/*      $NetBSD: n_gamma.c,v 1.9 2013/11/09 21:41:03 christos Exp $ */
/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)gamma.c     8.1 (Berkeley) 6/4/93";
#endif
#endif /* not lint */

/*
* This code by P. McIlroy, Oct 1992;
*
* The financial support of UUNET Communications Services is gratefully
* acknowledged.
*/

#include <math.h>
#include "mathimpl.h"
#include <errno.h>

/* METHOD:
* x < 0: Use reflection formula, G(x) = pi/(sin(pi*x)*x*G(x))
*      At negative integers, return +Inf, and set errno.
*
* x < 6.5:
*      Use argument reduction G(x+1) = xG(x) to reach the
*      range [1.066124,2.066124].  Use a rational
*      approximation centered at the minimum (x0+1) to
*      ensure monotonicity.
*
* x >= 6.5: Use the asymptotic approximation (Stirling's formula)
*      adjusted for equal-ripples:
*
*      log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + 1/x*P(1/(x*x))
*
*      Keep extra precision in multiplying (x-.5)(log(x)-1), to
*      avoid premature round-off.
*
* Special values:
*      non-positive integer:   Set overflow trap; return +Inf;
*      x > 171.63:             Set overflow trap; return +Inf;
*      NaN:                    Set invalid trap;  return NaN
*
* Accuracy: Gamma(x) is accurate to within
*      x > 0:  error provably < 0.9ulp.
*      Maximum observed in 1,000,000 trials was .87ulp.
*      x < 0:
*      Maximum observed error < 4ulp in 1,000,000 trials.
*/

static double neg_gam (double);
static double small_gam (double);
static double smaller_gam (double);
static struct Double large_gam (double);
static struct Double ratfun_gam (double, double);

/*
* Rational approximation, A0 + x*x*P(x)/Q(x), on the interval
* [1.066.., 2.066..] accurate to 4.25e-19.
*/
#define LEFT -.3955078125       /* left boundary for rat. approx */
#define x0 .461632144968362356785       /* xmin - 1 */

#define a0_hi 0.88560319441088874992
#define a0_lo -.00000000000000004996427036469019695
#define P0       6.21389571821820863029017800727e-01
#define P1       2.65757198651533466104979197553e-01
#define P2       5.53859446429917461063308081748e-03
#define P3       1.38456698304096573887145282811e-03
#define P4       2.40659950032711365819348969808e-03
#define Q0       1.45019531250000000000000000000e+00
#define Q1       1.06258521948016171343454061571e+00
#define Q2      -2.07474561943859936441469926649e-01
#define Q3      -1.46734131782005422506287573015e-01
#define Q4       3.07878176156175520361557573779e-02
#define Q5       5.12449347980666221336054633184e-03
#define Q6      -1.76012741431666995019222898833e-03
#define Q7       9.35021023573788935372153030556e-05
#define Q8       6.13275507472443958924745652239e-06
/*
* Constants for large x approximation (x in [6, Inf])
* (Accurate to 2.8*10^-19 absolute)
*/
#define lns2pi_hi 0.418945312500000
#define lns2pi_lo -.000006779295327258219670263595
#define Pa0      8.33333333333333148296162562474e-02
#define Pa1     -2.77777777774548123579378966497e-03
#define Pa2      7.93650778754435631476282786423e-04
#define Pa3     -5.95235082566672847950717262222e-04
#define Pa4      8.41428560346653702135821806252e-04
#define Pa5     -1.89773526463879200348872089421e-03
#define Pa6      5.69394463439411649408050664078e-03
#define Pa7     -1.44705562421428915453880392761e-02

static const double zero = 0., one = 1.0, tiny = _TINY;
/*
* TRUNC sets trailing bits in a floating-point number to zero.
* is a temporary variable.
*/
#if defined(__vax__) || defined(tahoe)
#define _IEEE           0
#define TRUNC(x)        x = (double) (float) (x)
#else
static int endian;
#define _IEEE           1
#define TRUNC(x)        *(((int *) &x) + endian) &= 0xf8000000
#define infnan(x)       0.0
#endif

double
gamma(double x)
{
       double b;
       struct Double u;
#if _IEEE
       int endian = (*(int *) &one) ? 1 : 0;
#endif

       if (x >= 6) {
               if(x > 171.63)
                       return(one/zero);
               u = large_gam(x);
               return(__exp__D(u.a, u.b));
       } else if (x >= 1.0 + LEFT + x0) {
               return (small_gam(x));
       } else if (x > 1.e-17) {
               return (smaller_gam(x));
       } else if (x > -1.e-17) {
               if (x == 0.0) {
                       if (!_IEEE) return (infnan(ERANGE));
                       else return (one/x);
               }
               b =one+1e-20;           /* Raise inexact flag. ??? -ragge */
               __USE(b);
               return (one/x);
       } else if (!finite(x)) {
               if (_IEEE)              /* x = NaN, -Inf */
                       return (x*x);
               else
                       return (infnan(EDOM));
        } else
               return (neg_gam(x));
}
/*
* Accurate to max(ulp(1/128) absolute, 2^-66 relative) error.
*/
static struct Double
large_gam(double x)
{
       double z, p;
       struct Double t, u, v;

       z = one/(x*x);
       p = Pa0+z*(Pa1+z*(Pa2+z*(Pa3+z*(Pa4+z*(Pa5+z*(Pa6+z*Pa7))))));
       p = p/x;

