/* deflate.c -- compress data using the deflation algorithm
* Copyright (C) 1995-2022 Jean-loup Gailly and Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/

/*
*  ALGORITHM
*
*      The "deflation" process depends on being able to identify portions
*      of the input text which are identical to earlier input (within a
*      sliding window trailing behind the input currently being processed).
*
*      The most straightforward technique turns out to be the fastest for
*      most input files: try all possible matches and select the longest.
*      The key feature of this algorithm is that insertions into the string
*      dictionary are very simple and thus fast, and deletions are avoided
*      completely. Insertions are performed at each input character, whereas
*      string matches are performed only when the previous match ends. So it
*      is preferable to spend more time in matches to allow very fast string
*      insertions and avoid deletions. The matching algorithm for small
*      strings is inspired from that of Rabin & Karp. A brute force approach
*      is used to find longer strings when a small match has been found.
*      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
*      (by Leonid Broukhis).
*         A previous version of this file used a more sophisticated algorithm
*      (by Fiala and Greene) which is guaranteed to run in linear amortized
*      time, but has a larger average cost, uses more memory and is patented.
*      However the F&G algorithm may be faster for some highly redundant
*      files if the parameter max_chain_length (described below) is too large.
*
*  ACKNOWLEDGEMENTS
*
*      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
*      I found it in 'freeze' written by Leonid Broukhis.
*      Thanks to many people for bug reports and testing.
*
*  REFERENCES
*
*      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
*      Available in http://tools.ietf.org/html/rfc1951
*
*      A description of the Rabin and Karp algorithm is given in the book
*         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
*
*      Fiala,E.R., and Greene,D.H.
*         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
*
*/

/* @(#) Id */

#include "deflate.h"

const char deflate_copyright[] =
  " deflate 1.2.12 Copyright 1995-2022 Jean-loup Gailly and Mark Adler ";
/*
 If you use the zlib library in a product, an acknowledgment is welcome
 in the documentation of your product. If for some reason you cannot
 include such an acknowledgment, I would appreciate that you keep this
 copyright string in the executable of your product.
*/

/* ===========================================================================
*  Function prototypes.
*/
typedef enum {
   need_more,      /* block not completed, need more input or more output */
   block_done,     /* block flush performed */
   finish_started, /* finish started, need only more output at next deflate */
   finish_done     /* finish done, accept no more input or output */
} block_state;

typedef block_state (*compress_func) OF((deflate_state *s, int flush));
/* Compression function. Returns the block state after the call. */

local int deflateStateCheck      OF((z_streamp strm));
local void slide_hash     OF((deflate_state *s));
local void fill_window    OF((deflate_state *s));
local block_state deflate_stored OF((deflate_state *s, int flush));
local block_state deflate_fast   OF((deflate_state *s, int flush));
#ifndef FASTEST
local block_state deflate_slow   OF((deflate_state *s, int flush));
#endif
local block_state deflate_rle    OF((deflate_state *s, int flush));
local block_state deflate_huff   OF((deflate_state *s, int flush));
local void lm_init        OF((deflate_state *s));
local void putShortMSB    OF((deflate_state *s, uInt b));
local void flush_pending  OF((z_streamp strm));
local unsigned read_buf   OF((z_streamp strm, Bytef *buf, unsigned size));
#ifdef ASMV
#  pragma message("Assembler code may have bugs -- use at your own risk")
     void match_init OF((void)); /* asm code initialization */
     uInt longest_match  OF((deflate_state *s, IPos cur_match));
#else
local uInt longest_match  OF((deflate_state *s, IPos cur_match));
#endif

#ifdef ZLIB_DEBUG
local  void check_match OF((deflate_state *s, IPos start, IPos match,
                           int length));
#endif

/* ===========================================================================
* Local data
*/

#define NIL 0
/* Tail of hash chains */

#ifndef TOO_FAR
#  define TOO_FAR 4096
#endif
/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */

/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
typedef struct config_s {
  ush good_length; /* reduce lazy search above this match length */
  ush max_lazy;    /* do not perform lazy search above this match length */
  ush nice_length; /* quit search above this match length */
  ush max_chain;
  compress_func func;
} config;

#ifdef FASTEST
local const config configuration_table[2] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
#else
local const config configuration_table[10] = {
/*      good lazy nice chain */
/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
/* 2 */ {4,    5, 16,    8, deflate_fast},
/* 3 */ {4,    6, 32,   32, deflate_fast},

/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
/* 5 */ {8,   16, 32,   32, deflate_slow},
/* 6 */ {8,   16, 128, 128, deflate_slow},
/* 7 */ {8,   32, 128, 256, deflate_slow},
/* 8 */ {32, 128, 258, 1024, deflate_slow},
/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
#endif

/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
* For deflate_fast() (levels <= 3) good is ignored and lazy has a different
* meaning.
*/

/* rank Z_BLOCK between Z_NO_FLUSH and Z_PARTIAL_FLUSH */
#define RANK(f) (((f) * 2) - ((f) > 4 ? 9 : 0))

/* ===========================================================================
* Update a hash value with the given input byte
* IN  assertion: all calls to UPDATE_HASH are made with consecutive input
*    characters, so that a running hash key can be computed from the previous
*    key instead of complete recalculation each time.
*/
#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)


/* ===========================================================================
* Insert string str in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* If this file is compiled with -DFASTEST, the compression level is forced
* to 1, and no hash chains are maintained.
* IN  assertion: all calls to INSERT_STRING are made with consecutive input
*    characters and the first MIN_MATCH bytes of str are valid (except for
*    the last MIN_MATCH-1 bytes of the input file).
*/
#ifdef FASTEST
#define INSERT_STRING(s, str, match_head) \
  (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
   match_head = s->head[s->ins_h], \
   s->head[s->ins_h] = (Pos)(str))
#else
#define INSERT_STRING(s, str, match_head) \
  (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
   match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
   s->head[s->ins_h] = (Pos)(str))
#endif

/* ===========================================================================
* Initialize the hash table (avoiding 64K overflow for 16 bit systems).
* prev[] will be initialized on the fly.
*/
#define CLEAR_HASH(s) \
   do { \
       s->head[s->hash_size-1] = NIL; \
       zmemzero((Bytef *)s->head, \
                (unsigned)(s->hash_size-1)*sizeof(*s->head)); \
   } while (0)

/* ===========================================================================
* Slide the hash table when sliding the window down (could be avoided with 32
* bit values at the expense of memory usage). We slide even when level == 0 to
* keep the hash table consistent if we switch back to level > 0 later.
*/
local void slide_hash(s)
   deflate_state *s;
{
   unsigned n, m;
   Posf *p;
   uInt wsize = s->w_size;

   n = s->hash_size;
   p = &s->head[n];
   do {
       m = *--p;
       *p = (Pos)(m >= wsize ? m - wsize : NIL);
   } while (--n);
   n = wsize;
#ifndef FASTEST
   p = &s->prev[n];
   do {
       m = *--p;
       *p = (Pos)(m >= wsize ? m - wsize : NIL);
       /* If n is not on any hash chain, prev[n] is garbage but
        * its value will never be used.
        */
   } while (--n);
#endif
}

/* ========================================================================= */
int ZEXPORT deflateInit_(strm, level, version, stream_size)
   z_streamp strm;
   int level;
   const char *version;
   int stream_size;
{
   return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
                        Z_DEFAULT_STRATEGY, version, stream_size);
   /* To do: ignore strm->next_in if we use it as window */
}

/* ========================================================================= */
int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
                 version, stream_size)
   z_streamp strm;
   int  level;
   int  method;
   int  windowBits;
   int  memLevel;
   int  strategy;
   const char *version;
   int stream_size;
{
   deflate_state *s;
   int wrap = 1;
   static const char my_version[] = ZLIB_VERSION;

   if (version == Z_NULL || version[0] != my_version[0] ||
       stream_size != sizeof(z_stream)) {
       return Z_VERSION_ERROR;
   }
   if (strm == Z_NULL) return Z_STREAM_ERROR;

   strm->msg = Z_NULL;
   if (strm->zalloc == (alloc_func)0) {
#ifdef Z_SOLO
       return Z_STREAM_ERROR;
#else
       strm->zalloc = zcalloc;
       strm->opaque = (voidpf)0;
#endif
   }
   if (strm->zfree == (free_func)0)
#ifdef Z_SOLO
       return Z_STREAM_ERROR;
#else
       strm->zfree = zcfree;
#endif

