/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 1985, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
/*
* See bsdsrc/b_exp.c for implementation details.
*
* bsdrc/b_exp.c converted to long double by Steven G. Kargl.
*/

#include "math_private.h"

static const union ieee_ext_u
   p0u = LD80C(0xaaaaaaaaaaaaaaab,    -3,  1.66666666666666666671e-01L),
   p1u = LD80C(0xb60b60b60b60b59a,    -9, -2.77777777777777775377e-03L),
   p2u = LD80C(0x8ab355e008a3cfce,   -14,  6.61375661375629297465e-05L),
   p3u = LD80C(0xddebbc994b0c1376,   -20, -1.65343915327882529784e-06L),
   p4u = LD80C(0xb354784cb4ef4c41,   -25,  4.17535101591534118469e-08L),
   p5u = LD80C(0x913e8a718382ce75,   -30, -1.05679137034774806475e-09L),
   p6u = LD80C(0xe8f0042aa134502e,   -36,  2.64819349895429516863e-11L);
#define p1      (p0u.extu_ld)
#define p2      (p1u.extu_ld)
#define p3      (p2u.extu_ld)
#define p4      (p3u.extu_ld)
#define p5      (p4u.extu_ld)
#define p6      (p5u.extu_ld)
#define p7      (p6u.extu_ld)

/*
* lnhuge = (LDBL_MAX_EXP + 9) * log(2.)
* lntiny = (LDBL_MIN_EXP - 64 - 10) * log(2.)
* invln2 = 1 / log(2.)
*/
static const union ieee_ext_u
ln2hiu  = LD80C(0xb17217f700000000,  -1,  6.93147180369123816490e-01L),
ln2lou  = LD80C(0xd1cf79abc9e3b398, -33,  1.90821492927058781614e-10L),
lnhugeu = LD80C(0xb18b0c0330a8fad9,  13,  1.13627617309191834574e+04L),
lntinyu = LD80C(0xb236f28a68bc3bd7,  13, -1.14057368561139000667e+04L),
invln2u = LD80C(0xb8aa3b295c17f0bc,   0,  1.44269504088896340739e+00L);
#define ln2hi   (ln2hiu.extu_ld)
#define ln2lo   (ln2lou.extu_ld)
#define lnhuge  (lnhugeu.extu_ld)
#define lntiny  (lntinyu.extu_ld)
#define invln2  (invln2u.extu_ld)

/* returns exp(r = x + c) for |c| < |x| with no overlap.  */

static long double
__exp__LD(long double x, long double c)
{
       long double hi, lo, z;
       int k;

       if (x != x)     /* x is NaN. */
               return(x);

       if (x <= lnhuge) {
               if (x >= lntiny) {
                       /* argument reduction: x --> x - k*ln2 */
                       z = invln2 * x;
                       k = z + copysignl(0.5L, x);

                       /*
                        * Express (x + c) - k * ln2 as hi - lo.
                        * Let x = hi - lo rounded.
                        */
                       hi = x - k * ln2hi;     /* Exact. */
                       lo = k * ln2lo - c;
                       x = hi - lo;

                       /* Return 2^k*[1+x+x*c/(2+c)]  */
                       z = x * x;
                       c = x - z * (p1 + z * (p2 + z * (p3 + z * (p4 +
                           z * (p5 + z * (p6 + z * p7))))));
                       c = (x * c) / (2 - c);

                       return (ldexpl(1 + (hi - (lo - c)), k));
               } else {
                       /* exp(-INF) is 0. exp(-big) underflows to 0.  */
                       return (isfinite(x) ? ldexpl(1., -5000) : 0);
               }
       } else
               /* exp(INF) is INF, exp(+big#) overflows to INF */
               return (isfinite(x) ? ldexpl(1., 5000) : x);
}