/* s12z-decode.c -- Freescale S12Z disassembly
  Copyright (C) 2018-2024 Free Software Foundation, Inc.

  This file is part of the GNU opcodes library.

  This library is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 3, or (at your option)
  any later version.

  It is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
  MA 02110-1301, USA.  */

#include "sysdep.h"
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <assert.h>

#include "opcode/s12z.h"

#include "bfd.h"

#include "s12z-opc.h"


typedef int (*insn_bytes_f) (struct mem_read_abstraction_base *);

typedef int (*operands_f) (struct mem_read_abstraction_base *,
                          int *n_operands, struct operand **operand);

typedef enum optr (*discriminator_f) (struct mem_read_abstraction_base *,
                                     enum optr hint);

enum OPR_MODE
 {
   OPR_IMMe4,
   OPR_REG,
   OPR_OFXYS,
   OPR_XY_PRE_INC,
   OPR_XY_POST_INC,
   OPR_XY_PRE_DEC,
   OPR_XY_POST_DEC,
   OPR_S_PRE_DEC,
   OPR_S_POST_INC,
   OPR_REG_DIRECT,
   OPR_REG_INDIRECT,
   OPR_IDX_DIRECT,
   OPR_IDX_INDIRECT,
   OPR_EXT1,
   OPR_IDX2_REG,
   OPR_IDX3_DIRECT,
   OPR_IDX3_INDIRECT,

   OPR_EXT18,
   OPR_IDX3_DIRECT_REG,
   OPR_EXT3_DIRECT,
   OPR_EXT3_INDIRECT
 };

struct opr_pb
{
 uint8_t mask;
 uint8_t value;
 int n_operands;
 enum OPR_MODE mode;
};

static const  struct opr_pb opr_pb[] = {
 {0xF0, 0x70, 1, OPR_IMMe4},
 {0xF8, 0xB8, 1, OPR_REG},
 {0xC0, 0x40, 1, OPR_OFXYS},
 {0xEF, 0xE3, 1, OPR_XY_PRE_INC},
 {0xEF, 0xE7, 1, OPR_XY_POST_INC},
 {0xEF, 0xC3, 1, OPR_XY_PRE_DEC},
 {0xEF, 0xC7, 1, OPR_XY_POST_DEC},
 {0xFF, 0xFB, 1, OPR_S_PRE_DEC},
 {0xFF, 0xFF, 1, OPR_S_POST_INC},
 {0xC8, 0x88, 1, OPR_REG_DIRECT},
 {0xE8, 0xC8, 1, OPR_REG_INDIRECT},

 {0xCE, 0xC0, 2, OPR_IDX_DIRECT},
 {0xCE, 0xC4, 2, OPR_IDX_INDIRECT},
 {0xC0, 0x00, 2, OPR_EXT1},

 {0xC8, 0x80, 3, OPR_IDX2_REG},
 {0xFA, 0xF8, 3, OPR_EXT18},

 {0xCF, 0xC2, 4, OPR_IDX3_DIRECT},
 {0xCF, 0xC6, 4, OPR_IDX3_INDIRECT},

 {0xF8, 0xE8, 4, OPR_IDX3_DIRECT_REG},
 {0xFF, 0xFA, 4, OPR_EXT3_DIRECT},
 {0xFF, 0xFE, 4, OPR_EXT3_INDIRECT},
};

/* Return the number of bytes in a OPR operand, including the XB postbyte.
  It does not include any preceeding opcodes. */
static int
x_opr_n_bytes (struct mem_read_abstraction_base *mra, int offset)
{
 bfd_byte xb;
 int status = mra->read (mra, offset, 1, &xb);
 if (status < 0)
   return status;

 size_t i;
 for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
   {
     const struct opr_pb *pb = opr_pb + i;
     if ((xb & pb->mask) == pb->value)
       {
         return pb->n_operands;
       }
   }

 return 1;
}

static int
opr_n_bytes_p1 (struct mem_read_abstraction_base *mra)
{
 int n = x_opr_n_bytes (mra, 0);
 if (n < 0)
   return n;
 return 1 + n;
}

static int
opr_n_bytes2 (struct mem_read_abstraction_base *mra)
{
 int s = x_opr_n_bytes (mra, 0);
 if (s < 0)
   return s;
 int n = x_opr_n_bytes (mra, s);
 if (n < 0)
   return n;
 return s + n + 1;
}

enum BB_MODE
 {
   BB_REG_REG_REG,
   BB_REG_REG_IMM,
   BB_REG_OPR_REG,
   BB_OPR_REG_REG,
   BB_REG_OPR_IMM,
   BB_OPR_REG_IMM
 };

struct opr_bb
{
 uint8_t mask;
 uint8_t value;
 int n_operands;
 bool opr;
 enum BB_MODE mode;
};

static const struct opr_bb bb_modes[] =
 {
   {0x60, 0x00, 2, false, BB_REG_REG_REG},
   {0x60, 0x20, 3, false, BB_REG_REG_IMM},
   {0x70, 0x40, 2, true,  BB_REG_OPR_REG},
   {0x70, 0x50, 2, true,  BB_OPR_REG_REG},
   {0x70, 0x60, 3, true,  BB_REG_OPR_IMM},
   {0x70, 0x70, 3, true,  BB_OPR_REG_IMM}
 };

static int
bfextins_n_bytes (struct mem_read_abstraction_base *mra)
{
 bfd_byte bb;
 int status = mra->read (mra, 0, 1, &bb);
 if (status < 0)
   return status;

 size_t i;
 const struct opr_bb *bbs = 0;
 for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
   {
     bbs = bb_modes + i;
     if ((bb & bbs->mask) == bbs->value)
       {
         break;
       }
   }

 int n = bbs->n_operands;
 if (bbs->opr)
   {
     int x = x_opr_n_bytes (mra, n - 1);
     if (x < 0)
       return x;
     n += x;
   }

 return n;
}

static int
single (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
 return 1;
}

static int
two (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
 return 2;
}

static int
three (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
 return 3;
}

static int
four (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
 return 4;
}

static int
five (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED)
{
 return 5;
}

static int
pcrel_15bit (struct mem_read_abstraction_base *mra)
{
 bfd_byte byte;
 int status = mra->read (mra, 0, 1, &byte);
 if (status < 0)
   return status;
 return (byte & 0x80) ? 3 : 2;
}



static int
xysp_reg_from_postbyte (uint8_t postbyte)
{
 int reg = -1;
 switch ((postbyte & 0x30) >> 4)
   {
   case 0:
     reg = REG_X;
     break;
   case 1:
     reg = REG_Y;
     break;
   case 2:
     reg = REG_S;
     break;
   default:
     reg = REG_P;
   }
 return reg;
}

static struct operand *
create_immediate_operand (int value)
{
 struct immediate_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_IMMEDIATE;
     op->parent.osize = -1;
     op->value = value;
   }
 return (struct operand *) op;
}

static struct operand *
create_bitfield_operand (int width, int offset)
{
 struct bitfield_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_BIT_FIELD;
     op->parent.osize = -1;
     op->width = width;
     op->offset = offset;
   }
 return (struct operand *) op;
}

static struct operand *
create_register_operand_with_size (int reg, short osize)
{
 struct register_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_REGISTER;
     op->parent.osize = osize;
     op->reg = reg;
   }
 return (struct operand *) op;
}

static struct operand *
create_register_operand (int reg)
{
 return create_register_operand_with_size (reg, -1);
}

static struct operand *
create_register_all_operand (void)
{
 struct register_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_REGISTER_ALL;
     op->parent.osize = -1;
   }
 return (struct operand *) op;
}

static struct operand *
create_register_all16_operand (void)
{
 struct register_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_REGISTER_ALL16;
     op->parent.osize = -1;
   }
 return (struct operand *) op;
}


static struct operand *
create_simple_memory_operand (bfd_vma addr, bfd_vma base, bool relative)
{
 struct simple_memory_operand *op;

 assert (relative || base == 0);
 op = malloc (sizeof (*op));
 if (op != NULL)
   {
     op->parent.cl = OPND_CL_SIMPLE_MEMORY;
     op->parent.osize = -1;
     op->addr = addr;
     op->base = base;
     op->relative = relative;
   }
 return (struct operand *) op;
}

static struct operand *
create_memory_operand (bool indirect, int base, int n_regs, int reg0, int reg1)
{
 struct memory_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_MEMORY;
     op->parent.osize = -1;
     op->indirect = indirect;
     op->base_offset = base;
     op->mutation = OPND_RM_NONE;
     op->n_regs = n_regs;
     op->regs[0] = reg0;
     op->regs[1] = reg1;
   }
 return (struct operand *) op;
}

static struct operand *
create_memory_auto_operand (enum op_reg_mutation mutation, int reg)
{
 struct memory_operand *op = malloc (sizeof (*op));

 if (op != NULL)
   {
     op->parent.cl = OPND_CL_MEMORY;
     op->parent.osize = -1;
     op->indirect = false;
     op->base_offset = 0;
     op->mutation = mutation;
     op->n_regs = 1;
     op->regs[0] = reg;
     op->regs[1] = -1;
   }
 return (struct operand *) op;
}



