/*      $NetBSD: n_atan2.c,v 1.7 2014/10/10 20:58:09 martin Exp $        */
/*
* Copyright (c) 1985, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#ifndef lint
static char sccsid[] = "@(#)atan2.c     8.1 (Berkeley) 6/4/93";
#endif /* not lint */

/* ATAN2(Y,X)
* RETURN ARG (X+iY)
* DOUBLE PRECISION (VAX D format 56 bits, IEEE DOUBLE 53 BITS)
* CODED IN C BY K.C. NG, 1/8/85;
* REVISED BY K.C. NG on 2/7/85, 2/13/85, 3/7/85, 3/30/85, 6/29/85.
*
* Required system supported functions :
*      copysign(x,y)
*      scalb(x,y)
*      logb(x)
*
* Method :
*      1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
*      2. Reduce x to positive by (if x and y are unexceptional):
*              ARG (x+iy) = arctan(y/x)           ... if x > 0,
*              ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
*      3. According to the integer k=4t+0.25 truncated , t=y/x, the argument
*         is further reduced to one of the following intervals and the
*         arctangent of y/x is evaluated by the corresponding formula:
*
*         [0,7/16]        atan(y/x) = t - t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
*         [7/16,11/16]    atan(y/x) = atan(1/2) + atan( (y-x/2)/(x+y/2) )
*         [11/16.19/16]   atan(y/x) = atan( 1 ) + atan( (y-x)/(x+y) )
*         [19/16,39/16]   atan(y/x) = atan(3/2) + atan( (y-1.5x)/(x+1.5y) )
*         [39/16,INF]     atan(y/x) = atan(INF) + atan( -x/y )
*
* Special cases:
* Notations: atan2(y,x) == ARG (x+iy) == ARG(x,y).
*
*      ARG( NAN , (anything) ) is NaN;
*      ARG( (anything), NaN ) is NaN;
*      ARG(+(anything but NaN), +-0) is +-0  ;
*      ARG(-(anything but NaN), +-0) is +-PI ;
*      ARG( 0, +-(anything but 0 and NaN) ) is +-PI/2;
*      ARG( +INF,+-(anything but INF and NaN) ) is +-0 ;
*      ARG( -INF,+-(anything but INF and NaN) ) is +-PI;
*      ARG( +INF,+-INF ) is +-PI/4 ;
*      ARG( -INF,+-INF ) is +-3PI/4;
*      ARG( (anything but,0,NaN, and INF),+-INF ) is +-PI/2;
*
* Accuracy:
*      atan2(y,x) returns (PI/pi) * the exact ARG (x+iy) nearly rounded,
*      where
*
*      in decimal:
*              pi = 3.141592653589793 23846264338327 .....
*    53 bits   PI = 3.141592653589793 115997963 ..... ,
*    56 bits   PI = 3.141592653589793 227020265 ..... ,
*
*      in hexadecimal:
*              pi = 3.243F6A8885A308D313198A2E....
*    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
*    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
*
*      In a test run with 356,000 random argument on [-1,1] * [-1,1] on a
*      VAX, the maximum observed error was 1.41 ulps (units of the last place)
*      compared with (PI/pi)*(the exact ARG(x+iy)).
*
* Note:
*      We use machine PI (the true pi rounded) in place of the actual
*      value of pi for all the trig and inverse trig functions. In general,
*      if trig is one of sin, cos, tan, then computed trig(y) returns the
*      exact trig(y*pi/PI) nearly rounded; correspondingly, computed arctrig
*      returns the exact arctrig(y)*PI/pi nearly rounded. These guarantee the
*      trig functions have period PI, and trig(arctrig(x)) returns x for
*      all critical values x.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/

