > 0)
                       return (0);
               else
                       return(x);
#else
               return (infnan(EDOM));
#endif
       }
       if (x <= 0) {
#if _IEEE
               if (x == 0) return -one/zero;
#endif
               if(x == 0) return(infnan(-ERANGE));
#if _IEEE
               return (zero/zero);
#else
               return(infnan(EDOM));
#endif
       }
       if (x >= 2) {                    /* |x| >= 2.0 */
               s = sin(x);
               c = cos(x);
               ss = -s-c;
               cc = s-c;
               if (x < .5 * DBL_MAX) { /* make sure x+x not overflow */
                   z = cos(x+x);
                   if ((s*c)>zero) cc = z/ss;
                   else            ss = z/cc;
               }
       /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
        * where x0 = x-3pi/4
        *      Better formula:
        *              cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
        *                      =  1/sqrt(2) * (sin(x) - cos(x))
        *              sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
        *                      = -1/sqrt(2) * (cos(x) + sin(x))
        * To avoid cancellation, use
        *              sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
        * to compute the worse one.
        */
#if _IEEE
               if (x>two_129) {
                       z = (invsqrtpi*ss)/sqrt(x);
               } else
#endif
               {
                   u = pone(x); v = qone(x);
                   z = invsqrtpi*(u*ss+v*cc)/sqrt(x);
               }
               return z;
       }
       if (x <= two_m54) {    /* x < 2**-54 */
           return (-tpi/x);
       }
       z = x*x;
       u = u0[0]+z*(u0[1]+z*(u0[2]+z*(u0[3]+z*u0[4])));
       v = one+z*(v0[0]+z*(v0[1]+z*(v0[2]+z*(v0[3]+z*v0[4]))));
       return (x*(u/v) + tpi*(j1(x)*log(x)-one/x));
}

/* For x >= 8, the asymptotic expansions of pone is
*      1 + 15/128 s^2 - 4725/2^15 s^4 - ...,   where s = 1/x.
* We approximate pone by
*      pone(x) = 1 + (R/S)
* where  R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
*        S = 1 + ps0*s^2 + ... + ps4*s^10
* and
*      | pone(x)-1-R/S | <= 2  ** ( -60.06)
*/

static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  0.0,
  1.171874999999886486643746274751925399540e-0001,
  1.323948065930735690925827997575471527252e+0001,
  4.120518543073785433325860184116512799375e+0002,
  3.874745389139605254931106878336700275601e+0003,
  7.914479540318917214253998253147871806507e+0003,
};
static const double ps8[5] = {
  1.142073703756784104235066368252692471887e+0002,
  3.650930834208534511135396060708677099382e+0003,
  3.695620602690334708579444954937638371808e+0004,
  9.760279359349508334916300080109196824151e+0004,
  3.080427206278887984185421142572315054499e+0004,
};

static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
  1.319905195562435287967533851581013807103e-0011,
  1.171874931906140985709584817065144884218e-0001,
  6.802751278684328781830052995333841452280e+0000,
  1.083081829901891089952869437126160568246e+0002,
  5.176361395331997166796512844100442096318e+0002,
  5.287152013633375676874794230748055786553e+0002,
};
static const double ps5[5] = {
  5.928059872211313557747989128353699746120e+0001,
  9.914014187336144114070148769222018425781e+0002,
  5.353266952914879348427003712029704477451e+0003,
  7.844690317495512717451367787640014588422e+0003,
  1.504046888103610723953792002716816255382e+0003,
};

static const double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
  3.025039161373736032825049903408701962756e-0009,
  1.171868655672535980750284752227495879921e-0001,
  3.932977500333156527232725812363183251138e+0000,
  3.511940355916369600741054592597098912682e+0001,
  9.105501107507812029367749771053045219094e+0001,
  4.855906851973649494139275085628195457113e+0001,
};
static const double ps3[5] = {
  3.479130950012515114598605916318694946754e+0001,
  3.367624587478257581844639171605788622549e+0002,
  1.046871399757751279180649307467612538415e+0003,
  8.908113463982564638443204408234739237639e+0002,
  1.037879324396392739952487012284401031859e+0002,
};