static int
z_ext24_decode (struct mem_read_abstraction_base *mra, int *n_operands,
               struct operand **operand)
{
 struct operand *op;
 uint8_t buffer[3];
 int status = mra->read (mra, 0, 3, buffer);
 if (status < 0)
   return status;

 int i;
 uint32_t addr = 0;
 for (i = 0; i < 3; ++i)
   {
     addr <<= 8;
     addr |= buffer[i];
   }

 op = create_simple_memory_operand (addr, 0, false);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}


static int
z_decode_signed_value (struct mem_read_abstraction_base *mra, int offset,
                      short size, uint32_t *result)
{
 assert (size >0);
 assert (size <= 4);
 bfd_byte buffer[4];
 int status = mra->read (mra, offset, size, buffer);
 if (status < 0)
   return status;

 int i;
 uint32_t value = 0;
 for (i = 0; i < size; ++i)
   value = (value << 8) | buffer[i];

 if (buffer[0] & 0x80)
   {
     /* Deal with negative values */
     value -= 1u << (size * 4) << (size * 4);
   }
 *result = value;
 return 0;
}

static int
decode_signed_value (struct mem_read_abstraction_base *mra, short size,
                    uint32_t *result)
{
 return z_decode_signed_value (mra, 0, size, result);
}

static int
x_imm1 (struct mem_read_abstraction_base *mra,
       int offset,
       int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, offset, 1, &byte);
 if (status < 0)
   return status;

 op = create_immediate_operand (byte);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

/* An eight bit immediate operand.  */
static int
imm1_decode (struct mem_read_abstraction_base *mra,
            int *n_operands, struct operand **operand)
{
 return x_imm1 (mra, 0, n_operands, operand);
}

static int
trap_decode (struct mem_read_abstraction_base *mra,
            int *n_operands, struct operand **operand)
{
 return x_imm1 (mra, -1, n_operands, operand);
}


static struct operand *
x_opr_decode_with_size (struct mem_read_abstraction_base *mra, int offset,
                       short osize)
{
 bfd_byte postbyte;
 int status = mra->read (mra, offset, 1, &postbyte);
 if (status < 0)
   return NULL;
 offset++;

 enum OPR_MODE mode = -1;
 size_t i;
 for (i = 0; i < sizeof (opr_pb) / sizeof (opr_pb[0]); ++i)
   {
     const struct opr_pb *pb = opr_pb + i;
     if ((postbyte & pb->mask) == pb->value)
       {
         mode = pb->mode;
         break;
       }
   }

 struct operand *operand = NULL;
 switch (mode)
   {
   case OPR_IMMe4:
     {
       int n;
       uint8_t x = (postbyte & 0x0F);
       if (x == 0)
         n = -1;
       else
         n = x;

       operand = create_immediate_operand (n);
       break;
     }
   case OPR_REG:
     {
       uint8_t x = (postbyte & 0x07);
       operand = create_register_operand (x);
       break;
     }
   case OPR_OFXYS:
     {
       operand = create_memory_operand (false, postbyte & 0x0F, 1,
                                        xysp_reg_from_postbyte (postbyte), -1);
       break;
     }
   case OPR_REG_DIRECT:
     {
       operand = create_memory_operand (false, 0, 2, postbyte & 0x07,
                                        xysp_reg_from_postbyte (postbyte));
       break;
     }
   case OPR_REG_INDIRECT:
     {
       operand = create_memory_operand (true, 0, 2, postbyte & 0x07,
                                        (postbyte & 0x10) ? REG_Y : REG_X);
       break;
     }

   case OPR_IDX_INDIRECT:
     {
       uint8_t x1;
       status = mra->read (mra, offset, 1, &x1);
       if (status < 0)
         return NULL;
       int idx = x1;

       if (postbyte & 0x01)
         {
           /* Deal with negative values */
           idx -= 0x1UL << 8;
         }

       operand = create_memory_operand (true, idx, 1,
                                        xysp_reg_from_postbyte (postbyte), -1);
       break;
     }

   case OPR_IDX3_DIRECT:
     {
       uint8_t x[3];
       status = mra->read (mra, offset, 3, x);
       if (status < 0)
         return NULL;
       int idx = x[0] << 16 | x[1] << 8 | x[2];

       if (x[0] & 0x80)
         {
           /* Deal with negative values */
           idx -= 0x1UL << 24;
         }

       operand = create_memory_operand (false, idx, 1,
                                        xysp_reg_from_postbyte (postbyte), -1);
       break;
     }

   case OPR_IDX3_DIRECT_REG:
     {
       uint8_t x[3];
       status = mra->read (mra, offset, 3, x);
       if (status < 0)
         return NULL;
       int idx = x[0] << 16 | x[1] << 8 | x[2];

       if (x[0] & 0x80)
         {
           /* Deal with negative values */
           idx -= 0x1UL << 24;
         }

       operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
       break;
     }

   case OPR_IDX3_INDIRECT:
     {
       uint8_t x[3];
       status = mra->read (mra, offset, 3, x);
       if (status < 0)
         return NULL;
       int idx = x[0] << 16 | x[1] << 8 | x[2];

       if (x[0] & 0x80)
         {
           /* Deal with negative values */
           idx -= 0x1UL << 24;
         }

       operand = create_memory_operand (true, idx, 1,
                                        xysp_reg_from_postbyte (postbyte), -1);
       break;
     }

   case OPR_IDX_DIRECT:
     {
       uint8_t x1;
       status = mra->read (mra, offset, 1, &x1);
       if (status < 0)
         return NULL;
       int idx = x1;

       if (postbyte & 0x01)
         {
           /* Deal with negative values */
           idx -= 0x1UL << 8;
         }

       operand = create_memory_operand (false, idx, 1,
                                        xysp_reg_from_postbyte (postbyte), -1);
       break;
     }

   case OPR_IDX2_REG:
     {
       uint8_t x[2];
       status = mra->read (mra, offset, 2, x);
       if (status < 0)
         return NULL;
       uint32_t idx = x[1] | x[0] << 8 ;
       idx |= (postbyte & 0x30) << 12;

       operand = create_memory_operand (false, idx, 1, postbyte & 0x07, -1);
       break;
     }

   case OPR_XY_PRE_INC:
     {
       operand = create_memory_auto_operand (OPND_RM_PRE_INC,
                                             (postbyte & 0x10) ? REG_Y: REG_X);
       break;
     }
   case OPR_XY_POST_INC:
     {
       operand = create_memory_auto_operand (OPND_RM_POST_INC,
                                             (postbyte & 0x10) ? REG_Y: REG_X);
       break;
     }
   case OPR_XY_PRE_DEC:
     {
       operand = create_memory_auto_operand (OPND_RM_PRE_DEC,
                                             (postbyte & 0x10) ? REG_Y: REG_X);
       break;
     }
   case OPR_XY_POST_DEC:
     {
       operand = create_memory_auto_operand (OPND_RM_POST_DEC,
                                             (postbyte & 0x10) ? REG_Y: REG_X);
       break;
     }
   case OPR_S_PRE_DEC:
     {
       operand = create_memory_auto_operand (OPND_RM_PRE_DEC, REG_S);
       break;
     }
   case OPR_S_POST_INC:
     {
       operand = create_memory_auto_operand (OPND_RM_POST_INC, REG_S);
       break;
     }

   case OPR_EXT18:
     {
       const size_t size = 2;
       bfd_byte buffer[4];
       status = mra->read (mra, offset, size, buffer);
       if (status < 0)
         return NULL;

       uint32_t ext18 = 0;
       for (i = 0; i < size; ++i)
         {
           ext18 <<= 8;
           ext18 |= buffer[i];
         }

       ext18 |= (postbyte & 0x01) << 16;
       ext18 |= (postbyte & 0x04) << 15;

       operand = create_simple_memory_operand (ext18, 0, false);
       break;
     }

   case OPR_EXT1:
     {
       uint8_t x1 = 0;
       status = mra->read (mra, offset, 1, &x1);
       if (status < 0)
         return NULL;
       int16_t addr;
       addr = x1;
       addr |= (postbyte & 0x3f) << 8;

       operand = create_simple_memory_operand (addr, 0, false);
       break;
     }

   case OPR_EXT3_DIRECT:
     {
       const size_t size = 3;
       bfd_byte buffer[4];
       status = mra->read (mra, offset, size, buffer);
       if (status < 0)
         return NULL;

       uint32_t ext24 = 0;
       for (i = 0; i < size; ++i)
         {
           ext24 |= buffer[i] << (8 * (size - i - 1));
         }

       operand = create_simple_memory_operand (ext24, 0, false);
       break;
     }

   case OPR_EXT3_INDIRECT:
     {
       const size_t size = 3;
       bfd_byte buffer[4];
       status = mra->read (mra, offset, size, buffer);
       if (status < 0)
         return NULL;

       uint32_t ext24 = 0;
       for (i = 0; i < size; ++i)
         {
           ext24 |= buffer[i] << (8 * (size - i - 1));
         }

       operand = create_memory_operand (true, ext24, 0, -1, -1);
       break;
     }

   default:
     printf ("Unknown OPR mode #0x%x (%d)", postbyte, mode);
     abort ();
   }

 if (operand != NULL)
   operand->osize = osize;

 return operand;
}

static struct operand *
x_opr_decode (struct mem_read_abstraction_base *mra, int offset)
{
 return x_opr_decode_with_size (mra, offset, -1);
}

static int
z_opr_decode (struct mem_read_abstraction_base *mra,
             int *n_operands, struct operand **operand)
{
 struct operand *op = x_opr_decode (mra, 0);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
z_opr_decode2 (struct mem_read_abstraction_base *mra,
              int *n_operands, struct operand **operand)
{
 int n = x_opr_n_bytes (mra, 0);
 if (n < 0)
   return n;
 struct operand *op = x_opr_decode (mra, 0);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = x_opr_decode (mra, n);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
imm1234 (struct mem_read_abstraction_base *mra, int base,
        int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte opcode;
 int status = mra->read (mra, -1, 1, &opcode);
 if (status < 0)
   return status;

 opcode -= base;

 int size = registers[opcode & 0xF].bytes;

 uint32_t imm;
 if (decode_signed_value (mra, size, &imm) < 0)
   return -1;

 op = create_immediate_operand (imm);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}


