/* $NetBSD: cephes_subrl.c,v 1.2 2014/10/10 14:06:40 christos Exp $ */

/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software written by Stephen L. Moshier.
* It is redistributed by the NetBSD Foundation by permission of the author.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include "../src/namespace.h"
#include <complex.h>
#include <math.h>
#include "cephes_subrl.h"

/* calculate cosh and sinh */

void
_cchshl(long double x, long double *c, long double *s)
{
       long double e, ei;

       if (fabsl(x) <= 0.5L) {
               *c = coshl(x);
               *s = sinhl(x);
       } else {
               e = expl(x);
               ei = 0.5L / e;
               e = 0.5L * e;
               *s = e - ei;
               *c = e + ei;
       }
}

/* Program to subtract nearest integer multiple of PI */

/* extended precision value of PI: */
static const long double DP1 = 3.14159265358979323829596852490908531763125L;
static const long double DP2 = 1.6667485837041756656403424829301998703007e-19L;
#ifndef __vax__
static const long double DP3 = 1.8830410776607851167459095484560349402753e-39L;
#define MACHEPL 1.1e-38L
#else
static const long double DP3 = 0L;
#define MACHEPL 1.1e-19L
#endif

long double
_redupil(long double x)
{
       long double t;
       long long i;

       t = x / M_PIL;
       if (t >= 0.0L)
               t += 0.5L;
       else
               t -= 0.5L;

       i = t;  /* the multiple */
       t = i;
       t = ((x - t * DP1) - t * DP2) - t * DP3;
       return t;
}

/* Taylor series expansion for cosh(2y) - cos(2x) */

long double
_ctansl(long double complex z)
{
       long double f, x, x2, y, y2, rn, t;
       long double d;

       x = fabsl(2.0L * creall(z));
       y = fabsl(2.0L * cimagl(z));

       x = _redupil(x);

       x = x * x;
       y = y * y;
       x2 = 1.0;
       y2 = 1.0;
       f = 1.0;
       rn = 0.0;
       d = 0.0;
       do {
               rn += 1.0L;
               f *= rn;
               rn += 1.0L;
               f *= rn;
               x2 *= x;
               y2 *= y;
               t = y2 + x2;
               t /= f;
               d += t;

               rn += 1.0L;
               f *= rn;
               rn += 1.0L;
               f *= rn;
               x2 *= x;
               y2 *= y;
               t = y2 - x2;
               t /= f;
               d += t;
       } while (fabsl(t/d) > MACHEPL);
       return d;
}