/* A splay-tree datatype.
  Copyright (C) 1998-2024 Free Software Foundation, Inc.
  Contributed by Mark Mitchell ([email protected]).

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 51 Franklin Street - Fifth Floor,
Boston, MA 02110-1301, USA.  */

/* For an easily readable description of splay-trees, see:

    Lewis, Harry R. and Denenberg, Larry.  Data Structures and Their
    Algorithms.  Harper-Collins, Inc.  1991.  */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif

#include <stdio.h>

#include "libiberty.h"
#include "splay-tree.h"

static void splay_tree_delete_helper (splay_tree, splay_tree_node);
static inline void rotate_left (splay_tree_node *,
                               splay_tree_node, splay_tree_node);
static inline void rotate_right (splay_tree_node *,
                               splay_tree_node, splay_tree_node);
static void splay_tree_splay (splay_tree, splay_tree_key);
static int splay_tree_foreach_helper (splay_tree_node,
                                     splay_tree_foreach_fn, void*);

/* Deallocate NODE (a member of SP), and all its sub-trees.  */

static void
splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
{
 splay_tree_node pending = 0;
 splay_tree_node active = 0;

 if (!node)
   return;

#define KDEL(x)  if (sp->delete_key) (*sp->delete_key)(x);
#define VDEL(x)  if (sp->delete_value) (*sp->delete_value)(x);

 KDEL (node->key);
 VDEL (node->value);

 /* We use the "key" field to hold the "next" pointer.  */
 node->key = (splay_tree_key)pending;
 pending = (splay_tree_node)node;

 /* Now, keep processing the pending list until there aren't any
    more.  This is a little more complicated than just recursing, but
    it doesn't toast the stack for large trees.  */

 while (pending)
   {
     active = pending;
     pending = 0;
     while (active)
       {
         splay_tree_node temp;

         /* active points to a node which has its key and value
            deallocated, we just need to process left and right.  */

         if (active->left)
           {
             KDEL (active->left->key);
             VDEL (active->left->value);
             active->left->key = (splay_tree_key)pending;
             pending = (splay_tree_node)(active->left);
           }
         if (active->right)
           {
             KDEL (active->right->key);
             VDEL (active->right->value);
             active->right->key = (splay_tree_key)pending;
             pending = (splay_tree_node)(active->right);
           }

         temp = active;
         active = (splay_tree_node)(temp->key);
         (*sp->deallocate) ((char*) temp, sp->allocate_data);
       }
   }
#undef KDEL
#undef VDEL
}

/* Rotate the edge joining the left child N with its parent P.  PP is the
  grandparents' pointer to P.  */

static inline void
rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
{
 splay_tree_node tmp;
 tmp = n->right;
 n->right = p;
 p->left = tmp;
 *pp = n;
}

/* Rotate the edge joining the right child N with its parent P.  PP is the
  grandparents' pointer to P.  */

static inline void
rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
{
 splay_tree_node tmp;
 tmp = n->left;
 n->left = p;
 p->right = tmp;
 *pp = n;
}

/* Bottom up splay of key.  */

static void
splay_tree_splay (splay_tree sp, splay_tree_key key)
{
 if (sp->root == 0)
   return;

 do {
   int cmp1, cmp2;
   splay_tree_node n, c;

   n = sp->root;
   cmp1 = (*sp->comp) (key, n->key);

   /* Found.  */
   if (cmp1 == 0)
     return;

   /* Left or right?  If no child, then we're done.  */
   if (cmp1 < 0)
     c = n->left;
   else
     c = n->right;
   if (!c)
     return;

   /* Next one left or right?  If found or no child, we're done
      after one rotation.  */
   cmp2 = (*sp->comp) (key, c->key);
   if (cmp2 == 0
       || (cmp2 < 0 && !c->left)
       || (cmp2 > 0 && !c->right))
     {
       if (cmp1 < 0)
         rotate_left (&sp->root, n, c);
       else
         rotate_right (&sp->root, n, c);
       return;
     }

   /* Now we have the four cases of double-rotation.  */
   if (cmp1 < 0 && cmp2 < 0)
     {
       rotate_left (&n->left, c, c->left);
       rotate_left (&sp->root, n, n->left);
     }
   else if (cmp1 > 0 && cmp2 > 0)
     {
       rotate_right (&n->right, c, c->right);
       rotate_right (&sp->root, n, n->right);
     }
   else if (cmp1 < 0 && cmp2 > 0)
     {
       rotate_right (&n->left, c, c->right);
       rotate_left (&sp->root, n, n->left);
     }
   else if (cmp1 > 0 && cmp2 < 0)
     {
       rotate_left (&n->right, c, c->left);
       rotate_right (&sp->root, n, n->right);
     }
 } while (1);
}

/* Call FN, passing it the DATA, for every node below NODE, all of
  which are from SP, following an in-order traversal.  If FN every
  returns a non-zero value, the iteration ceases immediately, and the
  value is returned.  Otherwise, this function returns 0.  */

static int
splay_tree_foreach_helper (splay_tree_node node,
                          splay_tree_foreach_fn fn, void *data)
{
 int val;
 splay_tree_node *stack;
 int stack_ptr, stack_size;