/* Special case of LD and CMP with register S and IMM operand */
static int
reg_s_imm (struct mem_read_abstraction_base *mra, int *n_operands,
          struct operand **operand)
{
 struct operand *op;

 op = create_register_operand (REG_S);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;

 uint32_t imm;
 if (decode_signed_value (mra, 3, &imm) < 0)
   return -1;
 op = create_immediate_operand (imm);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

/* Special case of LD, CMP and ST with register S and OPR operand */
static int
reg_s_opr (struct mem_read_abstraction_base *mra, int *n_operands,
          struct operand **operand)
{
 struct operand *op;

 op = create_register_operand (REG_S);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = x_opr_decode (mra, 0);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
z_imm1234_8base (struct mem_read_abstraction_base *mra, int *n_operands,
                struct operand **operand)
{
 return imm1234 (mra, 8, n_operands, operand);
}

static int
z_imm1234_0base (struct mem_read_abstraction_base *mra, int *n_operands,
                struct operand **operand)
{
 return imm1234 (mra, 0, n_operands, operand);
}


static int
z_tfr (struct mem_read_abstraction_base *mra, int *n_operands,
      struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, 0, 1, &byte);
 if (status < 0)
   return status;

 op = create_register_operand (byte >> 4);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (byte & 0x0F);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
z_reg (struct mem_read_abstraction_base *mra, int *n_operands,
      struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 op = create_register_operand (byte & 0x07);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}


static int
reg_xy (struct mem_read_abstraction_base *mra,
       int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 op = create_register_operand ((byte & 0x01) ? REG_Y : REG_X);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
lea_reg_xys_opr (struct mem_read_abstraction_base *mra,
                int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 int reg_xys = -1;
 switch (byte & 0x03)
   {
   case 0x00:
     reg_xys = REG_X;
     break;
   case 0x01:
     reg_xys = REG_Y;
     break;
   case 0x02:
     reg_xys = REG_S;
     break;
   }

 op = create_register_operand (reg_xys);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = x_opr_decode (mra, 0);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
lea_reg_xys (struct mem_read_abstraction_base *mra,
            int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 int reg_n = -1;
 switch (byte & 0x03)
   {
   case 0x00:
     reg_n = REG_X;
     break;
   case 0x01:
     reg_n = REG_Y;
     break;
   case 0x02:
     reg_n = REG_S;
     break;
   }

 status = mra->read (mra, 0, 1, &byte);
 if (status < 0)
   return status;

 op = create_register_operand (reg_n);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_memory_operand (false, (int8_t) byte, 1, reg_n, -1);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}


/* PC Relative offsets of size 15 or 7 bits */
static int
rel_15_7 (struct mem_read_abstraction_base *mra, int offset,
         int *n_operands, struct operand **operands)
{
 struct operand *op;
 bfd_byte upper;
 int status = mra->read (mra, offset - 1, 1, &upper);
 if (status < 0)
   return status;

 bool rel_size = (upper & 0x80);

 int16_t addr = upper;
 if (rel_size)
   {
     /* 15 bits.  Get the next byte */
     bfd_byte lower;
     status = mra->read (mra, offset, 1, &lower);
     if (status < 0)
       return status;

     addr <<= 8;
     addr |= lower;
     addr &= 0x7FFF;

     bool negative = (addr & 0x4000);
     addr &= 0x3FFF;
     if (negative)
       addr = addr - 0x4000;
   }
 else
   {
     /* 7 bits. */
     bool negative = (addr & 0x40);
     addr &= 0x3F;
     if (negative)
       addr = addr - 0x40;
   }

 op = create_simple_memory_operand (addr, mra->posn (mra) - 1, true);
 if (op == NULL)
   return -1;
 operands[(*n_operands)++] = op;
 return 0;
}


/* PC Relative offsets of size 15 or 7 bits */
static int
decode_rel_15_7 (struct mem_read_abstraction_base *mra,
                int *n_operands, struct operand **operand)
{
 return rel_15_7 (mra, 1, n_operands, operand);
}

static int shift_n_bytes (struct mem_read_abstraction_base *);
static int mov_imm_opr_n_bytes (struct mem_read_abstraction_base *);
static int loop_prim_n_bytes (struct mem_read_abstraction_base *);
static int bm_rel_n_bytes (struct mem_read_abstraction_base *);
static int mul_n_bytes (struct mem_read_abstraction_base *);
static int bm_n_bytes (struct mem_read_abstraction_base *);

static int psh_pul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int shift_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int mul_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int bm_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int bm_rel_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int mov_imm_opr (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operand);
static int loop_primitive_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
static int bit_field_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);
static int exg_sex_decode (struct mem_read_abstraction_base *mra, int *n_operands, struct operand **operands);


static enum optr shift_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
static enum optr psh_pul_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
static enum optr mul_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
static enum optr loop_primitive_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
static enum optr bit_field_discrim (struct mem_read_abstraction_base *mra, enum optr hint);
static enum optr exg_sex_discrim (struct mem_read_abstraction_base *mra, enum optr hint);


static int
cmp_xy (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
       int *n_operands, struct operand **operand)
{
 struct operand *op;

 op = create_register_operand (REG_X);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (REG_Y);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
sub_d6_x_y (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
           int *n_operands, struct operand **operand)
{
 struct operand *op;

 op = create_register_operand (REG_D6);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (REG_X);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (REG_Y);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
sub_d6_y_x (struct mem_read_abstraction_base *mra ATTRIBUTE_UNUSED,
           int *n_operands, struct operand **operand)
{
 struct operand *op;

 op = create_register_operand (REG_D6);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (REG_Y);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = create_register_operand (REG_X);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}

static int
ld_18bit_decode (struct mem_read_abstraction_base *mra, int *n_operands,
                struct operand **operand);

static enum optr
mul_discrim (struct mem_read_abstraction_base *mra, enum optr hint)
{
 uint8_t mb;
 int status = mra->read (mra, 0, 1, &mb);
 if (status < 0)
   return OP_INVALID;

 bool signed_op = (mb & 0x80);

 switch (hint)
   {
   case OPBASE_mul:
     return signed_op ? OP_muls : OP_mulu;
     break;
   case OPBASE_div:
     return signed_op ? OP_divs : OP_divu;
     break;
   case OPBASE_mod:
     return signed_op ? OP_mods : OP_modu;
     break;
   case OPBASE_mac:
     return signed_op ? OP_macs : OP_macu;
     break;
   case OPBASE_qmul:
     return signed_op ? OP_qmuls : OP_qmulu;
     break;
   default:
     abort ();
   }

 return OP_INVALID;
}

struct opcode
{
 /* The operation that this opcode performs.  */
 enum optr operator;

 /* The size of this operation.  May be -1 if it is implied
    in the operands or if size is not applicable.  */
 short osize;

 /* Some operations need this function to work out which operation
  is intended.  */
 discriminator_f discriminator;

