/*      $NetBSD: n_erf.c,v 1.9 2013/11/24 15:16:49 martin Exp $ */
/*-
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
#if 0
static char sccsid[] = "@(#)erf.c       8.1 (Berkeley) 6/4/93";
#endif
#endif /* not lint */

#include "mathimpl.h"

/* Modified Nov 30, 1992 P. McILROY:
*      Replaced expansions for x >= 1.25 (error 1.7ulp vs ~6ulp)
* Replaced even+odd with direct calculation for x < .84375,
* to avoid destructive cancellation.
*
* Performance of erfc(x):
* In 300000 trials in the range [.83, .84375] the
* maximum observed error was 3.6ulp.
*
* In [.84735,1.25] the maximum observed error was <2.5ulp in
* 100000 runs in the range [1.2, 1.25].
*
* In [1.25,26] (Not including subnormal results)
* the error is < 1.7ulp.
*/

/* double erf(double x)
* double erfc(double x)
*                           x
*                    2      |\
*     erf(x)  =  ---------  | exp(-t*t)dt
*                 sqrt(pi) \|
*                           0
*
*     erfc(x) =  1-erf(x)
*
* Method:
*      1. Reduce x to |x| by erf(-x) = -erf(x)
*      2. For x in [0, 0.84375]
*          erf(x)  = x + x*P(x^2)
*          erfc(x) = 1 - erf(x)           if x<=0.25
*                  = 0.5 + ((0.5-x)-x*P)  if x in [0.25,0.84375]
*         where
*                      2                2        4               20
*              P =  P(x ) = (p0 + p1 * x + p2 * x + ... + p10 * x  )
*         is an approximation to (erf(x)-x)/x with precision
*
*                                               -56.45
*                      | P - (erf(x)-x)/x | <= 2
*
*
*         Remark. The formula is derived by noting
*          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
*         and that
*          2/sqrt(pi) = 1.128379167095512573896158903121545171688
*         is close to one. The interval is chosen because the fixed
*         point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
*         near 0.6174), and by some experiment, 0.84375 is chosen to
*         guarantee the error is less than one ulp for erf.
*
*      3. For x in [0.84375,1.25], let s = x - 1, and
*         c = 0.84506291151 rounded to single (24 bits)
*              erf(x)  = c  + P1(s)/Q1(s)
*              erfc(x) = (1-c)  - P1(s)/Q1(s)
*              |P1/Q1 - (erf(x)-c)| <= 2**-59.06
*         Remark: here we use the taylor series expansion at x=1.
*              erf(1+s) = erf(1) + s*Poly(s)
*                       = 0.845.. + P1(s)/Q1(s)
*         That is, we use rational approximation to approximate
*                      erf(1+s) - (c = (single)0.84506291151)
*         Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
*         where
*              P1(s) = degree 6 poly in s
*              Q1(s) = degree 6 poly in s
*
*      4. For x in [1.25, 2]; [2, 4]
*              erf(x)  = 1.0 - tiny
*              erfc(x) = (1/x)exp(-x*x-(.5*log(pi) -.5z + R(z)/S(z))
*
*      Where z = 1/(x*x), R is degree 9, and S is degree 3;
*
*      5. For x in [4,28]
*              erf(x)  = 1.0 - tiny
*              erfc(x) = (1/x)exp(-x*x-(.5*log(pi)+eps + zP(z))
*
*      Where P is degree 14 polynomial in 1/(x*x).
*
*      Notes:
*         Here 4 and 5 make use of the asymptotic series
*                        exp(-x*x)
*              erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) );
*                        x*sqrt(pi)
*
*              where for z = 1/(x*x)
*              P(z) ~ z/2*(-1 + z*3/2*(1 + z*5/2*(-1 + z*7/2*(1 +...))))
*
*         Thus we use rational approximation to approximate
*              erfc*x*exp(x*x) ~ 1/sqrt(pi);
*
*              The error bound for the target function, G(z) for
*              the interval
*              [4, 28]:
*              |eps + 1/(z)P(z) - G(z)| < 2**(-56.61)
*              for [2, 4]:
*              |R(z)/S(z) - G(z)|       < 2**(-58.24)
*              for [1.25, 2]:
*              |R(z)/S(z) - G(z)|       < 2**(-58.12)
*
*      6. For inf > x >= 28
*              erf(x)  = 1 - tiny  (raise inexact)
*              erfc(x) = tiny*tiny (raise underflow)
*
*      7. Special cases:
*              erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
*              erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
*              erfc/erf(NaN) is NaN
*/

#if defined(__vax__) || defined(tahoe)
#define _IEEE   0
#define TRUNC(x) (x) = (float)(x)
#else
#define _IEEE   1
#define TRUNC(x) *(((int *) &x) + 1) &= 0xf8000000
#define infnan(x) 0.0
#endif