 /* A non-recursive implementation is used to avoid filling the stack
    for large trees.  Splay trees are worst case O(n) in the depth of
    the tree.  */

#define INITIAL_STACK_SIZE 100
 stack_size = INITIAL_STACK_SIZE;
 stack_ptr = 0;
 stack = XNEWVEC (splay_tree_node, stack_size);
 val = 0;

 for (;;)
   {
     while (node != NULL)
       {
         if (stack_ptr == stack_size)
           {
             stack_size *= 2;
             stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
           }
         stack[stack_ptr++] = node;
         node = node->left;
       }

     if (stack_ptr == 0)
       break;

     node = stack[--stack_ptr];

     val = (*fn) (node, data);
     if (val)
       break;

     node = node->right;
   }

 XDELETEVEC (stack);
 return val;
}

/* An allocator and deallocator based on xmalloc.  */
static void *
splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
{
 return (void *) xmalloc (size);
}

static void
splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
{
 free (object);
}


/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
  DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
  values.  Use xmalloc to allocate the splay tree structure, and any
  nodes added.  */

splay_tree
splay_tree_new (splay_tree_compare_fn compare_fn,
               splay_tree_delete_key_fn delete_key_fn,
               splay_tree_delete_value_fn delete_value_fn)
{
 return (splay_tree_new_with_allocator
         (compare_fn, delete_key_fn, delete_value_fn,
          splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
}


/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
  DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
  values.  */

splay_tree
splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
                              splay_tree_delete_key_fn delete_key_fn,
                              splay_tree_delete_value_fn delete_value_fn,
                              splay_tree_allocate_fn allocate_fn,
                              splay_tree_deallocate_fn deallocate_fn,
                              void *allocate_data)
{
 return
   splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
                               allocate_fn, allocate_fn, deallocate_fn,
                               allocate_data);
}

/*

@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
(splay_tree_compare_fn @var{compare_fn}, @
splay_tree_delete_key_fn @var{delete_key_fn}, @
splay_tree_delete_value_fn @var{delete_value_fn}, @
splay_tree_allocate_fn @var{tree_allocate_fn}, @
splay_tree_allocate_fn @var{node_allocate_fn}, @
splay_tree_deallocate_fn @var{deallocate_fn}, @
void * @var{allocate_data})

This function creates a splay tree that uses two different allocators
@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
tree itself and its nodes respectively.  This is useful when variables of
different types need to be allocated with different allocators.

The splay tree will use @var{compare_fn} to compare nodes,
@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
deallocate values.  Keys and values will be deallocated when the
tree is deleted using splay_tree_delete or when a node is removed
using splay_tree_remove.  splay_tree_insert will release the previously
inserted key and value using @var{delete_key_fn} and @var{delete_value_fn}
if the inserted key is already found in the tree.

@end deftypefn

*/

splay_tree
splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
                           splay_tree_delete_key_fn delete_key_fn,
                           splay_tree_delete_value_fn delete_value_fn,
                           splay_tree_allocate_fn tree_allocate_fn,
                           splay_tree_allocate_fn node_allocate_fn,
                           splay_tree_deallocate_fn deallocate_fn,
                           void * allocate_data)
{
 splay_tree sp = (splay_tree) (*tree_allocate_fn)
   (sizeof (struct splay_tree_s), allocate_data);

 sp->root = 0;
 sp->comp = compare_fn;
 sp->delete_key = delete_key_fn;
 sp->delete_value = delete_value_fn;
 sp->allocate = node_allocate_fn;
 sp->deallocate = deallocate_fn;
 sp->allocate_data = allocate_data;

 return sp;
}

/* Deallocate SP.  */

void
splay_tree_delete (splay_tree sp)
{
 splay_tree_delete_helper (sp, sp->root);
 (*sp->deallocate) ((char*) sp, sp->allocate_data);
}

/* Insert a new node (associating KEY with DATA) into SP.  If a
  previous node with the indicated KEY exists, its data is replaced
  with the new value.  Returns the new node.  */

splay_tree_node
splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
{
 int comparison = 0;

 splay_tree_splay (sp, key);

 if (sp->root)
   comparison = (*sp->comp)(sp->root->key, key);

 if (sp->root && comparison == 0)
   {
     /* If the root of the tree already has the indicated KEY, delete
        the old key and old value, and replace them with KEY and  VALUE.  */
     if (sp->delete_key)
       (*sp->delete_key) (sp->root->key);
     if (sp->delete_value)
       (*sp->delete_value)(sp->root->value);
     sp->root->key = key;
     sp->root->value = value;
   }
 else
   {
     /* Create a new node, and insert it at the root.  */
     splay_tree_node node;

     node = ((splay_tree_node)
             (*sp->allocate) (sizeof (struct splay_tree_node_s),
                              sp->allocate_data));
     node->key = key;
     node->value = value;

     if (!sp->root)
       node->left = node->right = 0;
     else if (comparison < 0)
       {
         node->left = sp->root;
         node->right = node->left->right;
         node->left->right = 0;
       }
     else
       {
         node->right = sp->root;
         node->left = node->right->left;
         node->right->left = 0;
       }

     sp->root = node;
   }

 return sp->root;
}

/* Remove KEY from SP.  It is not an error if it did not exist.  */

void
splay_tree_remove (splay_tree sp, splay_tree_key key)
{
 splay_tree_splay (sp, key);