 /* A function returning the number of bytes in this instruction.  */
 insn_bytes_f insn_bytes;

 operands_f operands;
 operands_f operands2;
};

static const struct opcode page2[] =
 {
   [0x00] = {OP_ld, -1, 0,  opr_n_bytes_p1, reg_s_opr, 0},
   [0x01] = {OP_st, -1, 0,  opr_n_bytes_p1, reg_s_opr, 0},
   [0x02] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_s_opr, 0},
   [0x03] = {OP_ld, -1, 0,  four, reg_s_imm, 0},
   [0x04] = {OP_cmp, -1, 0, four, reg_s_imm, 0},
   [0x05] = {OP_stop, -1, 0, single, 0, 0},
   [0x06] = {OP_wai, -1, 0,  single, 0, 0},
   [0x07] = {OP_sys, -1, 0,  single, 0, 0},
   [0x08] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},  /* BFEXT / BFINS */
   [0x09] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0a] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0b] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0c] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0d] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0e] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x0f] = {0xFFFF, -1, bit_field_discrim,  bfextins_n_bytes, bit_field_decode, 0},
   [0x10] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x11] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x12] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x13] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x14] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x15] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x16] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x17] = {OP_minu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x18] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x19] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1a] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1b] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1c] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1d] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1e] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x1f] = {OP_maxu, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x20] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x21] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x22] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x23] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x24] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x25] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x26] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x27] = {OP_mins, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x28] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x29] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2a] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2b] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2c] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2d] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2e] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x2f] = {OP_maxs, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x30] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x31] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x32] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x33] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x34] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x35] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x36] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x37] = {OPBASE_div, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x38] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x39] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3a] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3b] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3c] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3d] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3e] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x3f] = {OPBASE_mod, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x40] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x41] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x42] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x43] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x44] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x45] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x46] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x47] = {OP_abs, -1, 0, single, z_reg, 0},
   [0x48] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x49] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4a] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4b] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4c] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4d] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4e] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4f] = {OPBASE_mac, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x50] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x51] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x52] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x53] = {OP_adc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x54] = {OP_adc, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x55] = {OP_adc, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x56] = {OP_adc, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x57] = {OP_adc, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x58] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
   [0x59] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5a] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5b] = {OP_bit, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5c] = {OP_bit, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x5d] = {OP_bit, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x5e] = {OP_bit, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x5f] = {OP_bit, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x60] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x61] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x62] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x63] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x64] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x65] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x66] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x67] = {OP_adc, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x68] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x69] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6a] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6b] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6c] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6d] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6e] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6f] = {OP_bit, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x70] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x71] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x72] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x73] = {OP_sbc, -1, 0, three, z_reg, z_imm1234_0base},
   [0x74] = {OP_sbc, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x75] = {OP_sbc, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x76] = {OP_sbc, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x77] = {OP_sbc, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x78] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
   [0x79] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7a] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7b] = {OP_eor, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7c] = {OP_eor, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x7d] = {OP_eor, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x7e] = {OP_eor, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x7f] = {OP_eor, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x80] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x81] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x82] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x83] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x84] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x85] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x86] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x87] = {OP_sbc, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x88] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x89] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8a] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8b] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8c] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8d] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8e] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x8f] = {OP_eor, -1, 0,  opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x90] = {OP_rti, -1, 0,  single, 0, 0},
   [0x91] = {OP_clb, -1, 0,   two, z_tfr, 0},
   [0x92] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x93] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x94] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x95] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x96] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x97] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x98] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x99] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9a] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9b] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9c] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9d] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9e] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0x9f] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xa0] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa1] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa2] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa3] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa4] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa5] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa6] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa7] = {OP_sat, -1, 0, single, z_reg, 0},
   [0xa8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xa9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xaa] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xab] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xac] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xad] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xae] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xaf] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xb0] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb1] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb2] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb3] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb4] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb5] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb6] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb7] = {OPBASE_qmul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0xb8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xb9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xba] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xbb] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xbc] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xbd] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xbe] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xbf] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc0] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc1] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc2] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc3] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc4] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc5] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc6] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc7] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xc9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xca] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xcb] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xcc] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xcd] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xce] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xcf] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd0] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd1] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd2] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd3] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd4] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd5] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd6] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd7] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xd9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xda] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xdb] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xdc] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xdd] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xde] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xdf] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe0] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe1] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe2] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe3] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe4] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe5] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe6] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe7] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xe9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xea] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xeb] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xec] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xed] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xee] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xef] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf0] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf1] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf2] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf3] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf4] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf5] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf6] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf7] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf8] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xf9] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xfa] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xfb] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xfc] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xfd] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xfe] = {OP_trap, -1, 0,  single, trap_decode, 0},
   [0xff] = {OP_trap, -1, 0,  single, trap_decode, 0},
 };

static const struct opcode page1[] =
 {
   [0x00] = {OP_bgnd, -1, 0, single, 0, 0},
   [0x01] = {OP_nop, -1, 0,  single, 0, 0},
   [0x02] = {OP_brclr, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
   [0x03] = {OP_brset, -1, 0, bm_rel_n_bytes, bm_rel_decode, 0},
   [0x04] = {0xFFFF, -1, psh_pul_discrim,   two, psh_pul_decode, 0}, /* psh/pul */
   [0x05] = {OP_rts, -1, 0,  single, 0, 0},
   [0x06] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x07] = {OP_lea, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x08] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
   [0x09] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
   [0x0a] = {OP_lea, -1, 0, opr_n_bytes_p1, lea_reg_xys_opr, 0},
   [0x0b] = {0xFFFF, -1, loop_primitive_discrim, loop_prim_n_bytes, loop_primitive_decode, 0}, /* Loop primitives TBcc / DBcc */
   [0x0c] = {OP_mov, 0, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
   [0x0d] = {OP_mov, 1, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
   [0x0e] = {OP_mov, 2, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
   [0x0f] = {OP_mov, 3, 0, mov_imm_opr_n_bytes, mov_imm_opr, 0},
   [0x10] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},  /* lsr/lsl/asl/asr/rol/ror */
   [0x11] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x12] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x13] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x14] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x15] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x16] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x17] = {0xFFFF, -1, shift_discrim,  shift_n_bytes, shift_decode, 0},
   [0x18] = {OP_lea, -1, 0,  two, lea_reg_xys, NULL},
   [0x19] = {OP_lea, -1, 0,  two, lea_reg_xys, NULL},
   [0x1a] = {OP_lea, -1, 0,  two, lea_reg_xys, NULL},
   /* 0x1b PG2 */
   [0x1c] = {OP_mov, 0, 0, opr_n_bytes2, z_opr_decode2, 0},
   [0x1d] = {OP_mov, 1, 0, opr_n_bytes2, z_opr_decode2, 0},
   [0x1e] = {OP_mov, 2, 0, opr_n_bytes2, z_opr_decode2, 0},
   [0x1f] = {OP_mov, 3, 0, opr_n_bytes2, z_opr_decode2, 0},
   [0x20] = {OP_bra, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x21] = {OP_bsr, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x22] = {OP_bhi, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x23] = {OP_bls, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x24] = {OP_bcc, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x25] = {OP_bcs, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x26] = {OP_bne, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x27] = {OP_beq, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x28] = {OP_bvc, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x29] = {OP_bvs, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2a] = {OP_bpl, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2b] = {OP_bmi, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2c] = {OP_bge, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2d] = {OP_blt, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2e] = {OP_bgt, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x2f] = {OP_ble, -1, 0,  pcrel_15bit, decode_rel_15_7, 0},
   [0x30] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x31] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x32] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x33] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x34] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x35] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x36] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x37] = {OP_inc, -1, 0, single, z_reg, 0},
   [0x38] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x39] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3a] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3b] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3c] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3d] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3e] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x3f] = {OP_clr, -1, 0, single, z_reg, 0},
   [0x40] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x41] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x42] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x43] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x44] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x45] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x46] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x47] = {OP_dec, -1, 0, single, z_reg, 0},
   [0x48] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x49] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4a] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4b] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4c] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4d] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4e] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x4f] = {OPBASE_mul, -1, mul_discrim, mul_n_bytes, mul_decode, 0},
   [0x50] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
   [0x51] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
   [0x52] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
   [0x53] = {OP_add, -1, 0, three, z_reg, z_imm1234_0base},
   [0x54] = {OP_add, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x55] = {OP_add, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x56] = {OP_add, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x57] = {OP_add, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x58] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
   [0x59] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5a] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5b] = {OP_and, -1, 0, three, z_reg, z_imm1234_8base},
   [0x5c] = {OP_and, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x5d] = {OP_and, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x5e] = {OP_and, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x5f] = {OP_and, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x60] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x61] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x62] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x63] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x64] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x65] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x66] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x67] = {OP_add, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x68] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x69] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6a] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6b] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6c] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6d] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6e] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x6f] = {OP_and, -1, 0, opr_n_bytes_p1, z_reg, z_opr_decode},
   [0x70] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
   [0x71] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
   [0x72] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
   [0x73] = {OP_sub, -1, 0, three, z_reg, z_imm1234_0base},
   [0x74] = {OP_sub, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x75] = {OP_sub, -1, 0, two,   z_reg, z_imm1234_0base},
   [0x76] = {OP_sub, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x77] = {OP_sub, -1, 0, five,  z_reg, z_imm1234_0base},
   [0x78] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
   [0x79] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7a] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7b] = {OP_or, -1, 0, three, z_reg, z_imm1234_8base},
   [0x7c] = {OP_or, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x7d] = {OP_or, -1, 0, two,   z_reg, z_imm1234_8base},
   [0x7e] = {OP_or, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x7f] = {OP_or, -1, 0, five,  z_reg, z_imm1234_8base},
   [0x80] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x81] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x82] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x83] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x84] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x85] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x86] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x87] = {OP_sub, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x88] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x89] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8a] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8b] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8c] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8d] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8e] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x8f] = {OP_or, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0x90] = {OP_ld, -1, 0, three,  z_reg, z_imm1234_0base},
   [0x91] = {OP_ld, -1, 0, three,  z_reg, z_imm1234_0base},
   [0x92] = {OP_ld, -1, 0, three,  z_reg, z_imm1234_0base},
   [0x93] = {OP_ld, -1, 0, three,  z_reg, z_imm1234_0base},
   [0x94] = {OP_ld, -1, 0, two,    z_reg, z_imm1234_0base},
   [0x95] = {OP_ld, -1, 0, two,    z_reg, z_imm1234_0base},
   [0x96] = {OP_ld, -1, 0, five,   z_reg, z_imm1234_0base},
   [0x97] = {OP_ld, -1, 0, five,   z_reg, z_imm1234_0base},
   [0x98] = {OP_ld, -1, 0, four,   reg_xy, z_imm1234_0base},
   [0x99] = {OP_ld, -1, 0, four,   reg_xy, z_imm1234_0base},
   [0x9a] = {OP_clr, -1, 0, single, reg_xy, 0},
   [0x9b] = {OP_clr, -1, 0, single, reg_xy, 0},
   [0x9c] = {OP_inc, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0x9d] = {OP_inc, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0x9e] = {OP_tfr, -1, 0, two, z_tfr, NULL},
   [0x9f] = {OP_inc, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xa0] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa1] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa2] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa3] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa4] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa5] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa6] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa7] = {OP_ld, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xa8] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xa9] = {OP_ld, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xaa] = {OP_jmp, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xab] = {OP_jsr, -1, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xac] = {OP_dec, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xad] = {OP_dec, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xae] = {0xFFFF, -1, exg_sex_discrim,   two, exg_sex_decode, 0},  /* EXG / SEX */
   [0xaf] = {OP_dec, 3, 0, opr_n_bytes_p1, 0, z_opr_decode},
   [0xb0] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb1] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb2] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb3] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb4] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb5] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb6] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb7] = {OP_ld, -1, 0, four,  z_reg, z_ext24_decode},
   [0xb8] = {OP_ld, -1, 0, four,  reg_xy, z_ext24_decode},
   [0xb9] = {OP_ld, -1, 0, four,  reg_xy, z_ext24_decode},
   [0xba] = {OP_jmp, -1, 0, four, z_ext24_decode, 0},
   [0xbb] = {OP_jsr, -1, 0, four, z_ext24_decode, 0},
   [0xbc] = {OP_clr, 0, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xbd] = {OP_clr, 1, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xbe] = {OP_clr, 2, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xbf] = {OP_clr, 3, 0, opr_n_bytes_p1, z_opr_decode, 0},
   [0xc0] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc1] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc2] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc3] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc4] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc5] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc6] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc7] = {OP_st, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xc8] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xc9] = {OP_st, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xca] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xcb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xcc] = {OP_com, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xcd] = {OP_com, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xce] = {OP_andcc, -1, 0, two, imm1_decode, 0},
   [0xcf] = {OP_com, 3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xd0] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd1] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd2] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd3] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd4] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd5] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd6] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd7] = {OP_st, -1, 0, four,  z_reg, z_ext24_decode},
   [0xd8] = {OP_st, -1, 0, four,  reg_xy, z_ext24_decode},
   [0xd9] = {OP_st, -1, 0, four,  reg_xy, z_ext24_decode},
   [0xda] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xdb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xdc] = {OP_neg, 0, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xdd] = {OP_neg, 1, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xde] = {OP_orcc, -1, 0,  two,  imm1_decode, 0},
   [0xdf] = {OP_neg,  3, 0, opr_n_bytes_p1, NULL, z_opr_decode},
   [0xe0] = {OP_cmp, -1, 0, three,  z_reg, z_imm1234_0base},
   [0xe1] = {OP_cmp, -1, 0, three,  z_reg, z_imm1234_0base},
   [0xe2] = {OP_cmp, -1, 0, three,  z_reg, z_imm1234_0base},
   [0xe3] = {OP_cmp, -1, 0, three,  z_reg, z_imm1234_0base},
   [0xe4] = {OP_cmp, -1, 0, two,    z_reg, z_imm1234_0base},
   [0xe5] = {OP_cmp, -1, 0, two,    z_reg, z_imm1234_0base},
   [0xe6] = {OP_cmp, -1, 0, five,   z_reg, z_imm1234_0base},
   [0xe7] = {OP_cmp, -1, 0, five,   z_reg, z_imm1234_0base},
   [0xe8] = {OP_cmp, -1, 0, four,   reg_xy, z_imm1234_0base},
   [0xe9] = {OP_cmp, -1, 0, four,   reg_xy, z_imm1234_0base},
   [0xea] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xeb] = {OP_ld, -1, 0, three, reg_xy, ld_18bit_decode},
   [0xec] = {OP_bclr, -1, 0, bm_n_bytes, bm_decode, 0},
   [0xed] = {OP_bset, -1, 0, bm_n_bytes, bm_decode, 0},
   [0xee] = {OP_btgl, -1, 0, bm_n_bytes, bm_decode, 0},
   [0xef] = {OP_INVALID, -1, 0, NULL, NULL, NULL}, /* SPARE */
   [0xf0] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf1] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf2] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf3] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf4] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf5] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf6] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf7] = {OP_cmp, -1, 0, opr_n_bytes_p1, z_reg,    z_opr_decode},
   [0xf8] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xf9] = {OP_cmp, -1, 0, opr_n_bytes_p1, reg_xy, z_opr_decode},
   [0xfa] = {OP_ld, -1, 0,  three, reg_xy, ld_18bit_decode},
   [0xfb] = {OP_ld, -1, 0,  three, reg_xy, ld_18bit_decode},
   [0xfc] = {OP_cmp, -1, 0, single, cmp_xy, 0},
   [0xfd] = {OP_sub, -1, 0, single, sub_d6_x_y, 0},
   [0xfe] = {OP_sub, -1, 0, single, sub_d6_y_x, 0},
   [0xff] = {OP_swi, -1, 0, single, 0, 0}
 };