#ifdef FASTEST
   if (level != 0) level = 1;
#else
   if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif

   if (windowBits < 0) { /* suppress zlib wrapper */
       wrap = 0;
       windowBits = -windowBits;
   }
#ifdef GZIP
   else if (windowBits > 15) {
       wrap = 2;       /* write gzip wrapper instead */
       windowBits -= 16;
   }
#endif
   if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
       windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
       strategy < 0 || strategy > Z_FIXED || (windowBits == 8 && wrap != 1)) {
       return Z_STREAM_ERROR;
   }
   if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
   s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
   if (s == Z_NULL) return Z_MEM_ERROR;
   strm->state = (struct internal_state FAR *)s;
   s->strm = strm;
   s->status = INIT_STATE;     /* to pass state test in deflateReset() */

   s->wrap = wrap;
   s->gzhead = Z_NULL;
   s->w_bits = (uInt)windowBits;
   s->w_size = 1 << s->w_bits;
   s->w_mask = s->w_size - 1;

   s->hash_bits = (uInt)memLevel + 7;
   s->hash_size = 1 << s->hash_bits;
   s->hash_mask = s->hash_size - 1;
   s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);

   s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
   s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
   s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));

   s->high_water = 0;      /* nothing written to s->window yet */

   s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */

   /* We overlay pending_buf and sym_buf. This works since the average size
    * for length/distance pairs over any compressed block is assured to be 31
    * bits or less.
    *
    * Analysis: The longest fixed codes are a length code of 8 bits plus 5
    * extra bits, for lengths 131 to 257. The longest fixed distance codes are
    * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
    * possible fixed-codes length/distance pair is then 31 bits total.
    *
    * sym_buf starts one-fourth of the way into pending_buf. So there are
    * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
    * in sym_buf is three bytes -- two for the distance and one for the
    * literal/length. As each symbol is consumed, the pointer to the next
    * sym_buf value to read moves forward three bytes. From that symbol, up to
    * 31 bits are written to pending_buf. The closest the written pending_buf
    * bits gets to the next sym_buf symbol to read is just before the last
    * code is written. At that time, 31*(n-2) bits have been written, just
    * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
    * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
    * symbols are written.) The closest the writing gets to what is unread is
    * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
    * can range from 128 to 32768.
    *
    * Therefore, at a minimum, there are 142 bits of space between what is
    * written and what is read in the overlain buffers, so the symbols cannot
    * be overwritten by the compressed data. That space is actually 139 bits,
    * due to the three-bit fixed-code block header.
    *
    * That covers the case where either Z_FIXED is specified, forcing fixed
    * codes, or when the use of fixed codes is chosen, because that choice
    * results in a smaller compressed block than dynamic codes. That latter
    * condition then assures that the above analysis also covers all dynamic
    * blocks. A dynamic-code block will only be chosen to be emitted if it has
    * fewer bits than a fixed-code block would for the same set of symbols.
    * Therefore its average symbol length is assured to be less than 31. So
    * the compressed data for a dynamic block also cannot overwrite the
    * symbols from which it is being constructed.
    */

   s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
   s->pending_buf_size = (ulg)s->lit_bufsize * 4;

   if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
       s->pending_buf == Z_NULL) {
       s->status = FINISH_STATE;
       strm->msg = ERR_MSG(Z_MEM_ERROR);
       deflateEnd (strm);
       return Z_MEM_ERROR;
   }
   s->sym_buf = s->pending_buf + s->lit_bufsize;
   s->sym_end = (s->lit_bufsize - 1) * 3;
   /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
    * on 16 bit machines and because stored blocks are restricted to
    * 64K-1 bytes.
    */

   s->level = level;
   s->strategy = strategy;
   s->method = (Byte)method;

   return deflateReset(strm);
}

/* =========================================================================
* Check for a valid deflate stream state. Return 0 if ok, 1 if not.
*/
local int deflateStateCheck (strm)
   z_streamp strm;
{
   deflate_state *s;
   if (strm == Z_NULL ||
       strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0)
       return 1;
   s = strm->state;
   if (s == Z_NULL || s->strm != strm || (s->status != INIT_STATE &&
#ifdef GZIP
                                          s->status != GZIP_STATE &&
#endif
                                          s->status != EXTRA_STATE &&
                                          s->status != NAME_STATE &&
                                          s->status != COMMENT_STATE &&
                                          s->status != HCRC_STATE &&
                                          s->status != BUSY_STATE &&
                                          s->status != FINISH_STATE))
       return 1;
   return 0;
}

/* ========================================================================= */
int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
   z_streamp strm;
   const Bytef *dictionary;
   uInt  dictLength;
{
   deflate_state *s;
   uInt str, n;
   int wrap;
   unsigned avail;
   z_const unsigned char *next;

   if (deflateStateCheck(strm) || dictionary == Z_NULL)
       return Z_STREAM_ERROR;
   s = strm->state;
   wrap = s->wrap;
   if (wrap == 2 || (wrap == 1 && s->status != INIT_STATE) || s->lookahead)
       return Z_STREAM_ERROR;

   /* when using zlib wrappers, compute Adler-32 for provided dictionary */
   if (wrap == 1)
       strm->adler = adler32(strm->adler, dictionary, dictLength);
   s->wrap = 0;                    /* avoid computing Adler-32 in read_buf */

   /* if dictionary would fill window, just replace the history */
   if (dictLength >= s->w_size) {
       if (wrap == 0) {            /* already empty otherwise */
           CLEAR_HASH(s);
           s->strstart = 0;
           s->block_start = 0L;
           s->insert = 0;
       }
       dictionary += dictLength - s->w_size;  /* use the tail */
       dictLength = s->w_size;
   }

   /* insert dictionary into window and hash */
   avail = strm->avail_in;
   next = strm->next_in;
   strm->avail_in = dictLength;
   strm->next_in = (z_const Bytef *)dictionary;
   fill_window(s);
   while (s->lookahead >= MIN_MATCH) {
       str = s->strstart;
       n = s->lookahead - (MIN_MATCH-1);
       do {
           UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
           s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
           s->head[s->ins_h] = (Pos)str;
           str++;
       } while (--n);
       s->strstart = str;
       s->lookahead = MIN_MATCH-1;
       fill_window(s);
   }
   s->strstart += s->lookahead;
   s->block_start = (long)s->strstart;
   s->insert = s->lookahead;
   s->lookahead = 0;
   s->match_length = s->prev_length = MIN_MATCH-1;
   s->match_available = 0;
   strm->next_in = next;
   strm->avail_in = avail;
   s->wrap = wrap;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateGetDictionary (strm, dictionary, dictLength)
   z_streamp strm;
   Bytef *dictionary;
   uInt  *dictLength;
{
   deflate_state *s;
   uInt len;

   if (deflateStateCheck(strm))
       return Z_STREAM_ERROR;
   s = strm->state;
   len = s->strstart + s->lookahead;
   if (len > s->w_size)
       len = s->w_size;
   if (dictionary != Z_NULL && len)
       zmemcpy(dictionary, s->window + s->strstart + s->lookahead - len, len);
   if (dictLength != Z_NULL)
       *dictLength = len;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateResetKeep (strm)
   z_streamp strm;
{
   deflate_state *s;

   if (deflateStateCheck(strm)) {
       return Z_STREAM_ERROR;
   }

   strm->total_in = strm->total_out = 0;
   strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
   strm->data_type = Z_UNKNOWN;

   s = (deflate_state *)strm->state;
   s->pending = 0;
   s->pending_out = s->pending_buf;

   if (s->wrap < 0) {
       s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
   }
   s->status =
#ifdef GZIP
       s->wrap == 2 ? GZIP_STATE :
#endif
       INIT_STATE;
   strm->adler =
#ifdef GZIP
       s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
#endif
       adler32(0L, Z_NULL, 0);
   s->last_flush = -2;

   _tr_init(s);

   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateReset (strm)
   z_streamp strm;
{
   int ret;

   ret = deflateResetKeep(strm);
   if (ret == Z_OK)
       lm_init(strm->state);
   return ret;
}