#define _LIBM_STATIC
#include "mathimpl.h"

vc(athfhi, 4.6364760900080611433E-1  ,6338,3fed,da7b,2b0d,  -1, .ED63382B0DDA7B)
vc(athflo, 1.9338828231967579916E-19 ,5005,2164,92c0,9cfe, -62, .E450059CFE92C0)
vc(PIo4,   7.8539816339744830676E-1  ,0fda,4049,68c2,a221,   0, .C90FDAA22168C2)
vc(at1fhi, 9.8279372324732906796E-1  ,985e,407b,b4d9,940f,   0, .FB985E940FB4D9)
vc(at1flo,-3.5540295636764633916E-18 ,1edc,a383,eaea,34d6, -57,-.831EDC34D6EAEA)
vc(PIo2,   1.5707963267948966135E0   ,0fda,40c9,68c2,a221,   1, .C90FDAA22168C2)
vc(PI,     3.1415926535897932270E0   ,0fda,4149,68c2,a221,   2, .C90FDAA22168C2)
vc(a1,     3.3333333333333473730E-1  ,aaaa,3faa,ab75,aaaa,  -1, .AAAAAAAAAAAB75)
vc(a2,    -2.0000000000017730678E-1  ,cccc,bf4c,946e,cccd,  -2,-.CCCCCCCCCD946E)
vc(a3,     1.4285714286694640301E-1  ,4924,3f12,4262,9274,  -2, .92492492744262)
vc(a4,    -1.1111111135032672795E-1  ,8e38,bee3,6292,ebc6,  -3,-.E38E38EBC66292)
vc(a5,     9.0909091380563043783E-2  ,2e8b,3eba,d70c,b31b,  -3, .BA2E8BB31BD70C)
vc(a6,    -7.6922954286089459397E-2  ,89c8,be9d,7f18,27c3,  -3,-.9D89C827C37F18)
vc(a7,     6.6663180891693915586E-2  ,86b4,3e88,9e58,ae37,  -3, .8886B4AE379E58)
vc(a8,    -5.8772703698290408927E-2  ,bba5,be70,a942,8481,  -4,-.F0BBA58481A942)
vc(a9,     5.2170707402812969804E-2  ,b0f3,3e55,13ab,a1ab,  -4, .D5B0F3A1AB13AB)
vc(a10,   -4.4895863157820361210E-2  ,e4b9,be37,048f,7fd1,  -4,-.B7E4B97FD1048F)
vc(a11,    3.3006147437343875094E-2  ,3174,3e07,2d87,3cf7,  -4, .8731743CF72D87)
vc(a12,   -1.4614844866464185439E-2  ,731a,bd6f,76d9,2f34,  -6,-.EF731A2F3476D9)

ic(athfhi, 4.6364760900080609352E-1  ,  -2,  1.DAC670561BB4F)
ic(athflo, 4.6249969567426939759E-18 , -58,  1.5543B8F253271)
ic(PIo4,   7.8539816339744827900E-1  ,  -1,  1.921FB54442D18)
ic(at1fhi, 9.8279372324732905408E-1  ,  -1,  1.F730BD281F69B)
ic(at1flo,-2.4407677060164810007E-17 , -56, -1.C23DFEFEAE6B5)
ic(PIo2,   1.5707963267948965580E0   ,   0,  1.921FB54442D18)
ic(PI,     3.1415926535897931160E0   ,   1,  1.921FB54442D18)
ic(a1,     3.3333333333333942106E-1  ,  -2,  1.55555555555C3)
ic(a2,    -1.9999999999979536924E-1  ,  -3, -1.9999999997CCD)
ic(a3,     1.4285714278004377209E-1  ,  -3,  1.24924921EC1D7)
ic(a4,    -1.1111110579344973814E-1  ,  -4, -1.C71C7059AF280)
ic(a5,     9.0908906105474668324E-2  ,  -4,  1.745CE5AA35DB2)
ic(a6,    -7.6919217767468239799E-2  ,  -4, -1.3B0FA54BEC400)
ic(a7,     6.6614695906082474486E-2  ,  -4,  1.10DA924597FFF)
ic(a8,    -5.8358371008508623523E-2  ,  -5, -1.DE125FDDBD793)
ic(a9,     4.9850617156082015213E-2  ,  -5,  1.9860524BDD807)
ic(a10,   -3.6700606902093604877E-2  ,  -5, -1.2CA6C04C6937A)
ic(a11,    1.6438029044759730479E-2  ,  -6,  1.0D52174A1BB54)