static const int oprregs1[] =
 {
   REG_D3, REG_D2, REG_D1, REG_D0, REG_CCL, REG_CCH
 };

static const int oprregs2[] =
 {
   REG_Y,  REG_X,  REG_D7, REG_D6, REG_D5,  REG_D4
 };




enum MUL_MODE
 {
   MUL_REG_REG,
   MUL_REG_OPR,
   MUL_REG_IMM,
   MUL_OPR_OPR
 };

struct mb
{
 uint8_t mask;
 uint8_t value;
 enum MUL_MODE mode;
};

static const struct mb mul_table[] = {
 {0x40, 0x00, MUL_REG_REG},

 {0x47, 0x40, MUL_REG_OPR},
 {0x47, 0x41, MUL_REG_OPR},
 {0x47, 0x43, MUL_REG_OPR},

 {0x47, 0x44, MUL_REG_IMM},
 {0x47, 0x45, MUL_REG_IMM},
 {0x47, 0x47, MUL_REG_IMM},

 {0x43, 0x42, MUL_OPR_OPR},
};


static int
mul_decode (struct mem_read_abstraction_base *mra,
           int *n_operands, struct operand **operand)
{
 uint8_t mb;
 struct operand *op;
 int status = mra->read (mra, 0, 1, &mb);
 if (status < 0)
   return status;

 uint8_t byte;
 status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 enum MUL_MODE mode = -1;
 size_t i;
 for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
   {
     const struct mb *mm = mul_table + i;
     if ((mb & mm->mask) == mm->value)
       {
         mode = mm->mode;
         break;
       }
   }
 op = create_register_operand (byte & 0x07);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;

 switch (mode)
   {
   case MUL_REG_IMM:
     {
       int size = (mb & 0x3);
       op = create_register_operand_with_size ((mb & 0x38) >> 3, size);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;

       uint32_t imm;
       if (z_decode_signed_value (mra, 1, size + 1, &imm) < 0)
         return -1;
       op = create_immediate_operand (imm);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;
     }
     break;
   case MUL_REG_REG:
     op = create_register_operand ((mb & 0x38) >> 3);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     op = create_register_operand (mb & 0x07);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case MUL_REG_OPR:
     op = create_register_operand ((mb & 0x38) >> 3);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     op = x_opr_decode_with_size (mra, 1, mb & 0x3);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case MUL_OPR_OPR:
     {
       int first = x_opr_n_bytes (mra, 1);
       if (first < 0)
         return first;
       op = x_opr_decode_with_size (mra, 1, (mb & 0x30) >> 4);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;
       op = x_opr_decode_with_size (mra, first + 1, (mb & 0x0c) >> 2);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;
       break;
     }
   }
 return 0;
}


static int
mul_n_bytes (struct mem_read_abstraction_base *mra)
{
 int nx = 2;
 int first, second;
 uint8_t mb;
 int status = mra->read (mra, 0, 1, &mb);
 if (status < 0)
   return status;

 enum MUL_MODE mode = -1;
 size_t i;
 for (i = 0; i < sizeof (mul_table) / sizeof (mul_table[0]); ++i)
   {
     const struct mb *mm = mul_table + i;
     if ((mb & mm->mask) == mm->value)
       {
         mode = mm->mode;
         break;
       }
   }

 int size = (mb & 0x3) + 1;

 switch (mode)
   {
   case MUL_REG_IMM:
     nx += size;
     break;
   case MUL_REG_REG:
     break;
   case MUL_REG_OPR:
     first = x_opr_n_bytes (mra, 1);
     if (first < 0)
       return first;
     nx += first;
     break;
   case MUL_OPR_OPR:
     first = x_opr_n_bytes (mra, nx - 1);
     if (first < 0)
       return first;
     nx += first;
     second = x_opr_n_bytes (mra, nx - 1);
     if (second < 0)
       return second;
     nx += second;
     break;
   }

 return nx;
}


/* The NXP documentation is vague about BM_RESERVED0 and BM_RESERVED1,
  and contains obvious typos.
  However the Freescale tools and experiments with the chip itself
  seem to indicate that they behave like BM_REG_IMM and BM_OPR_REG
  respectively.  */

enum BM_MODE
{
 BM_REG_IMM,
 BM_RESERVED0,
 BM_OPR_B,
 BM_OPR_W,
 BM_OPR_L,
 BM_OPR_REG,
 BM_RESERVED1
};

struct bm
{
 uint8_t mask;
 uint8_t value;
 enum BM_MODE mode;
};

static const  struct bm bm_table[] = {
 { 0xC6, 0x04,     BM_REG_IMM},
 { 0x84, 0x00,     BM_REG_IMM},
 { 0x06, 0x06,     BM_REG_IMM},
 { 0xC6, 0x44,     BM_RESERVED0},