static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
  1.077108301068737449490056513753865482831e-0007,
  1.171762194626833490512746348050035171545e-0001,
  2.368514966676087902251125130227221462134e+0000,
  1.224261091482612280835153832574115951447e+0001,
  1.769397112716877301904532320376586509782e+0001,
  5.073523125888185399030700509321145995160e+0000,
};
static const double ps2[5] = {
  2.143648593638214170243114358933327983793e+0001,
  1.252902271684027493309211410842525120355e+0002,
  2.322764690571628159027850677565128301361e+0002,
  1.176793732871470939654351793502076106651e+0002,
  8.364638933716182492500902115164881195742e+0000,
};

static double
pone(double x)
{
       const double *p,*q;
       double z,r,s;
       if (x >= 8.0)                      {p = pr8; q= ps8;}
       else if (x >= 4.54545211791992188) {p = pr5; q= ps5;}
       else if (x >= 2.85714149475097656) {p = pr3; q= ps3;}
       else /* if (x >= 2.0) */           {p = pr2; q= ps2;}
       z = one/(x*x);
       r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
       s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
       return (one + r/s);
}


/* For x >= 8, the asymptotic expansions of qone is
*      3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
*      qone(x) = s*(0.375 + (R/S))
* where  R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
*        S = 1 + qs1*s^2 + ... + qs6*s^12
* and
*      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
*/

static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
  0.0,
 -1.025390624999927207385863635575804210817e-0001,
 -1.627175345445899724355852152103771510209e+0001,
 -7.596017225139501519843072766973047217159e+0002,
 -1.184980667024295901645301570813228628541e+0004,
 -4.843851242857503225866761992518949647041e+0004,
};
static const double qs8[6] = {
  1.613953697007229231029079421446916397904e+0002,
  7.825385999233484705298782500926834217525e+0003,
  1.338753362872495800748094112937868089032e+0005,
  7.196577236832409151461363171617204036929e+0005,
  6.666012326177764020898162762642290294625e+0005,
 -2.944902643038346618211973470809456636830e+0005,
};

static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
 -2.089799311417640889742251585097264715678e-0011,
 -1.025390502413754195402736294609692303708e-0001,
 -8.056448281239359746193011295417408828404e+0000,
 -1.836696074748883785606784430098756513222e+0002,
 -1.373193760655081612991329358017247355921e+0003,
 -2.612444404532156676659706427295870995743e+0003,
};
static const double qs5[6] = {
  8.127655013843357670881559763225310973118e+0001,
  1.991798734604859732508048816860471197220e+0003,
  1.746848519249089131627491835267411777366e+0004,
  4.985142709103522808438758919150738000353e+0004,
  2.794807516389181249227113445299675335543e+0004,
 -4.719183547951285076111596613593553911065e+0003,
};

static const double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
 -5.078312264617665927595954813341838734288e-0009,
 -1.025378298208370901410560259001035577681e-0001,
 -4.610115811394734131557983832055607679242e+0000,
 -5.784722165627836421815348508816936196402e+0001,
 -2.282445407376317023842545937526967035712e+0002,
 -2.192101284789093123936441805496580237676e+0002,
};
static const double qs3[6] = {
  4.766515503237295155392317984171640809318e+0001,
  6.738651126766996691330687210949984203167e+0002,
  3.380152866795263466426219644231687474174e+0003,
  5.547729097207227642358288160210745890345e+0003,
  1.903119193388108072238947732674639066045e+0003,
 -1.352011914443073322978097159157678748982e+0002,
};

static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
 -1.783817275109588656126772316921194887979e-0007,
 -1.025170426079855506812435356168903694433e-0001,
 -2.752205682781874520495702498875020485552e+0000,
 -1.966361626437037351076756351268110418862e+0001,
 -4.232531333728305108194363846333841480336e+0001,
 -2.137192117037040574661406572497288723430e+0001,
};
static const double qs2[6] = {
  2.953336290605238495019307530224241335502e+0001,
  2.529815499821905343698811319455305266409e+0002,
  7.575028348686454070022561120722815892346e+0002,
  7.393932053204672479746835719678434981599e+0002,
  1.559490033366661142496448853793707126179e+0002,
 -4.959498988226281813825263003231704397158e+0000,
};

static double
qone(double x)
{
       const double *p,*q;
       double s,r,z;
       if (x >= 8.0)                      {p = qr8; q= qs8;}
       else if (x >= 4.54545211791992188) {p = qr5; q= qs5;}
       else if (x >= 2.85714149475097656) {p = qr3; q= qs3;}
       else /* if (x >= 2.0) */           {p = qr2; q= qs2;}
       z = one/(x*x);
       r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
       s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
       return (.375 + r/s)/x;
}