/* ========================================================================= */
int ZEXPORT deflateSetHeader (strm, head)
   z_streamp strm;
   gz_headerp head;
{
   if (deflateStateCheck(strm) || strm->state->wrap != 2)
       return Z_STREAM_ERROR;
   strm->state->gzhead = head;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePending (strm, pending, bits)
   unsigned *pending;
   int *bits;
   z_streamp strm;
{
   if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   if (pending != Z_NULL)
       *pending = strm->state->pending;
   if (bits != Z_NULL)
       *bits = strm->state->bi_valid;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflatePrime (strm, bits, value)
   z_streamp strm;
   int bits;
   int value;
{
   deflate_state *s;
   int put;

   if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   s = strm->state;
   if (bits < 0 || bits > 16 ||
       s->sym_buf < s->pending_out + ((Buf_size + 7) >> 3))
       return Z_BUF_ERROR;
   do {
       put = Buf_size - s->bi_valid;
       if (put > bits)
           put = bits;
       s->bi_buf |= (ush)((value & ((1 << put) - 1)) << s->bi_valid);
       s->bi_valid += put;
       _tr_flush_bits(s);
       value >>= put;
       bits -= put;
   } while (bits);
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateParams(strm, level, strategy)
   z_streamp strm;
   int level;
   int strategy;
{
   deflate_state *s;
   compress_func func;

   if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   s = strm->state;

#ifdef FASTEST
   if (level != 0) level = 1;
#else
   if (level == Z_DEFAULT_COMPRESSION) level = 6;
#endif
   if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
       return Z_STREAM_ERROR;
   }
   func = configuration_table[s->level].func;

   if ((strategy != s->strategy || func != configuration_table[level].func) &&
       s->last_flush != -2) {
       /* Flush the last buffer: */
       int err = deflate(strm, Z_BLOCK);
       if (err == Z_STREAM_ERROR)
           return err;
       if (strm->avail_in || (s->strstart - s->block_start) + s->lookahead)
           return Z_BUF_ERROR;
   }
   if (s->level != level) {
       if (s->level == 0 && s->matches != 0) {
           if (s->matches == 1)
               slide_hash(s);
           else
               CLEAR_HASH(s);
           s->matches = 0;
       }
       s->level = level;
       s->max_lazy_match   = configuration_table[level].max_lazy;
       s->good_match       = configuration_table[level].good_length;
       s->nice_match       = configuration_table[level].nice_length;
       s->max_chain_length = configuration_table[level].max_chain;
   }
   s->strategy = strategy;
   return Z_OK;
}

/* ========================================================================= */
int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
   z_streamp strm;
   int good_length;
   int max_lazy;
   int nice_length;
   int max_chain;
{
   deflate_state *s;

   if (deflateStateCheck(strm)) return Z_STREAM_ERROR;
   s = strm->state;
   s->good_match = (uInt)good_length;
   s->max_lazy_match = (uInt)max_lazy;
   s->nice_match = nice_length;
   s->max_chain_length = (uInt)max_chain;
   return Z_OK;
}

/* =========================================================================
* For the default windowBits of 15 and memLevel of 8, this function returns
* a close to exact, as well as small, upper bound on the compressed size.
* They are coded as constants here for a reason--if the #define's are
* changed, then this function needs to be changed as well.  The return
* value for 15 and 8 only works for those exact settings.
*
* For any setting other than those defaults for windowBits and memLevel,
* the value returned is a conservative worst case for the maximum expansion
* resulting from using fixed blocks instead of stored blocks, which deflate
* can emit on compressed data for some combinations of the parameters.
*
* This function could be more sophisticated to provide closer upper bounds for
* every combination of windowBits and memLevel.  But even the conservative
* upper bound of about 14% expansion does not seem onerous for output buffer
* allocation.
*/
uLong ZEXPORT deflateBound(strm, sourceLen)
   z_streamp strm;
   uLong sourceLen;
{
   deflate_state *s;
   uLong complen, wraplen;

   /* conservative upper bound for compressed data */
   complen = sourceLen +
             ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;

   /* if can't get parameters, return conservative bound plus zlib wrapper */
   if (deflateStateCheck(strm))
       return complen + 6;

   /* compute wrapper length */
   s = strm->state;
   switch (s->wrap) {
   case 0:                                 /* raw deflate */
       wraplen = 0;
       break;
   case 1:                                 /* zlib wrapper */
       wraplen = 6 + (s->strstart ? 4 : 0);
       break;
#ifdef GZIP
   case 2:                                 /* gzip wrapper */
       wraplen = 18;
       if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
           Bytef *str;
           if (s->gzhead->extra != Z_NULL)
               wraplen += 2 + s->gzhead->extra_len;
           str = s->gzhead->name;
           if (str != Z_NULL)
               do {
                   wraplen++;
               } while (*str++);
           str = s->gzhead->comment;
           if (str != Z_NULL)
               do {
                   wraplen++;
               } while (*str++);
           if (s->gzhead->hcrc)
               wraplen += 2;
       }
       break;
#endif
   default:                                /* for compiler happiness */
       wraplen = 6;
   }

   /* if not default parameters, return conservative bound */
   if (s->w_bits != 15 || s->hash_bits != 8 + 7)
       return complen + wraplen;

   /* default settings: return tight bound for that case */
   return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
          (sourceLen >> 25) + 13 - 6 + wraplen;
}

/* =========================================================================
* Put a short in the pending buffer. The 16-bit value is put in MSB order.
* IN assertion: the stream state is correct and there is enough room in
* pending_buf.
*/
local void putShortMSB (s, b)
   deflate_state *s;
   uInt b;
{
   put_byte(s, (Byte)(b >> 8));
   put_byte(s, (Byte)(b & 0xff));
}

/* =========================================================================
* Flush as much pending output as possible. All deflate() output, except for
* some deflate_stored() output, goes through this function so some
* applications may wish to modify it to avoid allocating a large
* strm->next_out buffer and copying into it. (See also read_buf()).
*/
local void flush_pending(strm)
   z_streamp strm;
{
   unsigned len;
   deflate_state *s = strm->state;

   _tr_flush_bits(s);
   len = s->pending;
   if (len > strm->avail_out) len = strm->avail_out;
   if (len == 0) return;

   zmemcpy(strm->next_out, s->pending_out, len);
   strm->next_out  += len;
   s->pending_out  += len;
   strm->total_out += len;
   strm->avail_out -= len;
   s->pending      -= len;
   if (s->pending == 0) {
       s->pending_out = s->pending_buf;
   }
}

/* ===========================================================================
* Update the header CRC with the bytes s->pending_buf[beg..s->pending - 1].
*/
#define HCRC_UPDATE(beg) \
   do { \
       if (s->gzhead->hcrc && s->pending > (beg)) \
           strm->adler = crc32(strm->adler, s->pending_buf + (beg), \
                               s->pending - (beg)); \
   } while (0)

/* ========================================================================= */
int ZEXPORT deflate (strm, flush)
   z_streamp strm;
   int flush;
{
   int old_flush; /* value of flush param for previous deflate call */
   deflate_state *s;

   if (deflateStateCheck(strm) || flush > Z_BLOCK || flush < 0) {
       return Z_STREAM_ERROR;
   }
   s = strm->state;

   if (strm->next_out == Z_NULL ||
       (strm->avail_in != 0 && strm->next_in == Z_NULL) ||
       (s->status == FINISH_STATE && flush != Z_FINISH)) {
       ERR_RETURN(strm, Z_STREAM_ERROR);
   }
   if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);

   old_flush = s->last_flush;
   s->last_flush = flush;

   /* Flush as much pending output as possible */
   if (s->pending != 0) {
       flush_pending(strm);
       if (strm->avail_out == 0) {
           /* Since avail_out is 0, deflate will be called again with
            * more output space, but possibly with both pending and
            * avail_in equal to zero. There won't be anything to do,
            * but this is not an error situation so make sure we
            * return OK instead of BUF_ERROR at next call of deflate:
            */
           s->last_flush = -1;
           return Z_OK;
       }

   /* Make sure there is something to do and avoid duplicate consecutive
    * flushes. For repeated and useless calls with Z_FINISH, we keep
    * returning Z_STREAM_END instead of Z_BUF_ERROR.
    */
   } else if (strm->avail_in == 0 && RANK(flush) <= RANK(old_flush) &&
              flush != Z_FINISH) {
       ERR_RETURN(strm, Z_BUF_ERROR);
   }