 { 0x8F, 0x80,     BM_OPR_B},
 { 0x8E, 0x82,     BM_OPR_W},
 { 0x8C, 0x88,     BM_OPR_L},

 { 0x83, 0x81,     BM_OPR_REG},
 { 0x87, 0x84,     BM_RESERVED1},
};

static int
bm_decode (struct mem_read_abstraction_base *mra,
          int *n_operands, struct operand **operand)
{
 struct operand *op;
 uint8_t bm;
 int status = mra->read (mra, 0, 1, &bm);
 if (status < 0)
   return status;

 size_t i;
 enum BM_MODE mode = -1;
 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
   {
     const struct bm *bme = bm_table + i;
     if ((bm & bme->mask) == bme->value)
       {
         mode = bme->mode;
         break;
       }
   }

 switch (mode)
   {
   case BM_REG_IMM:
   case BM_RESERVED0:
     op = create_register_operand (bm & 0x07);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_B:
     op = x_opr_decode_with_size (mra, 1, 0);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_W:
     op = x_opr_decode_with_size (mra, 1, 1);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_L:
     op = x_opr_decode_with_size (mra, 1, 3);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_REG:
   case BM_RESERVED1:
     {
       uint8_t xb;
       status = mra->read (mra, 1, 1, &xb);
       if (status < 0)
         return status;
       /* Don't emit a size suffix for register operands */
       if ((xb & 0xF8) != 0xB8)
         op = x_opr_decode_with_size (mra, 1, (bm & 0x0c) >> 2);
       else
         op = x_opr_decode (mra, 1);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;
     }
     break;
   }

 uint8_t imm = 0;
 switch (mode)
   {
   case BM_REG_IMM:
   case BM_RESERVED0:
     imm = (bm & 0x38) >> 3;
     op = create_immediate_operand (imm);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_L:
     imm |= (bm & 0x03) << 3;
     /* fallthrough */
   case BM_OPR_W:
     imm |= (bm & 0x01) << 3;
     /* fallthrough */
   case BM_OPR_B:
     imm |= (bm & 0x70) >> 4;
     op = create_immediate_operand (imm);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_REG:
   case BM_RESERVED1:
     op = create_register_operand ((bm & 0x70) >> 4);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   }
 return 0;
}


static int
bm_rel_decode (struct mem_read_abstraction_base *mra,
              int *n_operands, struct operand **operand)
{
 struct operand *op;
 uint8_t bm;
 int status = mra->read (mra, 0, 1, &bm);
 if (status < 0)
   return status;

 size_t i;
 enum BM_MODE mode = -1;
 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
   {
     const struct bm *bme = bm_table + i;
     if ((bm & bme->mask) == bme->value)
       {
         mode = bme->mode;
         break;
       }
   }

 int n = 1;
 switch (mode)
   {
   case BM_REG_IMM:
   case BM_RESERVED0:
     op = create_register_operand (bm & 0x07);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_B:
     op = x_opr_decode_with_size (mra, 1, 0);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     n = x_opr_n_bytes (mra, 1);
     if (n < 0)
       return n;
     n += 1;
     break;
   case BM_OPR_W:
     op = x_opr_decode_with_size (mra, 1, 1);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     n = x_opr_n_bytes (mra, 1);
     if (n < 0)
       return n;
     n += 1;
     break;
   case BM_OPR_L:
     op = x_opr_decode_with_size (mra, 1, 3);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     n = x_opr_n_bytes (mra, 1);
     if (n < 0)
       return n;
     n += 1;
     break;
   case BM_OPR_REG:
   case BM_RESERVED1:
     {
       uint8_t xb;
       status = mra->read (mra, +1, 1, &xb);
       if (status < 0)
         return status;
       /* Don't emit a size suffix for register operands */
       if ((xb & 0xF8) != 0xB8)
         {
           short os = (bm & 0x0c) >> 2;
           op = x_opr_decode_with_size (mra, 1, os);
         }
       else
         op = x_opr_decode (mra, 1);
       if (op == NULL)
         return -1;
       operand[(*n_operands)++] = op;
     }
     break;
   }

 int x, imm = 0;
 switch (mode)
   {
   case BM_OPR_L:
     imm |= (bm & 0x02) << 3;
     /* fall through */
   case BM_OPR_W:
     imm |= (bm & 0x01) << 3;
     /* fall through */
   case BM_OPR_B:
     imm |= (bm & 0x70) >> 4;
     op = create_immediate_operand (imm);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_RESERVED0:
     imm = (bm & 0x38) >> 3;
     op = create_immediate_operand (imm);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_REG_IMM:
     imm = (bm & 0xF8) >> 3;
     op = create_immediate_operand (imm);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     break;
   case BM_OPR_REG:
   case BM_RESERVED1:
     op = create_register_operand ((bm & 0x70) >> 4);
     if (op == NULL)
       return -1;
     operand[(*n_operands)++] = op;
     x = x_opr_n_bytes (mra, 1);
     if (x < 0)
       return x;
     n += x;
     break;
   }

 return rel_15_7 (mra, n + 1, n_operands, operand);
}

static int
bm_n_bytes (struct mem_read_abstraction_base *mra)
{
 uint8_t bm;
 int status = mra->read (mra, 0, 1, &bm);
 if (status < 0)
   return status;

 size_t i;
 enum BM_MODE mode = -1;
 for (i = 0; i < sizeof (bm_table) / sizeof (bm_table[0]); ++i)
   {
     const struct bm *bme = bm_table + i;
     if ((bm & bme->mask) == bme->value)
       {
         mode = bme->mode;
         break;
       }
   }

 int n = 0;
 switch (mode)
   {
   case BM_REG_IMM:
   case BM_RESERVED0:
     break;

   case BM_OPR_B:
   case BM_OPR_W:
   case BM_OPR_L:
   case BM_OPR_REG:
   case BM_RESERVED1:
     n = x_opr_n_bytes (mra, 1);
     if (n < 0)
       return n;
     break;
   }

 return n + 2;
}

static int
bm_rel_n_bytes (struct mem_read_abstraction_base *mra)
{
 int n = 1 + bm_n_bytes (mra);

 bfd_byte rb;
 int status = mra->read (mra, n - 2, 1, &rb);
 if (status != 0)
   return status;

 if (rb & 0x80)
   n++;

 return n;
}





/* shift direction */
enum SB_DIR
 {
   SB_LEFT,
   SB_RIGHT
 };

enum SB_TYPE
 {
   SB_ARITHMETIC,
   SB_LOGICAL
 };


enum SB_MODE
 {
   SB_REG_REG_N_EFF,
   SB_REG_REG_N,
   SB_REG_OPR_EFF,
   SB_ROT,
   SB_REG_OPR_OPR,
   SB_OPR_N
 };

struct sb
{
 uint8_t mask;
 uint8_t value;
 enum SB_MODE mode;
};

static const  struct sb sb_table[] = {
 {0x30, 0x00,     SB_REG_REG_N_EFF},
 {0x30, 0x10,     SB_REG_REG_N},
 {0x34, 0x20,     SB_REG_OPR_EFF},
 {0x34, 0x24,     SB_ROT},
 {0x34, 0x30,     SB_REG_OPR_OPR},
 {0x34, 0x34,     SB_OPR_N},
};

static int
shift_n_bytes (struct mem_read_abstraction_base *mra)
{
 bfd_byte sb;
 int opr1, opr2;
 int status = mra->read (mra, 0, 1, &sb);
 if (status != 0)
   return status;

 size_t i;
 enum SB_MODE mode = -1;
 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
   {
     const struct sb *sbe = sb_table + i;
     if ((sb & sbe->mask) == sbe->value)
       mode = sbe->mode;
   }

 switch (mode)
   {
   case SB_REG_REG_N_EFF:
     return 2;
   case SB_REG_OPR_EFF:
   case SB_ROT:
     opr1 = x_opr_n_bytes (mra, 1);
     if (opr1 < 0)
       return opr1;
     return 2 + opr1;
   case SB_REG_OPR_OPR:
     opr1 = x_opr_n_bytes (mra, 1);
     if (opr1 < 0)
       return opr1;
     opr2 = 0;
     if ((sb & 0x30) != 0x20)
       {
         opr2 = x_opr_n_bytes (mra, opr1 + 1);
         if (opr2 < 0)
           return opr2;
       }
     return 2 + opr1 + opr2;
   default:
     return 3;
   }