#ifdef _IEEE_LIBM
/*
* redefining "___function" to "function" in _IEEE_LIBM mode
*/
#include "ieee_libm.h"
#endif

static const double
tiny        = _TINY,
half        = 0.5,
one         = 1.0,
two         = 2.0,
c           = 8.45062911510467529297e-01, /* (float)0.84506291151 */
/*
* Coefficients for approximation to erf in [0,0.84375]
*/
p0t8 = 1.02703333676410051049867154944018394163280,
p0 =   1.283791670955125638123339436800229927041e-0001,
p1 =  -3.761263890318340796574473028946097022260e-0001,
p2 =   1.128379167093567004871858633779992337238e-0001,
p3 =  -2.686617064084433642889526516177508374437e-0002,
p4 =   5.223977576966219409445780927846432273191e-0003,
p5 =  -8.548323822001639515038738961618255438422e-0004,
p6 =   1.205520092530505090384383082516403772317e-0004,
p7 =  -1.492214100762529635365672665955239554276e-0005,
p8 =   1.640186161764254363152286358441771740838e-0006,
p9 =  -1.571599331700515057841960987689515895479e-0007,
p10=   1.073087585213621540635426191486561494058e-0008;
/*
* Coefficients for approximation to erf in [0.84375,1.25]
*/
static const double
pa0 =  -2.362118560752659485957248365514511540287e-0003,
pa1 =   4.148561186837483359654781492060070469522e-0001,
pa2 =  -3.722078760357013107593507594535478633044e-0001,
pa3 =   3.183466199011617316853636418691420262160e-0001,
pa4 =  -1.108946942823966771253985510891237782544e-0001,
pa5 =   3.547830432561823343969797140537411825179e-0002,
pa6 =  -2.166375594868790886906539848893221184820e-0003,
qa1 =   1.064208804008442270765369280952419863524e-0001,
qa2 =   5.403979177021710663441167681878575087235e-0001,
qa3 =   7.182865441419627066207655332170665812023e-0002,
qa4 =   1.261712198087616469108438860983447773726e-0001,
qa5 =   1.363708391202905087876983523620537833157e-0002,
qa6 =   1.198449984679910764099772682882189711364e-0002;
/*
* log(sqrt(pi)) for large x expansions.
* The tail (lsqrtPI_lo) is included in the rational
* approximations.
*/
static const double
  lsqrtPI_hi = .5723649429247000819387380943226;
/*
* lsqrtPI_lo = .000000000000000005132975581353913;
*
* Coefficients for approximation to erfc in [2, 4]
*/
static const double
rb0  =  -1.5306508387410807582e-010,    /* includes lsqrtPI_lo */
rb1  =   2.15592846101742183841910806188e-008,
rb2  =   6.24998557732436510470108714799e-001,
rb3  =   8.24849222231141787631258921465e+000,
rb4  =   2.63974967372233173534823436057e+001,
rb5  =   9.86383092541570505318304640241e+000,
rb6  =  -7.28024154841991322228977878694e+000,
rb7  =   5.96303287280680116566600190708e+000,
rb8  =  -4.40070358507372993983608466806e+000,
rb9  =   2.39923700182518073731330332521e+000,
rb10 =  -6.89257464785841156285073338950e-001,
sb1  =   1.56641558965626774835300238919e+001,
sb2  =   7.20522741000949622502957936376e+001,
sb3  =   9.60121069770492994166488642804e+001;
/*
* Coefficients for approximation to erfc in [1.25, 2]
*/
static const double
rc0  =  -2.47925334685189288817e-007,   /* includes lsqrtPI_lo */
rc1  =   1.28735722546372485255126993930e-005,
rc2  =   6.24664954087883916855616917019e-001,
rc3  =   4.69798884785807402408863708843e+000,
rc4  =   7.61618295853929705430118701770e+000,
rc5  =   9.15640208659364240872946538730e-001,
rc6  =  -3.59753040425048631334448145935e-001,
rc7  =   1.42862267989304403403849619281e-001,
rc8  =  -4.74392758811439801958087514322e-002,
rc9  =   1.09964787987580810135757047874e-002,
rc10 =  -1.28856240494889325194638463046e-003,
sc1  =   9.97395106984001955652274773456e+000,
sc2  =   2.80952153365721279953959310660e+001,
sc3  =   2.19826478142545234106819407316e+001;
/*
* Coefficients for approximation to  erfc in [4,28]
*/
static const double
rd0  =  -2.1491361969012978677e-016,    /* includes lsqrtPI_lo */
rd1  =  -4.99999999999640086151350330820e-001,
rd2  =   6.24999999772906433825880867516e-001,
rd3  =  -1.54166659428052432723177389562e+000,
rd4  =   5.51561147405411844601985649206e+000,
rd5  =  -2.55046307982949826964613748714e+001,
rd6  =   1.43631424382843846387913799845e+002,
rd7  =  -9.45789244999420134263345971704e+002,
rd8  =   6.94834146607051206956384703517e+003,
rd9  =  -5.27176414235983393155038356781e+004,
rd10 =   3.68530281128672766499221324921e+005,
rd11 =  -2.06466642800404317677021026611e+006,
rd12 =   7.78293889471135381609201431274e+006,
rd13 =  -1.42821001129434127360582351685e+007;