       u = __log__D(x);
       u.a -= one;
       v.a = (x -= .5);
       TRUNC(v.a);
       v.b = x - v.a;
       t.a = v.a*u.a;                  /* t = (x-.5)*(log(x)-1) */
       t.b = v.b*u.a + x*u.b;
       /* return t.a + t.b + lns2pi_hi + lns2pi_lo + p */
       t.b += lns2pi_lo; t.b += p;
       u.a = lns2pi_hi + t.b; u.a += t.a;
       u.b = t.a - u.a;
       u.b += lns2pi_hi; u.b += t.b;
       return (u);
}
/*
* Good to < 1 ulp.  (provably .90 ulp; .87 ulp on 1,000,000 runs.)
* It also has correct monotonicity.
*/
static double
small_gam(double x)
{
       double y, ym1, t;
       struct Double yy, r;
       y = x - one;
       ym1 = y - one;
       if (y <= 1.0 + (LEFT + x0)) {
               yy = ratfun_gam(y - x0, 0);
               return (yy.a + yy.b);
       }
       r.a = y;
       TRUNC(r.a);
       yy.a = r.a - one;
       y = ym1;
       yy.b = r.b = y - yy.a;
       /* Argument reduction: G(x+1) = x*G(x) */
       for (ym1 = y-one; ym1 > LEFT + x0; y = ym1--, yy.a--) {
               t = r.a*yy.a;
               r.b = r.a*yy.b + y*r.b;
               r.a = t;
               TRUNC(r.a);
               r.b += (t - r.a);
       }
       /* Return r*gamma(y). */
       yy = ratfun_gam(y - x0, 0);
       y = r.b*(yy.a + yy.b) + r.a*yy.b;
       y += yy.a*r.a;
       return (y);
}
/*
* Good on (0, 1+x0+LEFT].  Accurate to 1ulp.
*/
static double
smaller_gam(double x)
{
       double t, d;
       struct Double r, xx;
       if (x < x0 + LEFT) {
               t = x, TRUNC(t);
               d = (t+x)*(x-t);
               t *= t;
               xx.a = (t + x), TRUNC(xx.a);
               xx.b = x - xx.a; xx.b += t; xx.b += d;
               t = (one-x0); t += x;
               d = (one-x0); d -= t; d += x;
               x = xx.a + xx.b;
       } else {
               xx.a =  x, TRUNC(xx.a);
               xx.b = x - xx.a;
               t = x - x0;
               d = (-x0 -t); d += x;
       }
       r = ratfun_gam(t, d);
       d = r.a/x, TRUNC(d);
       r.a -= d*xx.a; r.a -= d*xx.b; r.a += r.b;
       return (d + r.a/x);
}
/*
* returns (z+c)^2 * P(z)/Q(z) + a0
*/
static struct Double
ratfun_gam(double z, double c)
{
       double p, q;
       struct Double r, t;

       q = Q0 +z*(Q1+z*(Q2+z*(Q3+z*(Q4+z*(Q5+z*(Q6+z*(Q7+z*Q8)))))));
       p = P0 + z*(P1 + z*(P2 + z*(P3 + z*P4)));

       /* return r.a + r.b = a0 + (z+c)^2*p/q, with r.a truncated to 26 bits. */
       p = p/q;
       t.a = z, TRUNC(t.a);            /* t ~= z + c */
       t.b = (z - t.a) + c;
       t.b *= (t.a + z);
       q = (t.a *= t.a);               /* t = (z+c)^2 */
       TRUNC(t.a);
       t.b += (q - t.a);
       r.a = p, TRUNC(r.a);            /* r = P/Q */
       r.b = p - r.a;
       t.b = t.b*p + t.a*r.b + a0_lo;
       t.a *= r.a;                     /* t = (z+c)^2*(P/Q) */
       r.a = t.a + a0_hi, TRUNC(r.a);
       r.b = ((a0_hi-r.a) + t.a) + t.b;
       return (r);                     /* r = a0 + t */
}

static double
neg_gam(double x)
{
       int sgn = 1;
       struct Double lg, lsine;
       double y, z;

       y = floor(x + .5);
       if (y == x) {           /* Negative integer. */
               if(!_IEEE)
                       return (infnan(ERANGE));
               else
                       return (one/zero);
       }
       z = fabs(x - y);
       y = .5*ceil(x);
       if (y == ceil(y))
               sgn = -1;
       if (z < .25)
               z = sin(M_PI*z);
       else
               z = cos(M_PI*(0.5-z));
       /* Special case: G(1-x) = Inf; G(x) may be nonzero. */
       if (x < -170) {
               if (x < -190)
                       return ((double)sgn*tiny*tiny);
               y = one - x;            /* exact: 128 < |x| < 255 */
               lg = large_gam(y);
               lsine = __log__D(M_PI/z);       /* = TRUNC(log(u)) + small */
               lg.a -= lsine.a;                /* exact (opposite signs) */
               lg.b -= lsine.b;
               y = -(lg.a + lg.b);
               z = (y + lg.a) + lg.b;
               y = __exp__D(y, z);
               if (sgn < 0) y = -y;
               return (y);
       }
       y = one-x;
       if (one-y == x)
               y = gamma(y);
       else            /* 1-x is inexact */
               y = -x*gamma(-x);
       if (sgn < 0) y = -y;
       return (M_PI / (y*z));
}