 /* not reached */
 return -1;
}


static int
mov_imm_opr_n_bytes (struct mem_read_abstraction_base *mra)
{
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 int size = byte - 0x0c + 1;
 int n = x_opr_n_bytes (mra, size);
 if (n < 0)
   return n;

 return size + n + 1;
}

static int
mov_imm_opr (struct mem_read_abstraction_base *mra,
            int *n_operands, struct operand **operand)
{
 struct operand *op;
 bfd_byte byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 int size = byte - 0x0c + 1;
 uint32_t imm;
 if (decode_signed_value (mra, size, &imm))
   return -1;

 op = create_immediate_operand (imm);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 op = x_opr_decode (mra, size);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}



static int
ld_18bit_decode (struct mem_read_abstraction_base *mra,
                int *n_operands, struct operand **operand)
{
 struct operand *op;
 size_t size = 3;
 bfd_byte buffer[3];
 int status = mra->read (mra, 0, 2, buffer + 1);
 if (status < 0)
   return status;

 status = mra->read (mra, -1, 1, buffer);
 if (status < 0)
   return status;

 buffer[0] = (buffer[0] & 0x30) >> 4;

 size_t i;
 uint32_t imm = 0;
 for (i = 0; i < size; ++i)
   {
     imm |= buffer[i] << (8 * (size - i - 1));
   }

 op = create_immediate_operand (imm);
 if (op == NULL)
   return -1;
 operand[(*n_operands)++] = op;
 return 0;
}



/* Loop Primitives */

enum LP_MODE {
 LP_REG,
 LP_XY,
 LP_OPR
};

struct lp
{
 uint8_t mask;
 uint8_t value;
 enum LP_MODE mode;
};

static const struct lp lp_mode[] = {
 {0x08, 0x00, LP_REG},
 {0x0C, 0x08, LP_XY},
 {0x0C, 0x0C, LP_OPR},
};


static int
loop_prim_n_bytes (struct mem_read_abstraction_base *mra)
{
 int mx = 0;
 uint8_t lb;
 int status = mra->read (mra, mx++, 1, &lb);
 if (status < 0)
   return status;

 enum LP_MODE mode = -1;
 size_t i;
 for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
   {
     const struct lp *pb = lp_mode + i;
     if ((lb & pb->mask) == pb->value)
       {
         mode = pb->mode;
         break;
       }
   }

 if (mode == LP_OPR)
   {
     int n = x_opr_n_bytes (mra, mx);
     if (n < 0)
       return n;
     mx += n;
   }

 uint8_t rb;
 status = mra->read (mra, mx++, 1, &rb);
 if (status < 0)
   return status;
 if (rb & 0x80)
   mx++;

 return mx + 1;
}




static enum optr
exg_sex_discrim (struct mem_read_abstraction_base *mra,
                enum optr hint ATTRIBUTE_UNUSED)
{
 uint8_t eb;
 int status = mra->read (mra, 0, 1, &eb);
 enum optr operator = OP_INVALID;
 if (status < 0)
   return operator;

 struct operand *op0 = create_register_operand ((eb & 0xf0) >> 4);
 if (op0 == NULL)
   return -1;
 struct operand *op1 = create_register_operand (eb & 0xf);
 if (op1 == NULL)
   return -1;

 int reg0 = ((struct register_operand *) op0)->reg;
 int reg1 = ((struct register_operand *) op1)->reg;
 if (reg0 >= 0 && reg0 < S12Z_N_REGISTERS
     && reg1 >= 0 && reg1 < S12Z_N_REGISTERS)
   {
     const struct reg *r0 = registers + reg0;
     const struct reg *r1 = registers + reg1;

     operator = r0->bytes < r1->bytes ? OP_sex : OP_exg;
   }

 free (op0);
 free (op1);

 return operator;
}


static int
exg_sex_decode (struct mem_read_abstraction_base *mra,
               int *n_operands, struct operand **operands)
{
 struct operand *op;
 uint8_t eb;
 int status = mra->read (mra, 0, 1, &eb);
 if (status < 0)
   return status;

 /* Ship out the operands.  */
 op = create_register_operand ((eb & 0xf0) >> 4);
 if (op == NULL)
   return -1;
 operands[(*n_operands)++] = op;
 op = create_register_operand (eb & 0xf);
 if (op == NULL)
   return -1;
 operands[(*n_operands)++] = op;
 return 0;
}

static enum optr
loop_primitive_discrim (struct mem_read_abstraction_base *mra,
                       enum optr hint ATTRIBUTE_UNUSED)
{
 uint8_t lb;
 int status = mra->read (mra, 0, 1, &lb);
 if (status < 0)
   return OP_INVALID;

 enum optr opbase = (lb & 0x80) ? OP_dbNE : OP_tbNE;
 return opbase + ((lb & 0x70) >> 4);
}

static int
loop_primitive_decode (struct mem_read_abstraction_base *mra,
                      int *n_operands, struct operand **operands)
{
 struct operand *op;
 int n, offs = 1;
 uint8_t lb;
 int status = mra->read (mra, 0, 1, &lb);
 if (status < 0)
   return status;

 enum LP_MODE mode = -1;
 size_t i;
 for (i = 0; i < sizeof (lp_mode) / sizeof (lp_mode[0]); ++i)
   {
     const struct lp *pb = lp_mode + i;
     if ((lb & pb->mask) == pb->value)
       {
         mode = pb->mode;
         break;
       }
   }

 switch (mode)
   {
   case LP_REG:
     op = create_register_operand (lb & 0x07);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case LP_XY:
     op = create_register_operand ((lb & 0x01) + REG_X);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case LP_OPR:
     n = x_opr_n_bytes (mra, 1);
     if (n < 0)
       return n;
     offs += n;
     op = x_opr_decode_with_size (mra, 1, lb & 0x03);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   }

 return rel_15_7 (mra, offs + 1, n_operands, operands);
}


static enum optr
shift_discrim (struct mem_read_abstraction_base *mra,
              enum optr hint ATTRIBUTE_UNUSED)
{
 size_t i;
 uint8_t sb;
 int status = mra->read (mra, 0, 1, &sb);
 if (status < 0)
   return OP_INVALID;

 enum SB_DIR  dir = (sb & 0x40) ? SB_LEFT : SB_RIGHT;
 enum SB_TYPE type = (sb & 0x80) ? SB_ARITHMETIC : SB_LOGICAL;
 enum SB_MODE mode = -1;
 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
   {
     const struct sb *sbe = sb_table + i;
     if ((sb & sbe->mask) == sbe->value)
       mode = sbe->mode;
   }

 if (mode == SB_ROT)
   return (dir == SB_LEFT) ? OP_rol : OP_ror;

 if (type == SB_LOGICAL)
   return (dir == SB_LEFT) ? OP_lsl : OP_lsr;

 return (dir == SB_LEFT) ? OP_asl : OP_asr;
}


static int
shift_decode (struct mem_read_abstraction_base *mra, int *n_operands,
             struct operand **operands)
{
 struct operand *op;
 size_t i;
 uint8_t byte;
 int status = mra->read (mra, -1, 1, &byte);
 if (status < 0)
   return status;

 uint8_t sb;
 status = mra->read (mra, 0, 1, &sb);
 if (status < 0)
   return status;

 enum SB_MODE mode = -1;
 for (i = 0; i < sizeof (sb_table) / sizeof (sb_table[0]); ++i)
   {
     const struct sb *sbe = sb_table + i;
     if ((sb & sbe->mask) == sbe->value)
       mode = sbe->mode;
   }

 short osize = -1;
 switch (mode)
   {
   case SB_REG_OPR_EFF:
   case SB_ROT:
   case SB_REG_OPR_OPR:
     osize = sb & 0x03;
     break;
   case SB_OPR_N:
     {
       uint8_t xb;
       status = mra->read (mra, 1, 1, &xb);
       if (status < 0)
         return status;
       /* The size suffix is not printed if the OPR operand refers
          directly to a register, because the size is implied by the
          size of that register. */
       if ((xb & 0xF8) != 0xB8)
         osize = sb & 0x03;
     }
     break;
   default:
     break;
   };

 /* Destination register */
 switch (mode)
   {
   case SB_REG_REG_N_EFF:
   case SB_REG_REG_N:
     op = create_register_operand (byte & 0x07);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case SB_REG_OPR_EFF:
   case SB_REG_OPR_OPR:
     op = create_register_operand (byte & 0x07);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;

   case SB_ROT:
     op = x_opr_decode_with_size (mra, 1, osize);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;

   default:
     break;
   }

 /* Source register */
 switch (mode)
   {
   case SB_REG_REG_N_EFF:
   case SB_REG_REG_N:
     op = create_register_operand_with_size (sb & 0x07, osize);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;

   case SB_REG_OPR_OPR:
     op = x_opr_decode_with_size (mra, 1, osize);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;

   default:
     break;
   }

 /* 3rd arg */
 switch (mode)
   {
   case SB_REG_OPR_EFF:
   case SB_OPR_N:
     op = x_opr_decode_with_size (mra, 1, osize);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;

   case SB_REG_REG_N:
     {
       uint8_t xb;
       status = mra->read (mra, 1, 1, &xb);
       if (status < 0)
         return status;

