/*      $NetBSD: n_asincos.c,v 1.11 2024/06/09 13:35:38 riastradh Exp $ */
/*
* Copyright (c) 1985, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: n_asincos.c,v 1.11 2024/06/09 13:35:38 riastradh Exp $");

#ifndef lint
#if 0
static char sccsid[] = "@(#)asincos.c   8.1 (Berkeley) 6/4/93";
#endif
#endif /* not lint */

/* ASIN(X)
* RETURNS ARC SINE OF X
* DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
* CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
*
* Required system supported functions:
*      copysign(x,y)
*      sqrt(x)
*
* Required kernel function:
*      atan2(y,x)
*
* Method :
*      asin(x) = atan2(x,sqrt(1-x*x)); for better accuracy, 1-x*x is
*                computed as follows
*                      1-x*x                     if x <  0.5,
*                      2*(1-|x|)-(1-|x|)*(1-|x|) if x >= 0.5.
*
* Special cases:
*      if x is NaN, return x itself;
*      if |x|>1, return NaN.
*
* Accuracy:
* 1)  If atan2() uses machine PI, then
*
*      asin(x) returns (PI/pi) * (the exact arc sine of x) nearly rounded;
*      and PI is the exact pi rounded to machine precision (see atan2 for
*      details):
*
*      in decimal:
*              pi = 3.141592653589793 23846264338327 .....
*    53 bits   PI = 3.141592653589793 115997963 ..... ,
*    56 bits   PI = 3.141592653589793 227020265 ..... ,
*
*      in hexadecimal:
*              pi = 3.243F6A8885A308D313198A2E....
*    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
*    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
*
*      In a test run with more than 200,000 random arguments on a VAX, the
*      maximum observed error in ulps (units in the last place) was
*      2.06 ulps.      (comparing against (PI/pi)*(exact asin(x)));
*
* 2)  If atan2() uses true pi, then
*
*      asin(x) returns the exact asin(x) with error below about 2 ulps.
*
*      In a test run with more than 1,024,000 random arguments on a VAX, the
*      maximum observed error in ulps (units in the last place) was
*      1.99 ulps.
*/

#include "namespace.h"
#include "mathimpl.h"

__weak_alias(acos, _acos)
__weak_alias(acosf, _asinf)
__weak_alias(asin, _asin)
__weak_alias(asinf, _asinf)

double
asin(double x)
{
       double s,t,one=1.0;
#if !defined(__vax__)&&!defined(tahoe)
       if(x!=x) return(x);     /* x is NaN */
#endif  /* !defined(__vax__)&&!defined(tahoe) */
       s=copysign(x,one);
       if(s <= 0.5)
           return(atan2(x,sqrt(one-x*x)));
       else
           { t=one-s; s=t+t; return(atan2(x,sqrt(s-t*t))); }

}

float
asinf(float x)
{
       return (float)asin(x);
}

/* ACOS(X)
* RETURNS ARC COS OF X
* DOUBLE PRECISION (IEEE DOUBLE 53 bits, VAX D FORMAT 56 bits)
* CODED IN C BY K.C. NG, 4/16/85, REVISED ON 6/10/85.
*
* Required system supported functions:
*      copysign(x,y)
*      sqrt(x)
*
* Required kernel function:
*      atan2(y,x)
*
* Method :
*                            ________
*                           / 1 - x
*      acos(x) = 2*atan2(  / -------- , 1 ) .
*                        \/   1 + x
*
* Special cases:
*      if x is NaN, return x itself;
*      if |x|>1, return NaN.
*
* Accuracy:
* 1)  If atan2() uses machine PI, then
*
*      acos(x) returns (PI/pi) * (the exact arc cosine of x) nearly rounded;
*      and PI is the exact pi rounded to machine precision (see atan2 for
*      details):
*
*      in decimal:
*              pi = 3.141592653589793 23846264338327 .....
*    53 bits   PI = 3.141592653589793 115997963 ..... ,
*    56 bits   PI = 3.141592653589793 227020265 ..... ,
*
*      in hexadecimal:
*              pi = 3.243F6A8885A308D313198A2E....
*    53 bits   PI = 3.243F6A8885A30  =  2 * 1.921FB54442D18    error=.276ulps
*    56 bits   PI = 3.243F6A8885A308 =  4 * .C90FDAA22168C2    error=.206ulps
*
*      In a test run with more than 200,000 random arguments on a VAX, the
*      maximum observed error in ulps (units in the last place) was
*      2.07 ulps.      (comparing against (PI/pi)*(exact acos(x)));
*
* 2)  If atan2() uses true pi, then
*
*      acos(x) returns the exact acos(x) with error below about 2 ulps.
*
*      In a test run with more than 1,024,000 random arguments on a VAX, the
*      maximum observed error in ulps (units in the last place) was
*      2.15 ulps.
*/

double
acos(double x)
{
       double t,one=1.0;
#if !defined(__vax__)&&!defined(tahoe)
       if(x!=x) return(x);
#endif  /* !defined(__vax__)&&!defined(tahoe) */
       if( x != -1.0)
           t=atan2(sqrt((one-x)/(one+x)),one);
       else
           t=atan2(one,0.0);   /* t = PI/2 */
       return(t+t);
}

float
acosf(float x)
{
       return (float)acos(x);
}