#ifdef vccast
#define athfhi  vccast(athfhi)
#define athflo  vccast(athflo)
#define PIo4    vccast(PIo4)
#define at1fhi  vccast(at1fhi)
#define at1flo  vccast(at1flo)
#define PIo2    vccast(PIo2)
#define PI      vccast(PI)
#define a1      vccast(a1)
#define a2      vccast(a2)
#define a3      vccast(a3)
#define a4      vccast(a4)
#define a5      vccast(a5)
#define a6      vccast(a6)
#define a7      vccast(a7)
#define a8      vccast(a8)
#define a9      vccast(a9)
#define a10     vccast(a10)
#define a11     vccast(a11)
#define a12     vccast(a12)
#endif

#ifdef __weak_alias
__weak_alias(_atan2l, atan2);
#endif

double
atan2(double y, double x)
{
       static const double zero=0, one=1, small=1.0E-9, big=1.0E18;
       double t,z,signy,signx,hi,lo;
       int k,m;

#if !defined(__vax__)&&!defined(tahoe)
   /* if x or y is NAN */
       if(x!=x) return(x); if(y!=y) return(y);
#endif  /* !defined(__vax__)&&!defined(tahoe) */

   /* copy down the sign of y and x */
       signy = copysign(one,y) ;
       signx = copysign(one,x) ;

   /* if x is 1.0, goto begin */
       if(x==1) { y=copysign(y,one); t=y; if(finite(t)) goto begin;}

   /* when y = 0 */
       if(y==zero) return((signx==one)?y:copysign(PI,signy));

   /* when x = 0 */
       if(x==zero) return(copysign(PIo2,signy));

   /* when x is INF */
       if(!finite(x))
           if(!finite(y))
               return(copysign((signx==one)?PIo4:3*PIo4,signy));
           else
               return(copysign((signx==one)?zero:PI,signy));

   /* when y is INF */
       if(!finite(y)) return(copysign(PIo2,signy));

   /* compute y/x */
       x=copysign(x,one);
       y=copysign(y,one);
       if((m=(k=logb(y))-logb(x)) > 60) t=big+big;
           else if(m < -80 ) t=y/x;
           else { t = y/x ; y = scalb(y,-k); x=scalb(x,-k); }

   /* begin argument reduction */
begin:
       if (t < 2.4375) {

       /* truncate 4(t+1/16) to integer for branching */
           k = 4 * (t+0.0625);
           switch (k) {

           /* t is in [0,7/16] */
           case 0:
           case 1:
               if (t < small)
                   { big + small ;  /* raise inexact flag */
                     return (copysign((signx>zero)?t:PI-t,signy)); }

               hi = zero;  lo = zero;  break;

           /* t is in [7/16,11/16] */
           case 2:
               hi = athfhi; lo = athflo;
               z = x+x;
               t = ( (y+y) - x ) / ( z +  y ); break;

           /* t is in [11/16,19/16] */
           case 3:
           case 4:
               hi = PIo4; lo = zero;
               t = ( y - x ) / ( x + y ); break;

           /* t is in [19/16,39/16] */
           default:
               hi = at1fhi; lo = at1flo;
               z = y-x; y=y+y+y; t = x+x;
               t = ( (z+z)-x ) / ( t + y ); break;
           }
       }
       /* end of if (t < 2.4375) */

       else
       {
           hi = PIo2; lo = zero;

           /* t is in [2.4375, big] */
           if (t <= big)  t = - x / y;

           /* t is in [big, INF] */
           else
             { big+small;      /* raise inexact flag */
               t = zero; }
       }
   /* end of argument reduction */

   /* compute atan(t) for t in [-.4375, .4375] */
       z = t*t;
#if defined(__vax__)||defined(tahoe)
       z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
                       z*(a9+z*(a10+z*(a11+z*a12))))))))))));
#else   /* defined(__vax__)||defined(tahoe) */
       z = t*(z*(a1+z*(a2+z*(a3+z*(a4+z*(a5+z*(a6+z*(a7+z*(a8+
                       z*(a9+z*(a10+z*a11)))))))))));
#endif  /* defined(__vax__)||defined(tahoe) */
       z = lo - z; z += t; z += hi;

       return(copysign((signx>zero)?z:PI-z,signy));
}