double
erf(double x)
{
       double R,S,P,Q,ax,s,y,z,r;
       if(!finite(x)) {                /* erf(nan)=nan */
           if (isnan(x))
               return(x);
           return (x > 0 ? one : -one); /* erf(+/-inf)= +/-1 */
       }
       if ((ax = x) < 0)
               ax = - ax;
       if (ax < .84375) {
           if (ax < 3.7e-09) {
               if (ax < _TINYER)
                   return 0.125*(8.0*x+p0t8*x);  /*avoid underflow */
               return x + p0*x;
           }
           y = x*x;
           r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
                       y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
           return x + x*(p0+r);
       }
       if (ax < 1.25) {                /* 0.84375 <= |x| < 1.25 */
           s = fabs(x)-one;
           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
           if (x>=0)
               return (c + P/Q);
           else
               return (-c - P/Q);
       }
       if (ax >= 6.0) {                /* inf>|x|>=6 */
           if (x >= 0.0)
               return (one-tiny);
           else
               return (tiny-one);
       }
   /* 1.25 <= |x| < 6 */
       z = -ax*ax;
       s = -one/z;
       if (ax < 2.0) {
               R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
                       s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
               S = one+s*(sc1+s*(sc2+s*sc3));
       } else {
               R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
                       s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
               S = one+s*(sb1+s*(sb2+s*sb3));
       }
       y = (R/S -.5*s) - lsqrtPI_hi;
       z += y;
       z = exp(z)/ax;
       if (x >= 0)
               return (one-z);
       else
               return (z-one);
}

float
erff(float x)
{
       return (float)erf(x);
}

double
erfc(double x)
{
       double R,S,P,Q,s,ax,y,z,r;
       if (!finite(x)) {
               if (isnan(x))           /* erfc(NaN) = NaN */
                       return(x);
               else if (x > 0)         /* erfc(+-inf)=0,2 */
                       return 0.0;
               else
                       return 2.0;
       }
       if ((ax = x) < 0)
               ax = -ax;
       if (ax < .84375) {                      /* |x|<0.84375 */
           if (ax < 1.38777878078144568e-17)   /* |x|<2**-56 */
               return one-x;
           y = x*x;
           r = y*(p1+y*(p2+y*(p3+y*(p4+y*(p5+
                       y*(p6+y*(p7+y*(p8+y*(p9+y*p10)))))))));
           if (ax < .0625) {   /* |x|<2**-4 */
               return (one-(x+x*(p0+r)));
           } else {
               r = x*(p0+r);
               r += (x-half);
               return (half - r);
           }
       }
       if (ax < 1.25) {                /* 0.84375 <= |x| < 1.25 */
           s = ax-one;
           P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
           Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
           if (x>=0) {
               z  = one-c; return z - P/Q;
           } else {
               z = c+P/Q; return one+z;
           }
       }
       if (ax >= 28) { /* Out of range */
               if (x>0)
                       return (tiny*tiny);
               else
                       return (two-tiny);
       }
       z = ax;
       TRUNC(z);
       y = z - ax; y *= (ax+z);
       z *= -z;                        /* Here z + y = -x^2 */
               s = one/(-z-y);         /* 1/(x*x) */
       if (ax >= 4) {                  /* 6 <= ax */
               R = s*(rd1+s*(rd2+s*(rd3+s*(rd4+s*(rd5+
                       s*(rd6+s*(rd7+s*(rd8+s*(rd9+s*(rd10
                       +s*(rd11+s*(rd12+s*rd13))))))))))));
               y += rd0;
       } else if (ax >= 2) {
               R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+
                       s*(rb6+s*(rb7+s*(rb8+s*(rb9+s*rb10)))))))));
               S = one+s*(sb1+s*(sb2+s*sb3));
               y += R/S;
               R = -.5*s;
       } else {
               R = rc0+s*(rc1+s*(rc2+s*(rc3+s*(rc4+s*(rc5+
                       s*(rc6+s*(rc7+s*(rc8+s*(rc9+s*rc10)))))))));
               S = one+s*(sc1+s*(sc2+s*sc3));
               y += R/S;
               R = -.5*s;
       }
       /* return exp(-x^2 - lsqrtPI_hi + R + y)/x;     */
       s = ((R + y) - lsqrtPI_hi) + z;
       y = (((z-s) - lsqrtPI_hi) + R) + y;
       r = __exp__D(s, y)/x;
       if (x>0)
               return r;
       else
               return two-r;
}

float
erfcf(float x)
{
       return (float)erfc(x);
}