   /* User must not provide more input after the first FINISH: */
   if (s->status == FINISH_STATE && strm->avail_in != 0) {
       ERR_RETURN(strm, Z_BUF_ERROR);
   }

   /* Write the header */
   if (s->status == INIT_STATE && s->wrap == 0)
       s->status = BUSY_STATE;
   if (s->status == INIT_STATE) {
       /* zlib header */
       uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
       uInt level_flags;

       if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
           level_flags = 0;
       else if (s->level < 6)
           level_flags = 1;
       else if (s->level == 6)
           level_flags = 2;
       else
           level_flags = 3;
       header |= (level_flags << 6);
       if (s->strstart != 0) header |= PRESET_DICT;
       header += 31 - (header % 31);

       putShortMSB(s, header);

       /* Save the adler32 of the preset dictionary: */
       if (s->strstart != 0) {
           putShortMSB(s, (uInt)(strm->adler >> 16));
           putShortMSB(s, (uInt)(strm->adler & 0xffff));
       }
       strm->adler = adler32(0L, Z_NULL, 0);
       s->status = BUSY_STATE;

       /* Compression must start with an empty pending buffer */
       flush_pending(strm);
       if (s->pending != 0) {
           s->last_flush = -1;
           return Z_OK;
       }
   }
#ifdef GZIP
   if (s->status == GZIP_STATE) {
       /* gzip header */
       strm->adler = crc32(0L, Z_NULL, 0);
       put_byte(s, 31);
       put_byte(s, 139);
       put_byte(s, 8);
       if (s->gzhead == Z_NULL) {
           put_byte(s, 0);
           put_byte(s, 0);
           put_byte(s, 0);
           put_byte(s, 0);
           put_byte(s, 0);
           put_byte(s, s->level == 9 ? 2 :
                    (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                     4 : 0));
           put_byte(s, OS_CODE);
           s->status = BUSY_STATE;

           /* Compression must start with an empty pending buffer */
           flush_pending(strm);
           if (s->pending != 0) {
               s->last_flush = -1;
               return Z_OK;
           }
       }
       else {
           put_byte(s, (s->gzhead->text ? 1 : 0) +
                    (s->gzhead->hcrc ? 2 : 0) +
                    (s->gzhead->extra == Z_NULL ? 0 : 4) +
                    (s->gzhead->name == Z_NULL ? 0 : 8) +
                    (s->gzhead->comment == Z_NULL ? 0 : 16)
                    );
           put_byte(s, (Byte)(s->gzhead->time & 0xff));
           put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
           put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
           put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
           put_byte(s, s->level == 9 ? 2 :
                    (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
                     4 : 0));
           put_byte(s, s->gzhead->os & 0xff);
           if (s->gzhead->extra != Z_NULL) {
               put_byte(s, s->gzhead->extra_len & 0xff);
               put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
           }
           if (s->gzhead->hcrc)
               strm->adler = crc32(strm->adler, s->pending_buf,
                                   s->pending);
           s->gzindex = 0;
           s->status = EXTRA_STATE;
       }
   }
   if (s->status == EXTRA_STATE) {
       if (s->gzhead->extra != Z_NULL) {
           ulg beg = s->pending;   /* start of bytes to update crc */
           uInt left = (s->gzhead->extra_len & 0xffff) - s->gzindex;
           while (s->pending + left > s->pending_buf_size) {
               uInt copy = s->pending_buf_size - s->pending;
               zmemcpy(s->pending_buf + s->pending,
                       s->gzhead->extra + s->gzindex, copy);
               s->pending = s->pending_buf_size;
               HCRC_UPDATE(beg);
               s->gzindex += copy;
               flush_pending(strm);
               if (s->pending != 0) {
                   s->last_flush = -1;
                   return Z_OK;
               }
               beg = 0;
               left -= copy;
           }
           zmemcpy(s->pending_buf + s->pending,
                   s->gzhead->extra + s->gzindex, left);
           s->pending += left;
           HCRC_UPDATE(beg);
           s->gzindex = 0;
       }
       s->status = NAME_STATE;
   }
   if (s->status == NAME_STATE) {
       if (s->gzhead->name != Z_NULL) {
           ulg beg = s->pending;   /* start of bytes to update crc */
           int val;
           do {
               if (s->pending == s->pending_buf_size) {
                   HCRC_UPDATE(beg);
                   flush_pending(strm);
                   if (s->pending != 0) {
                       s->last_flush = -1;
                       return Z_OK;
                   }
                   beg = 0;
               }
               val = s->gzhead->name[s->gzindex++];
               put_byte(s, val);
           } while (val != 0);
           HCRC_UPDATE(beg);
           s->gzindex = 0;
       }
       s->status = COMMENT_STATE;
   }
   if (s->status == COMMENT_STATE) {
       if (s->gzhead->comment != Z_NULL) {
           ulg beg = s->pending;   /* start of bytes to update crc */
           int val;
           do {
               if (s->pending == s->pending_buf_size) {
                   HCRC_UPDATE(beg);
                   flush_pending(strm);
                   if (s->pending != 0) {
                       s->last_flush = -1;
                       return Z_OK;
                   }
                   beg = 0;
               }
               val = s->gzhead->comment[s->gzindex++];
               put_byte(s, val);
           } while (val != 0);
           HCRC_UPDATE(beg);
       }
       s->status = HCRC_STATE;
   }
   if (s->status == HCRC_STATE) {
       if (s->gzhead->hcrc) {
           if (s->pending + 2 > s->pending_buf_size) {
               flush_pending(strm);
               if (s->pending != 0) {
                   s->last_flush = -1;
                   return Z_OK;
               }
           }
           put_byte(s, (Byte)(strm->adler & 0xff));
           put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
           strm->adler = crc32(0L, Z_NULL, 0);
       }
       s->status = BUSY_STATE;

       /* Compression must start with an empty pending buffer */
       flush_pending(strm);
       if (s->pending != 0) {
           s->last_flush = -1;
           return Z_OK;
       }
   }
#endif

   /* Start a new block or continue the current one.
    */
   if (strm->avail_in != 0 || s->lookahead != 0 ||
       (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
       block_state bstate;

       bstate = s->level == 0 ? deflate_stored(s, flush) :
                s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
                s->strategy == Z_RLE ? deflate_rle(s, flush) :
                (*(configuration_table[s->level].func))(s, flush);

       if (bstate == finish_started || bstate == finish_done) {
           s->status = FINISH_STATE;
       }
       if (bstate == need_more || bstate == finish_started) {
           if (strm->avail_out == 0) {
               s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
           }
           return Z_OK;
           /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
            * of deflate should use the same flush parameter to make sure
            * that the flush is complete. So we don't have to output an
            * empty block here, this will be done at next call. This also
            * ensures that for a very small output buffer, we emit at most
            * one empty block.
            */
       }
       if (bstate == block_done) {
           if (flush == Z_PARTIAL_FLUSH) {
               _tr_align(s);
           } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
               _tr_stored_block(s, (char*)0, 0L, 0);
               /* For a full flush, this empty block will be recognized
                * as a special marker by inflate_sync().
                */
               if (flush == Z_FULL_FLUSH) {
                   CLEAR_HASH(s);             /* forget history */
                   if (s->lookahead == 0) {
                       s->strstart = 0;
                       s->block_start = 0L;
                       s->insert = 0;
                   }
               }
           }
           flush_pending(strm);
           if (strm->avail_out == 0) {
             s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
             return Z_OK;
           }
       }
   }

   if (flush != Z_FINISH) return Z_OK;
   if (s->wrap <= 0) return Z_STREAM_END;

   /* Write the trailer */
#ifdef GZIP
   if (s->wrap == 2) {
       put_byte(s, (Byte)(strm->adler & 0xff));
       put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
       put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
       put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
       put_byte(s, (Byte)(strm->total_in & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
       put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
   }
   else
#endif
   {
       putShortMSB(s, (uInt)(strm->adler >> 16));
       putShortMSB(s, (uInt)(strm->adler & 0xffff));
   }
   flush_pending(strm);
   /* If avail_out is zero, the application will call deflate again
    * to flush the rest.
    */
   if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
   return s->pending != 0 ? Z_OK : Z_STREAM_END;
}

/* ========================================================================= */
int ZEXPORT deflateEnd (strm)
   z_streamp strm;
{
   int status;

   if (deflateStateCheck(strm)) return Z_STREAM_ERROR;

   status = strm->state->status;