 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
   {
     splay_tree_node left, right;

     left = sp->root->left;
     right = sp->root->right;

     /* Delete the root node itself.  */
     if (sp->delete_key)
       (*sp->delete_key) (sp->root->key);
     if (sp->delete_value)
       (*sp->delete_value) (sp->root->value);
     (*sp->deallocate) (sp->root, sp->allocate_data);

     /* One of the children is now the root.  Doesn't matter much
        which, so long as we preserve the properties of the tree.  */
     if (left)
       {
         sp->root = left;

         /* If there was a right child as well, hang it off the
            right-most leaf of the left child.  */
         if (right)
           {
             while (left->right)
               left = left->right;
             left->right = right;
           }
       }
     else
       sp->root = right;
   }
}

/* Lookup KEY in SP, returning VALUE if present, and NULL
  otherwise.  */

splay_tree_node
splay_tree_lookup (splay_tree sp, splay_tree_key key)
{
 splay_tree_splay (sp, key);

 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
   return sp->root;
 else
   return 0;
}

/* Return the node in SP with the greatest key.  */

splay_tree_node
splay_tree_max (splay_tree sp)
{
 splay_tree_node n = sp->root;

 if (!n)
   return NULL;

 while (n->right)
   n = n->right;

 return n;
}

/* Return the node in SP with the smallest key.  */

splay_tree_node
splay_tree_min (splay_tree sp)
{
 splay_tree_node n = sp->root;

 if (!n)
   return NULL;

 while (n->left)
   n = n->left;

 return n;
}

/* Return the immediate predecessor KEY, or NULL if there is no
  predecessor.  KEY need not be present in the tree.  */

splay_tree_node
splay_tree_predecessor (splay_tree sp, splay_tree_key key)
{
 int comparison;
 splay_tree_node node;

 /* If the tree is empty, there is certainly no predecessor.  */
 if (!sp->root)
   return NULL;

 /* Splay the tree around KEY.  That will leave either the KEY
    itself, its predecessor, or its successor at the root.  */
 splay_tree_splay (sp, key);
 comparison = (*sp->comp)(sp->root->key, key);

 /* If the predecessor is at the root, just return it.  */
 if (comparison < 0)
   return sp->root;

 /* Otherwise, find the rightmost element of the left subtree.  */
 node = sp->root->left;
 if (node)
   while (node->right)
     node = node->right;

 return node;
}

/* Return the immediate successor KEY, or NULL if there is no
  successor.  KEY need not be present in the tree.  */

splay_tree_node
splay_tree_successor (splay_tree sp, splay_tree_key key)
{
 int comparison;
 splay_tree_node node;

 /* If the tree is empty, there is certainly no successor.  */
 if (!sp->root)
   return NULL;

 /* Splay the tree around KEY.  That will leave either the KEY
    itself, its predecessor, or its successor at the root.  */
 splay_tree_splay (sp, key);
 comparison = (*sp->comp)(sp->root->key, key);

 /* If the successor is at the root, just return it.  */
 if (comparison > 0)
   return sp->root;

 /* Otherwise, find the leftmost element of the right subtree.  */
 node = sp->root->right;
 if (node)
   while (node->left)
     node = node->left;

 return node;
}

/* Call FN, passing it the DATA, for every node in SP, following an
  in-order traversal.  If FN every returns a non-zero value, the
  iteration ceases immediately, and the value is returned.
  Otherwise, this function returns 0.  */

int
splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
{
 return splay_tree_foreach_helper (sp->root, fn, data);
}

/* Splay-tree comparison function, treating the keys as ints.  */

int
splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
{
 if ((int) k1 < (int) k2)
   return -1;
 else if ((int) k1 > (int) k2)
   return 1;
 else
   return 0;
}

/* Splay-tree comparison function, treating the keys as pointers.  */

int
splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
{
 if ((char*) k1 < (char*) k2)
   return -1;
 else if ((char*) k1 > (char*) k2)
   return 1;
 else
   return 0;
}

/* Splay-tree comparison function, treating the keys as strings.  */

int
splay_tree_compare_strings (splay_tree_key k1, splay_tree_key k2)
{
 return strcmp ((char *) k1, (char *) k2);
}

/* Splay-tree delete function, simply using free.  */

void
splay_tree_delete_pointers (splay_tree_value value)
{
 free ((void *) value);
}