       /* This case is slightly unusual.
          If XB matches the binary pattern 0111XXXX, then instead of
          interpreting this as a general OPR postbyte in the IMMe4 mode,
          the XB byte is interpreted in s special way.  */
       if ((xb & 0xF0) == 0x70)
         {
           if (byte & 0x10)
             {
               int shift = ((sb & 0x08) >> 3) | ((xb & 0x0f) << 1);
               op = create_immediate_operand (shift);
               if (op == NULL)
                 return -1;
               operands[(*n_operands)++] = op;
             }
           else
             {
               /* This should not happen.  */
               abort ();
             }
         }
       else
         {
           op = x_opr_decode (mra, 1);
           if (op == NULL)
             return -1;
           operands[(*n_operands)++] = op;
         }
     }
     break;
   case SB_REG_OPR_OPR:
     {
       uint8_t xb;
       int n = x_opr_n_bytes (mra, 1);
       if (n < 0)
         return n;
       status = mra->read (mra, 1 + n, 1, &xb);
       if (status < 0)
         return status;

       if ((xb & 0xF0) == 0x70)
         {
           int imm = xb & 0x0F;
           imm <<= 1;
           imm |= (sb & 0x08) >> 3;
           op = create_immediate_operand (imm);
           if (op == NULL)
             return -1;
           operands[(*n_operands)++] = op;
         }
       else
         {
           op = x_opr_decode (mra, 1 + n);
           if (op == NULL)
             return -1;
           operands[(*n_operands)++] = op;
         }
     }
     break;
   default:
     break;
   }

 switch (mode)
   {
   case SB_REG_REG_N_EFF:
   case SB_REG_OPR_EFF:
   case SB_OPR_N:
     {
       int imm = (sb & 0x08) ? 2 : 1;
       op = create_immediate_operand (imm);
       if (op == NULL)
         return -1;
       operands[(*n_operands)++] = op;
     }
     break;

   default:
     break;
   }
 return 0;
}

static enum optr
psh_pul_discrim (struct mem_read_abstraction_base *mra,
                enum optr hint ATTRIBUTE_UNUSED)
{
 uint8_t byte;
 int status = mra->read (mra, 0, 1, &byte);
 if (status != 0)
   return OP_INVALID;

 return (byte & 0x80) ? OP_pull: OP_push;
}


static int
psh_pul_decode (struct mem_read_abstraction_base *mra,
               int *n_operands, struct operand **operand)
{
 struct operand *op;
 uint8_t byte;
 int status = mra->read (mra, 0, 1, &byte);
 if (status != 0)
   return status;
 int bit;
 if (byte & 0x40)
   {
     if ((byte & 0x3F) == 0)
       {
         op = create_register_all16_operand ();
         if (op == NULL)
           return -1;
         operand[(*n_operands)++] = op;
       }
     else
       for (bit = 5; bit >= 0; --bit)
         {
           if (byte & (0x1 << bit))
             {
               op = create_register_operand (oprregs2[bit]);
               if (op == NULL)
                 return -1;
               operand[(*n_operands)++] = op;
             }
         }
   }
 else
   {
     if ((byte & 0x3F) == 0)
       {
         op = create_register_all_operand ();
         if (op == NULL)
           return -1;
         operand[(*n_operands)++] = op;
       }
     else
       for (bit = 5; bit >= 0; --bit)
         {
           if (byte & (0x1 << bit))
             {
               op = create_register_operand (oprregs1[bit]);
               if (op == NULL)
                 return -1;
               operand[(*n_operands)++] = op;
             }
         }
   }
 return 0;
}

static enum optr
bit_field_discrim (struct mem_read_abstraction_base *mra,
                  enum optr hint ATTRIBUTE_UNUSED)
{
 int status;
 bfd_byte bb;
 status = mra->read (mra, 0, 1, &bb);
 if (status != 0)
   return OP_INVALID;

 return (bb & 0x80) ? OP_bfins : OP_bfext;
}

static int
bit_field_decode (struct mem_read_abstraction_base *mra,
                 int *n_operands, struct operand **operands)
{
 struct operand *op;
 int status;

 bfd_byte byte2;
 status = mra->read (mra, -1, 1, &byte2);
 if (status != 0)
   return status;

 bfd_byte bb;
 status = mra->read (mra, 0, 1, &bb);
 if (status != 0)
   return status;

 enum BB_MODE mode = -1;
 size_t i;
 const struct opr_bb *bbs = 0;
 for (i = 0; i < sizeof (bb_modes) / sizeof (bb_modes[0]); ++i)
   {
     bbs = bb_modes + i;
     if ((bb & bbs->mask) == bbs->value)
       {
         mode = bbs->mode;
         break;
       }
   }
 int reg1 = byte2 & 0x07;
 /* First operand */
 switch (mode)
   {
   case BB_REG_REG_REG:
   case BB_REG_REG_IMM:
   case BB_REG_OPR_REG:
   case BB_REG_OPR_IMM:
     op = create_register_operand (reg1);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case BB_OPR_REG_REG:
     op = x_opr_decode_with_size (mra, 1, (bb >> 2) & 0x03);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case BB_OPR_REG_IMM:
     op = x_opr_decode_with_size (mra, 2, (bb >> 2) & 0x03);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   }

 /* Second operand */
 switch (mode)
   {
   case BB_REG_REG_REG:
   case BB_REG_REG_IMM:
     {
       int reg_src = (bb >> 2) & 0x07;
       op = create_register_operand (reg_src);
       if (op == NULL)
         return -1;
       operands[(*n_operands)++] = op;
     }
     break;
   case BB_OPR_REG_REG:
   case BB_OPR_REG_IMM:
     {
       int reg_src = (byte2 & 0x07);
       op = create_register_operand (reg_src);
       if (op == NULL)
         return -1;
       operands[(*n_operands)++] = op;
     }
     break;
   case BB_REG_OPR_REG:
     op = x_opr_decode_with_size (mra, 1, (bb >> 2) & 0x03);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   case BB_REG_OPR_IMM:
     op = x_opr_decode_with_size (mra, 2, (bb >> 2) & 0x03);
     if (op == NULL)
       return -1;
     operands[(*n_operands)++] = op;
     break;
   }

 /* Third operand */
 switch (mode)
   {
   case BB_REG_REG_REG:
   case BB_OPR_REG_REG:
   case BB_REG_OPR_REG:
     {
       int reg_parm = bb & 0x03;
       op = create_register_operand (reg_parm);
       if (op == NULL)
         return -1;
       operands[(*n_operands)++] = op;
     }
     break;
   case BB_REG_REG_IMM:
   case BB_OPR_REG_IMM:
   case BB_REG_OPR_IMM:
     {
       bfd_byte i1;
       status = mra->read (mra, 1, 1, &i1);
       if (status < 0)
         return status;
       int offset = i1 & 0x1f;
       int width = bb & 0x03;
       width <<= 3;
       width |= i1 >> 5;
       op = create_bitfield_operand (width, offset);
       if (op == NULL)
         return -1;
       operands[(*n_operands)++] = op;
     }
     break;
   }
 return 0;
}


/* Decode the next instruction at MRA, according to OPC.
  The operation to be performed is returned.
  The number of operands, will be placed in N_OPERANDS.
  The operands themselved into OPERANDS.  */
static enum optr
decode_operation (const struct opcode *opc,
                 struct mem_read_abstraction_base *mra,
                 int *n_operands, struct operand **operands)
{
 enum optr op = opc->operator;
 if (opc->discriminator)
   {
     op = opc->discriminator (mra, opc->operator);
     if (op == OP_INVALID)
       return op;
   }

 if (opc->operands)
   if (opc->operands (mra, n_operands, operands) < 0)
     return OP_INVALID;

 if (opc->operands2)
   if (opc->operands2 (mra, n_operands, operands) < 0)
     return OP_INVALID;

 return op;
}

int
decode_s12z (enum optr *myoperator, short *osize,
            int *n_operands, struct operand **operands,
            struct mem_read_abstraction_base *mra)
{
 int n_bytes = 0;
 bfd_byte byte;

 int status = mra->read (mra, 0, 1, &byte);
 if (status < 0)
   return status;

 mra->advance (mra);

 const struct opcode *opc = page1 + byte;
 if (byte == PAGE2_PREBYTE)
   {
     /* Opcodes in page2 have an additional byte */
     n_bytes++;

     bfd_byte byte2;
     status = mra->read (mra, 0, 1, &byte2);
     if (status < 0)
       return status;
     mra->advance (mra);
     opc = page2 + byte2;
   }
 *myoperator = decode_operation (opc, mra, n_operands, operands);
 *osize = opc->osize;

 /* Return the number of bytes in the instruction.  */
 if (*myoperator != OP_INVALID && opc->insn_bytes)
   {
     int n = opc->insn_bytes (mra);
     if (n < 0)
       return n;
     n_bytes += n;
   }
 else
   n_bytes += 1;

 return n_bytes;
}