   /* Deallocate in reverse order of allocations: */
   TRY_FREE(strm, strm->state->pending_buf);
   TRY_FREE(strm, strm->state->head);
   TRY_FREE(strm, strm->state->prev);
   TRY_FREE(strm, strm->state->window);

   ZFREE(strm, strm->state);
   strm->state = Z_NULL;

   return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
}

/* =========================================================================
* Copy the source state to the destination state.
* To simplify the source, this is not supported for 16-bit MSDOS (which
* doesn't have enough memory anyway to duplicate compression states).
*/
int ZEXPORT deflateCopy (dest, source)
   z_streamp dest;
   z_streamp source;
{
#ifdef MAXSEG_64K
   return Z_STREAM_ERROR;
#else
   deflate_state *ds;
   deflate_state *ss;


   if (deflateStateCheck(source) || dest == Z_NULL) {
       return Z_STREAM_ERROR;
   }

   ss = source->state;

   zmemcpy((voidpf)dest, (voidpf)source, sizeof(z_stream));

   ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
   if (ds == Z_NULL) return Z_MEM_ERROR;
   dest->state = (struct internal_state FAR *) ds;
   zmemcpy((voidpf)ds, (voidpf)ss, sizeof(deflate_state));
   ds->strm = dest;

   ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
   ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
   ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
   ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);

   if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
       ds->pending_buf == Z_NULL) {
       deflateEnd (dest);
       return Z_MEM_ERROR;
   }
   /* following zmemcpy do not work for 16-bit MSDOS */
   zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
   zmemcpy((voidpf)ds->prev, (voidpf)ss->prev, ds->w_size * sizeof(Pos));
   zmemcpy((voidpf)ds->head, (voidpf)ss->head, ds->hash_size * sizeof(Pos));
   zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);

   ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
   ds->sym_buf = ds->pending_buf + ds->lit_bufsize;

   ds->l_desc.dyn_tree = ds->dyn_ltree;
   ds->d_desc.dyn_tree = ds->dyn_dtree;
   ds->bl_desc.dyn_tree = ds->bl_tree;

   return Z_OK;
#endif /* MAXSEG_64K */
}

/* ===========================================================================
* Read a new buffer from the current input stream, update the adler32
* and total number of bytes read.  All deflate() input goes through
* this function so some applications may wish to modify it to avoid
* allocating a large strm->next_in buffer and copying from it.
* (See also flush_pending()).
*/
local unsigned read_buf(strm, buf, size)
   z_streamp strm;
   Bytef *buf;
   unsigned size;
{
   unsigned len = strm->avail_in;

   if (len > size) len = size;
   if (len == 0) return 0;

   strm->avail_in  -= len;

   zmemcpy(buf, strm->next_in, len);
   if (strm->state->wrap == 1) {
       strm->adler = adler32(strm->adler, buf, len);
   }
#ifdef GZIP
   else if (strm->state->wrap == 2) {
       strm->adler = crc32(strm->adler, buf, len);
   }
#endif
   strm->next_in  += len;
   strm->total_in += len;

   return len;
}

/* ===========================================================================
* Initialize the "longest match" routines for a new zlib stream
*/
local void lm_init (s)
   deflate_state *s;
{
   s->window_size = (ulg)2L*s->w_size;

   CLEAR_HASH(s);

   /* Set the default configuration parameters:
    */
   s->max_lazy_match   = configuration_table[s->level].max_lazy;
   s->good_match       = configuration_table[s->level].good_length;
   s->nice_match       = configuration_table[s->level].nice_length;
   s->max_chain_length = configuration_table[s->level].max_chain;

   s->strstart = 0;
   s->block_start = 0L;
   s->lookahead = 0;
   s->insert = 0;
   s->match_length = s->prev_length = MIN_MATCH-1;
   s->match_available = 0;
   s->ins_h = 0;
#ifndef FASTEST
#ifdef ASMV
   match_init(); /* initialize the asm code */
#endif
#endif
}

#ifndef FASTEST
/* ===========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
*   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
* OUT assertion: the match length is not greater than s->lookahead.
*/
#ifndef ASMV
/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
* match.S. The code will be functionally equivalent.
*/
local uInt longest_match(s, cur_match)
   deflate_state *s;
   IPos cur_match;                             /* current match */
{
   unsigned chain_length = s->max_chain_length;/* max hash chain length */
   register Bytef *scan = s->window + s->strstart; /* current string */
   register Bytef *match;                      /* matched string */
   register int len;                           /* length of current match */
   int best_len = (int)s->prev_length;         /* best match length so far */
   int nice_match = s->nice_match;             /* stop if match long enough */
   IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
       s->strstart - (IPos)MAX_DIST(s) : NIL;
   /* Stop when cur_match becomes <= limit. To simplify the code,
    * we prevent matches with the string of window index 0.
    */
   Posf *prev = s->prev;
   uInt wmask = s->w_mask;

#ifdef UNALIGNED_OK
   /* Compare two bytes at a time. Note: this is not always beneficial.
    * Try with and without -DUNALIGNED_OK to check.
    */
   register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
   register ush scan_start = *(ushf*)scan;
   register ush scan_end   = *(ushf*)(scan+best_len-1);
#else
   register Bytef *strend = s->window + s->strstart + MAX_MATCH;
   register Byte scan_end1  = scan[best_len-1];
   register Byte scan_end   = scan[best_len];
#endif

   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
    * It is easy to get rid of this optimization if necessary.
    */
   Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

   /* Do not waste too much time if we already have a good match: */
   if (s->prev_length >= s->good_match) {
       chain_length >>= 2;
   }
   /* Do not look for matches beyond the end of the input. This is necessary
    * to make deflate deterministic.
    */
   if ((uInt)nice_match > s->lookahead) nice_match = (int)s->lookahead;

   Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

   do {
       Assert(cur_match < s->strstart, "no future");
       match = s->window + cur_match;

       /* Skip to next match if the match length cannot increase
        * or if the match length is less than 2.  Note that the checks below
        * for insufficient lookahead only occur occasionally for performance
        * reasons.  Therefore uninitialized memory will be accessed, and
        * conditional jumps will be made that depend on those values.
        * However the length of the match is limited to the lookahead, so
        * the output of deflate is not affected by the uninitialized values.
        */
#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
       /* This code assumes sizeof(unsigned short) == 2. Do not use
        * UNALIGNED_OK if your compiler uses a different size.
        */
       if (*(ushf*)(match+best_len-1) != scan_end ||
           *(ushf*)match != scan_start) continue;

       /* It is not necessary to compare scan[2] and match[2] since they are
        * always equal when the other bytes match, given that the hash keys
        * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
        * strstart+3, +5, ... up to strstart+257. We check for insufficient
        * lookahead only every 4th comparison; the 128th check will be made
        * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
        * necessary to put more guard bytes at the end of the window, or
        * to check more often for insufficient lookahead.
        */
       Assert(scan[2] == match[2], "scan[2]?");
       scan++, match++;
       do {
       } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
                scan < strend);
       /* The funny "do {}" generates better code on most compilers */

       /* Here, scan <= window+strstart+257 */
       Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
       if (*scan == *match) scan++;

       len = (MAX_MATCH - 1) - (int)(strend-scan);
       scan = strend - (MAX_MATCH-1);

#else /* UNALIGNED_OK */

       if (match[best_len]   != scan_end  ||
           match[best_len-1] != scan_end1 ||
           *match            != *scan     ||
           *++match          != scan[1])      continue;

       /* The check at best_len-1 can be removed because it will be made
        * again later. (This heuristic is not always a win.)
        * It is not necessary to compare scan[2] and match[2] since they
        * are always equal when the other bytes match, given that
        * the hash keys are equal and that HASH_BITS >= 8.
        */
       scan += 2, match++;
       Assert(*scan == *match, "match[2]?");

       /* We check for insufficient lookahead only every 8th comparison;
        * the 256th check will be made at strstart+258.
        */
       do {
       } while (*++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                *++scan == *++match && *++scan == *++match &&
                scan < strend);

       Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

       len = MAX_MATCH - (int)(strend - scan);
       scan = strend - MAX_MATCH;

