/*      $NetBSD: n_expm1.c,v 1.8 2013/11/24 18:50:58 martin Exp $ */
/*
* Copyright (c) 1985, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)expm1.c     8.1 (Berkeley) 6/4/93";
#endif
#endif /* not lint */

/* EXPM1(X)
* RETURN THE EXPONENTIAL OF X MINUS ONE
* DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
* CODED IN C BY K.C. NG, 1/19/85;
* REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
*
* Required system supported functions:
*      scalb(x,n)
*      copysign(x,y)
*      finite(x)
*
* Kernel function:
*      exp__E(x,c)
*
* Method:
*      1. Argument Reduction: given the input x, find r and integer k such
*         that
*                         x = k*ln2 + r,  |r| <= 0.5*ln2 .
*         r will be represented as r := z+c for better accuracy.
*
*      2. Compute EXPM1(r)=exp(r)-1 by
*
*                      EXPM1(r=z+c) := z + exp__E(z,c)
*
*      3. EXPM1(x) =  2^k * ( EXPM1(r) + 1-2^-k ).
*
*      Remarks:
*         1. When k=1 and z < -0.25, we use the following formula for
*            better accuracy:
*                      EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
*         2. To avoid rounding error in 1-2^-k where k is large, we use
*                      EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
*            when k>56.
*
* Special cases:
*      EXPM1(INF) is INF, EXPM1(NaN) is NaN;
*      EXPM1(-INF)= -1;
*      for finite argument, only EXPM1(0)=0 is exact.
*
* Accuracy:
*      EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
*      1,166,000 random arguments on a VAX, the maximum observed error was
*      .872 ulps (units of the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/

#define _LIBM_STATIC
#include "mathimpl.h"

vc(ln2hi,  6.9314718055829871446E-1  ,7217,4031,0000,f7d0,   0, .B17217F7D00000)
vc(ln2lo,  1.6465949582897081279E-12 ,bcd5,2ce7,d9cc,e4f1, -39, .E7BCD5E4F1D9CC)
vc(lnhuge, 9.4961163736712506989E1   ,ec1d,43bd,9010,a73e,   7, .BDEC1DA73E9010)
vc(invln2, 1.4426950408889634148E0   ,aa3b,40b8,17f1,295c,   1, .B8AA3B295C17F1)

ic(ln2hi,  6.9314718036912381649E-1,   -1, 1.62E42FEE00000)
ic(ln2lo,  1.9082149292705877000E-10, -33, 1.A39EF35793C76)
ic(lnhuge, 7.1602103751842355450E2,     9, 1.6602B15B7ECF2)
ic(invln2, 1.4426950408889633870E0,     0, 1.71547652B82FE)

#ifdef vccast
#define ln2hi   vccast(ln2hi)
#define ln2lo   vccast(ln2lo)
#define lnhuge  vccast(lnhuge)
#define invln2  vccast(invln2)
#endif

#if defined(__vax__)||defined(tahoe)
#define PREC    56
#else   /* defined(__vax__)||defined(tahoe) */
#define PREC    53
#endif  /* defined(__vax__)||defined(tahoe) */

float
expm1f(float x)
{
       return (float)expm1(x);
}

double
expm1(double x)
{
       static const double one=1.0, half=1.0/2.0;
       double  z,hi,lo,c;
       int k;

#if !defined(__vax__)&&!defined(tahoe)
       if(x!=x) return(x);     /* x is NaN */
#endif  /* !defined(__vax__)&&!defined(tahoe) */

       if( x <= lnhuge ) {
               if( x >= -40.0 ) {

                   /* argument reduction : x - k*ln2 */
                       k= invln2 *x+copysign(0.5,x);   /* k=NINT(x/ln2) */
                       hi=x-k*ln2hi ;
                       z=hi-(lo=k*ln2lo);
                       c=(hi-z)-lo;

                       if(k==0) return(z+__exp__E(z,c));
                       if(k==1)
                           if(z< -0.25)
                               {x=z+half;x +=__exp__E(z,c); return(x+x);}
                           else
                               {z+=__exp__E(z,c); x=half+z; return(x+x);}
                   /* end of k=1 */

                       else {
                           if(k<=PREC)
                             { x=one-scalb(one,-k); z += __exp__E(z,c);}
                           else if(k<100)
                             { x = __exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
                           else
                             { x = __exp__E(z,c)+z; z=one;}

                           return (scalb(x+z,k));
                       }
               }
               /* end of x > lnunfl */

               else
                    /* expm1(-big#) rounded to -1 (inexact) */
                    if(finite(x))
                        { c=ln2hi+ln2lo; return(-one);} /* ??? -ragge */

                    /* expm1(-INF) is -1 */
                    else return(-one);
       }
       /* end of x < lnhuge */

       else
       /*  expm1(INF) is INF, expm1(+big#) overflows to INF */
           return( finite(x) ?  scalb(one,5000) : x);
}