#endif /* UNALIGNED_OK */

       if (len > best_len) {
           s->match_start = cur_match;
           best_len = len;
           if (len >= nice_match) break;
#ifdef UNALIGNED_OK
           scan_end = *(ushf*)(scan+best_len-1);
#else
           scan_end1  = scan[best_len-1];
           scan_end   = scan[best_len];
#endif
       }
   } while ((cur_match = prev[cur_match & wmask]) > limit
            && --chain_length != 0);

   if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
   return s->lookahead;
}
#endif /* ASMV */

#else /* FASTEST */

/* ---------------------------------------------------------------------------
* Optimized version for FASTEST only
*/
local uInt longest_match(s, cur_match)
   deflate_state *s;
   IPos cur_match;                             /* current match */
{
   register Bytef *scan = s->window + s->strstart; /* current string */
   register Bytef *match;                       /* matched string */
   register int len;                           /* length of current match */
   register Bytef *strend = s->window + s->strstart + MAX_MATCH;

   /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
    * It is easy to get rid of this optimization if necessary.
    */
   Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");

   Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");

   Assert(cur_match < s->strstart, "no future");

   match = s->window + cur_match;

   /* Return failure if the match length is less than 2:
    */
   if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;

   /* The check at best_len-1 can be removed because it will be made
    * again later. (This heuristic is not always a win.)
    * It is not necessary to compare scan[2] and match[2] since they
    * are always equal when the other bytes match, given that
    * the hash keys are equal and that HASH_BITS >= 8.
    */
   scan += 2, match += 2;
   Assert(*scan == *match, "match[2]?");

   /* We check for insufficient lookahead only every 8th comparison;
    * the 256th check will be made at strstart+258.
    */
   do {
   } while (*++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            *++scan == *++match && *++scan == *++match &&
            scan < strend);

   Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");

   len = MAX_MATCH - (int)(strend - scan);

   if (len < MIN_MATCH) return MIN_MATCH - 1;

   s->match_start = cur_match;
   return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
}

#endif /* FASTEST */

#ifdef ZLIB_DEBUG

#define EQUAL 0
/* result of memcmp for equal strings */

/* ===========================================================================
* Check that the match at match_start is indeed a match.
*/
local void check_match(s, start, match, length)
   deflate_state *s;
   IPos start, match;
   int length;
{
   /* check that the match is indeed a match */
   if (zmemcmp(s->window + match,
               s->window + start, length) != EQUAL) {
       fprintf(stderr, " start %u, match %u, length %d\n",
               start, match, length);
       do {
           fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
       } while (--length != 0);
       z_error("invalid match");
   }
   if (z_verbose > 1) {
       fprintf(stderr,"\\[%d,%d]", start-match, length);
       do { putc(s->window[start++], stderr); } while (--length != 0);
   }
}
#else
#  define check_match(s, start, match, length)
#endif /* ZLIB_DEBUG */

/* ===========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead.
*
* IN assertion: lookahead < MIN_LOOKAHEAD
* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
*    At least one byte has been read, or avail_in == 0; reads are
*    performed for at least two bytes (required for the zip translate_eol
*    option -- not supported here).
*/
local void fill_window(s)
   deflate_state *s;
{
   unsigned n;
   unsigned more;    /* Amount of free space at the end of the window. */
   uInt wsize = s->w_size;

   Assert(s->lookahead < MIN_LOOKAHEAD, "already enough lookahead");

   do {
       more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);

       /* Deal with !@#$% 64K limit: */
       if (sizeof(int) <= 2) {
           if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
               more = wsize;

           } else if (more == (unsigned)(-1)) {
               /* Very unlikely, but possible on 16 bit machine if
                * strstart == 0 && lookahead == 1 (input done a byte at time)
                */
               more--;
           }
       }

       /* If the window is almost full and there is insufficient lookahead,
        * move the upper half to the lower one to make room in the upper half.
        */
       if (s->strstart >= wsize+MAX_DIST(s)) {

           zmemcpy(s->window, s->window+wsize, (unsigned)wsize - more);
           s->match_start -= wsize;
           s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
           s->block_start -= (long) wsize;
           if (s->insert > s->strstart)
               s->insert = s->strstart;
           slide_hash(s);
           more += wsize;
       }
       if (s->strm->avail_in == 0) break;

       /* If there was no sliding:
        *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
        *    more == window_size - lookahead - strstart
        * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
        * => more >= window_size - 2*WSIZE + 2
        * In the BIG_MEM or MMAP case (not yet supported),
        *   window_size == input_size + MIN_LOOKAHEAD  &&
        *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
        * Otherwise, window_size == 2*WSIZE so more >= 2.
        * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
        */
       Assert(more >= 2, "more < 2");

       n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
       s->lookahead += n;

       /* Initialize the hash value now that we have some input: */
       if (s->lookahead + s->insert >= MIN_MATCH) {
           uInt str = s->strstart - s->insert;
           s->ins_h = s->window[str];
           UPDATE_HASH(s, s->ins_h, s->window[str + 1]);
#if MIN_MATCH != 3
           Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
           while (s->insert) {
               UPDATE_HASH(s, s->ins_h, s->window[str + MIN_MATCH-1]);
#ifndef FASTEST
               s->prev[str & s->w_mask] = s->head[s->ins_h];
#endif
               s->head[s->ins_h] = (Pos)str;
               str++;
               s->insert--;
               if (s->lookahead + s->insert < MIN_MATCH)
                   break;
           }
       }
       /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
        * but this is not important since only literal bytes will be emitted.
        */

   } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);

   /* If the WIN_INIT bytes after the end of the current data have never been
    * written, then zero those bytes in order to avoid memory check reports of
    * the use of uninitialized (or uninitialised as Julian writes) bytes by
    * the longest match routines.  Update the high water mark for the next
    * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
    * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
    */
   if (s->high_water < s->window_size) {
       ulg curr = s->strstart + (ulg)(s->lookahead);
       ulg init;

       if (s->high_water < curr) {
           /* Previous high water mark below current data -- zero WIN_INIT
            * bytes or up to end of window, whichever is less.
            */
           init = s->window_size - curr;
           if (init > WIN_INIT)
               init = WIN_INIT;
           zmemzero(s->window + curr, (unsigned)init);
           s->high_water = curr + init;
       }
       else if (s->high_water < (ulg)curr + WIN_INIT) {
           /* High water mark at or above current data, but below current data
            * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
            * to end of window, whichever is less.
            */
           init = (ulg)curr + WIN_INIT - s->high_water;
           if (init > s->window_size - s->high_water)
               init = s->window_size - s->high_water;
           zmemzero(s->window + s->high_water, (unsigned)init);
           s->high_water += init;
       }
   }

   Assert((ulg)s->strstart <= s->window_size - MIN_LOOKAHEAD,
          "not enough room for search");
}

/* ===========================================================================
* Flush the current block, with given end-of-file flag.
* IN assertion: strstart is set to the end of the current match.
*/
#define FLUSH_BLOCK_ONLY(s, last) { \
  _tr_flush_block(s, (s->block_start >= 0L ? \
                  (charf *)&s->window[(unsigned)s->block_start] : \
                  (charf *)Z_NULL), \
               (ulg)((long)s->strstart - s->block_start), \
               (last)); \
  s->block_start = s->strstart; \
  flush_pending(s->strm); \
  Tracev((stderr,"[FLUSH]")); \
}

/* Same but force premature exit if necessary. */
#define FLUSH_BLOCK(s, last) { \
  FLUSH_BLOCK_ONLY(s, last); \
  if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
}

/* Maximum stored block length in deflate format (not including header). */
#define MAX_STORED 65535

/* Minimum of a and b. */
#define MIN(a, b) ((a) > (b) ? (b) : (a))

/* ===========================================================================
* Copy without compression as much as possible from the input stream, return
* the current block state.
*
* In case deflateParams() is used to later switch to a non-zero compression
* level, s->matches (otherwise unused when storing) keeps track of the number
* of hash table slides to perform. If s->matches is 1, then one hash table
* slide will be done when switching. If s->matches is 2, the maximum value
* allowed here, then the hash table will be cleared, since two or more slides
* is the same as a clear.
*
* deflate_stored() is written to minimize the number of times an input byte is
* copied. It is most efficient with large input and output buffers, which
* maximizes the opportunites to have a single copy from next_in to next_out.
*/
local block_state deflate_stored(s, flush)
   deflate_state *s;
   int flush;
{
   /* Smallest worthy block size when not flushing or finishing. By default
    * this is 32K. This can be as small as 507 bytes for memLevel == 1. For
    * large input and output buffers, the stored block size will be larger.
    */
   unsigned min_block = MIN(s->pending_buf_size - 5, s->w_size);

   /* Copy as many min_block or larger stored blocks directly to next_out as
    * possible. If flushing, copy the remaining available input to next_out as
    * stored blocks, if there is enough space.
    */
   unsigned len, left, have, last = 0;
   unsigned used = s->strm->avail_in;
   do {
       /* Set len to the maximum size block that we can copy directly with the
        * available input data and output space. Set left to how much of that
        * would be copied from what's left in the window.
        */
       len = MAX_STORED;       /* maximum deflate stored block length */
       have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
       if (s->strm->avail_out < have)          /* need room for header */
           break;
           /* maximum stored block length that will fit in avail_out: */
       have = s->strm->avail_out - have;
       left = s->strstart - s->block_start;    /* bytes left in window */
       if (len > (ulg)left + s->strm->avail_in)
           len = left + s->strm->avail_in;     /* limit len to the input */
       if (len > have)
           len = have;                         /* limit len to the output */

       /* If the stored block would be less than min_block in length, or if
        * unable to copy all of the available input when flushing, then try
        * copying to the window and the pending buffer instead. Also don't
        * write an empty block when flushing -- deflate() does that.
        */
       if (len < min_block && ((len == 0 && flush != Z_FINISH) ||
                               flush == Z_NO_FLUSH ||
                               len != left + s->strm->avail_in))
           break;

       /* Make a dummy stored block in pending to get the header bytes,
        * including any pending bits. This also updates the debugging counts.
        */
       last = flush == Z_FINISH && len == left + s->strm->avail_in ? 1 : 0;
       _tr_stored_block(s, (char *)0, 0L, last);

       /* Replace the lengths in the dummy stored block with len. */
       s->pending_buf[s->pending - 4] = len;
       s->pending_buf[s->pending - 3] = len >> 8;
       s->pending_buf[s->pending - 2] = ~len;
       s->pending_buf[s->pending - 1] = ~len >> 8;

       /* Write the stored block header bytes. */
       flush_pending(s->strm);

#ifdef ZLIB_DEBUG
       /* Update debugging counts for the data about to be copied. */
       s->compressed_len += len << 3;
       s->bits_sent += len << 3;
#endif

       /* Copy uncompressed bytes from the window to next_out. */
       if (left) {
           if (left > len)
               left = len;
           zmemcpy(s->strm->next_out, s->window + s->block_start, left);
           s->strm->next_out += left;
           s->strm->avail_out -= left;
           s->strm->total_out += left;
           s->block_start += left;
           len -= left;
       }

       /* Copy uncompressed bytes directly from next_in to next_out, updating
        * the check value.
        */
       if (len) {
           read_buf(s->strm, s->strm->next_out, len);
           s->strm->next_out += len;
           s->strm->avail_out -= len;
           s->strm->total_out += len;
       }
   } while (last == 0);

   /* Update the sliding window with the last s->w_size bytes of the copied
    * data, or append all of the copied data to the existing window if less
    * than s->w_size bytes were copied. Also update the number of bytes to
    * insert in the hash tables, in the event that deflateParams() switches to
    * a non-zero compression level.
    */
   used -= s->strm->avail_in;      /* number of input bytes directly copied */
   if (used) {
       /* If any input was used, then no unused input remains in the window,
        * therefore s->block_start == s->strstart.
        */
       if (used >= s->w_size) {    /* supplant the previous history */
           s->matches = 2;         /* clear hash */
           zmemcpy(s->window, s->strm->next_in - s->w_size, s->w_size);
           s->strstart = s->w_size;
           s->insert = s->strstart;
       }
       else {
           if (s->window_size - s->strstart <= used) {
               /* Slide the window down. */
               s->strstart -= s->w_size;
               zmemcpy(s->window, s->window + s->w_size, s->strstart);
               if (s->matches < 2)
                   s->matches++;   /* add a pending slide_hash() */
               if (s->insert > s->strstart)
                   s->insert = s->strstart;
           }
           zmemcpy(s->window + s->strstart, s->strm->next_in - used, used);
           s->strstart += used;
           s->insert += MIN(used, s->w_size - s->insert);
       }
       s->block_start = s->strstart;
   }
   if (s->high_water < s->strstart)
       s->high_water = s->strstart;

   /* If the last block was written to next_out, then done. */
   if (last)
       return finish_done;

   /* If flushing and all input has been consumed, then done. */
   if (flush != Z_NO_FLUSH && flush != Z_FINISH &&
       s->strm->avail_in == 0 && (long)s->strstart == s->block_start)
       return block_done;

   /* Fill the window with any remaining input. */
   have = s->window_size - s->strstart;
   if (s->strm->avail_in > have && s->block_start >= (long)s->w_size) {
       /* Slide the window down. */
       s->block_start -= s->w_size;
       s->strstart -= s->w_size;
       zmemcpy(s->window, s->window + s->w_size, s->strstart);
       if (s->matches < 2)
           s->matches++;           /* add a pending slide_hash() */
       have += s->w_size;          /* more space now */
       if (s->insert > s->strstart)
           s->insert = s->strstart;
   }
   if (have > s->strm->avail_in)
       have = s->strm->avail_in;
   if (have) {
       read_buf(s->strm, s->window + s->strstart, have);
       s->strstart += have;
       s->insert += MIN(have, s->w_size - s->insert);
   }
   if (s->high_water < s->strstart)
       s->high_water = s->strstart;

   /* There was not enough avail_out to write a complete worthy or flushed
    * stored block to next_out. Write a stored block to pending instead, if we
    * have enough input for a worthy block, or if flushing and there is enough
    * room for the remaining input as a stored block in the pending buffer.
    */
   have = (s->bi_valid + 42) >> 3;         /* number of header bytes */
       /* maximum stored block length that will fit in pending: */
   have = MIN(s->pending_buf_size - have, MAX_STORED);
   min_block = MIN(have, s->w_size);
   left = s->strstart - s->block_start;
   if (left >= min_block ||
       ((left || flush == Z_FINISH) && flush != Z_NO_FLUSH &&
        s->strm->avail_in == 0 && left <= have)) {
       len = MIN(left, have);
       last = flush == Z_FINISH && s->strm->avail_in == 0 &&
              len == left ? 1 : 0;
       _tr_stored_block(s, (charf *)s->window + s->block_start, len, last);
       s->block_start += len;
       flush_pending(s->strm);
   }

   /* We've done all we can with the available input and output. */
   return last ? finish_started : need_more;
}

/* ===========================================================================
* Compress as much as possible from the input stream, return the current
* block state.
* This function does not perform lazy evaluation of matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
local block_state deflate_fast(s, flush)
   deflate_state *s;
   int flush;
{
   IPos hash_head;       /* head of the hash chain */
   int bflush;           /* set if current block must be flushed */

   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the next match, plus MIN_MATCH bytes to insert the
        * string following the next match.
        */
       if (s->lookahead < MIN_LOOKAHEAD) {
           fill_window(s);
           if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* Insert the string window[strstart .. strstart+2] in the
        * dictionary, and set hash_head to the head of the hash chain:
        */
       hash_head = NIL;
       if (s->lookahead >= MIN_MATCH) {
           INSERT_STRING(s, s->strstart, hash_head);
       }

       /* Find the longest match, discarding those <= prev_length.
        * At this point we have always match_length < MIN_MATCH
        */
       if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
           /* To simplify the code, we prevent matches with the string
            * of window index 0 (in particular we have to avoid a match
            * of the string with itself at the start of the input file).
            */
           s->match_length = longest_match (s, hash_head);
           /* longest_match() sets match_start */
       }
       if (s->match_length >= MIN_MATCH) {
           check_match(s, s->strstart, s->match_start, s->match_length);

           _tr_tally_dist(s, s->strstart - s->match_start,
                          s->match_length - MIN_MATCH, bflush);

           s->lookahead -= s->match_length;

           /* Insert new strings in the hash table only if the match length
            * is not too large. This saves time but degrades compression.
            */
#ifndef FASTEST
           if (s->match_length <= s->max_insert_length &&
               s->lookahead >= MIN_MATCH) {
               s->match_length--; /* string at strstart already in table */
               do {
                   s->strstart++;
                   INSERT_STRING(s, s->strstart, hash_head);
                   /* strstart never exceeds WSIZE-MAX_MATCH, so there are
                    * always MIN_MATCH bytes ahead.
                    */
               } while (--s->match_length != 0);
               s->strstart++;
           } else
#endif
           {
               s->strstart += s->match_length;
               s->match_length = 0;
               s->ins_h = s->window[s->strstart];
               UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
#if MIN_MATCH != 3
               Call UPDATE_HASH() MIN_MATCH-3 more times
#endif
               /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
                * matter since it will be recomputed at next deflate call.
                */
           }
       } else {
           /* No match, output a literal byte */
           Tracevv((stderr,"%c", s->window[s->strstart]));
           _tr_tally_lit (s, s->window[s->strstart], bflush);
           s->lookahead--;
           s->strstart++;
       }
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   if (flush == Z_FINISH) {
       FLUSH_BLOCK(s, 1);
       return finish_done;
   }
   if (s->sym_next)
       FLUSH_BLOCK(s, 0);
   return block_done;
}

#ifndef FASTEST
/* ===========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
local block_state deflate_slow(s, flush)
   deflate_state *s;
   int flush;
{
   IPos hash_head;          /* head of hash chain */
   int bflush;              /* set if current block must be flushed */

   /* Process the input block. */
   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the next match, plus MIN_MATCH bytes to insert the
        * string following the next match.
        */
       if (s->lookahead < MIN_LOOKAHEAD) {
           fill_window(s);
           if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* Insert the string window[strstart .. strstart+2] in the
        * dictionary, and set hash_head to the head of the hash chain:
        */
       hash_head = NIL;
       if (s->lookahead >= MIN_MATCH) {
           INSERT_STRING(s, s->strstart, hash_head);
       }

       /* Find the longest match, discarding those <= prev_length.
        */
       s->prev_length = s->match_length, s->prev_match = s->match_start;
       s->match_length = MIN_MATCH-1;

       if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
           s->strstart - hash_head <= MAX_DIST(s)) {
           /* To simplify the code, we prevent matches with the string
            * of window index 0 (in particular we have to avoid a match
            * of the string with itself at the start of the input file).
            */
           s->match_length = longest_match (s, hash_head);
           /* longest_match() sets match_start */

           if (s->match_length <= 5 && (s->strategy == Z_FILTERED
#if TOO_FAR <= 32767
               || (s->match_length == MIN_MATCH &&
                   s->strstart - s->match_start > TOO_FAR)
#endif
               )) {

               /* If prev_match is also MIN_MATCH, match_start is garbage
                * but we will ignore the current match anyway.
                */
               s->match_length = MIN_MATCH-1;
           }
       }
       /* If there was a match at the previous step and the current
        * match is not better, output the previous match:
        */
       if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
           uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
           /* Do not insert strings in hash table beyond this. */

           check_match(s, s->strstart-1, s->prev_match, s->prev_length);

           _tr_tally_dist(s, s->strstart -1 - s->prev_match,
                          s->prev_length - MIN_MATCH, bflush);

           /* Insert in hash table all strings up to the end of the match.
            * strstart-1 and strstart are already inserted. If there is not
            * enough lookahead, the last two strings are not inserted in
            * the hash table.
            */
           s->lookahead -= s->prev_length-1;
           s->prev_length -= 2;
           do {
               if (++s->strstart <= max_insert) {
                   INSERT_STRING(s, s->strstart, hash_head);
               }
           } while (--s->prev_length != 0);
           s->match_available = 0;
           s->match_length = MIN_MATCH-1;
           s->strstart++;

           if (bflush) FLUSH_BLOCK(s, 0);

       } else if (s->match_available) {
           /* If there was no match at the previous position, output a
            * single literal. If there was a match but the current match
            * is longer, truncate the previous match to a single literal.
            */
           Tracevv((stderr,"%c", s->window[s->strstart-1]));
           _tr_tally_lit(s, s->window[s->strstart-1], bflush);
           if (bflush) {
               FLUSH_BLOCK_ONLY(s, 0);
           }
           s->strstart++;
           s->lookahead--;
           if (s->strm->avail_out == 0) return need_more;
       } else {
           /* There is no previous match to compare with, wait for
            * the next step to decide.
            */
           s->match_available = 1;
           s->strstart++;
           s->lookahead--;
       }
   }
   Assert (flush != Z_NO_FLUSH, "no flush?");
   if (s->match_available) {
       Tracevv((stderr,"%c", s->window[s->strstart-1]));
       _tr_tally_lit(s, s->window[s->strstart-1], bflush);
       s->match_available = 0;
   }
   s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
   if (flush == Z_FINISH) {
       FLUSH_BLOCK(s, 1);
       return finish_done;
   }
   if (s->sym_next)
       FLUSH_BLOCK(s, 0);
   return block_done;
}
#endif /* FASTEST */

/* ===========================================================================
* For Z_RLE, simply look for runs of bytes, generate matches only of distance
* one.  Do not maintain a hash table.  (It will be regenerated if this run of
* deflate switches away from Z_RLE.)
*/
local block_state deflate_rle(s, flush)
   deflate_state *s;
   int flush;
{
   int bflush;             /* set if current block must be flushed */
   uInt prev;              /* byte at distance one to match */
   Bytef *scan, *strend;   /* scan goes up to strend for length of run */

   for (;;) {
       /* Make sure that we always have enough lookahead, except
        * at the end of the input file. We need MAX_MATCH bytes
        * for the longest run, plus one for the unrolled loop.
        */
       if (s->lookahead <= MAX_MATCH) {
           fill_window(s);
           if (s->lookahead <= MAX_MATCH && flush == Z_NO_FLUSH) {
               return need_more;
           }
           if (s->lookahead == 0) break; /* flush the current block */
       }

       /* See how many times the previous byte repeats */
       s->match_length = 0;
       if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
           scan = s->window + s->strstart - 1;
           prev = *scan;
           if (prev == *++scan && prev == *++scan && prev == *++scan) {
               strend = s->window + s->strstart + MAX_MATCH;
               do {
               } while (prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        prev == *++scan && prev == *++scan &&
                        scan < strend);
               s->match_length = MAX_MATCH - (uInt)(strend - scan);
               if (s->match_length > s->lookahead)
                   s->match_length = s->lookahead;
           }
           Assert(scan <= s->window+(uInt)(s->window_size-1), "wild scan");
       }

       /* Emit match if have run of MIN_MATCH or longer, else emit literal */
       if (s->match_length >= MIN_MATCH) {
           check_match(s, s->strstart, s->strstart - 1, s->match_length);

           _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);

           s->lookahead -= s->match_length;
           s->strstart += s->match_length;
           s->match_length = 0;
       } else {
           /* No match, output a literal byte */
           Tracevv((stderr,"%c", s->window[s->strstart]));
           _tr_tally_lit (s, s->window[s->strstart], bflush);
           s->lookahead--;
           s->strstart++;
       }
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   s->insert = 0;
   if (flush == Z_FINISH) {
       FLUSH_BLOCK(s, 1);
       return finish_done;
   }
   if (s->sym_next)
       FLUSH_BLOCK(s, 0);
   return block_done;
}

/* ===========================================================================
* For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
* (It will be regenerated if this run of deflate switches away from Huffman.)
*/
local block_state deflate_huff(s, flush)
   deflate_state *s;
   int flush;
{
   int bflush;             /* set if current block must be flushed */

   for (;;) {
       /* Make sure that we have a literal to write. */
       if (s->lookahead == 0) {
           fill_window(s);
           if (s->lookahead == 0) {
               if (flush == Z_NO_FLUSH)
                   return need_more;
               break;      /* flush the current block */
           }
       }

       /* Output a literal byte */
       s->match_length = 0;
       Tracevv((stderr,"%c", s->window[s->strstart]));
       _tr_tally_lit (s, s->window[s->strstart], bflush);
       s->lookahead--;
       s->strstart++;
       if (bflush) FLUSH_BLOCK(s, 0);
   }
   s->insert = 0;
   if (flush == Z_FINISH) {
       FLUSH_BLOCK(s, 1);
       return finish_done;
   }
   if (s->sym_next)
       FLUSH_BLOCK(s, 0);
   return block_done;
}