// output.cc -- manage the output file for gold

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <fcntl.h>
#include <unistd.h>
#include <sys/stat.h>
#include <algorithm>
#include <uchar.h>

#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif

#include "libiberty.h"

#include "dwarf.h"
#include "parameters.h"
#include "object.h"
#include "symtab.h"
#include "reloc.h"
#include "merge.h"
#include "descriptors.h"
#include "layout.h"
#include "output.h"

// For systems without mmap support.
#ifndef HAVE_MMAP
# define mmap gold_mmap
# define munmap gold_munmap
# define mremap gold_mremap
# ifndef MAP_FAILED
#  define MAP_FAILED (reinterpret_cast<void*>(-1))
# endif
# ifndef PROT_READ
#  define PROT_READ 0
# endif
# ifndef PROT_WRITE
#  define PROT_WRITE 0
# endif
# ifndef MAP_PRIVATE
#  define MAP_PRIVATE 0
# endif
# ifndef MAP_ANONYMOUS
#  define MAP_ANONYMOUS 0
# endif
# ifndef MAP_SHARED
#  define MAP_SHARED 0
# endif

# ifndef ENOSYS
#  define ENOSYS EINVAL
# endif

static void *
gold_mmap(void *, size_t, int, int, int, off_t)
{
 errno = ENOSYS;
 return MAP_FAILED;
}

static int
gold_munmap(void *, size_t)
{
 errno = ENOSYS;
 return -1;
}

static void *
gold_mremap(void *, size_t, size_t, int)
{
 errno = ENOSYS;
 return MAP_FAILED;
}

#endif

#if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
# define mremap gold_mremap
extern "C" void *gold_mremap(void *, size_t, size_t, int);
#endif

// Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
#ifndef MAP_ANONYMOUS
# define MAP_ANONYMOUS  MAP_ANON
#endif

#ifndef MREMAP_MAYMOVE
# define MREMAP_MAYMOVE 1
#endif

// Mingw does not have S_ISLNK.
#ifndef S_ISLNK
# define S_ISLNK(mode) 0
#endif

namespace gold
{

// A wrapper around posix_fallocate.  If we don't have posix_fallocate,
// or the --no-posix-fallocate option is set, we try the fallocate
// system call directly.  If that fails, we use ftruncate to set
// the file size and hope that there is enough disk space.

static int
gold_fallocate(int o, off_t offset, off_t len)
{
 if (len <= 0)
   return 0;

#ifdef HAVE_POSIX_FALLOCATE
 if (parameters->options().posix_fallocate())
   {
     int err = ::posix_fallocate(o, offset, len);
     if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
       return err;
   }
#endif // defined(HAVE_POSIX_FALLOCATE)

#ifdef HAVE_FALLOCATE
 {
   errno = 0;
   int err = ::fallocate(o, 0, offset, len);
   if (err < 0 && errno != EINVAL && errno != ENOSYS && errno != EOPNOTSUPP)
     return errno;
 }
#endif // defined(HAVE_FALLOCATE)

 errno = 0;
 if (::ftruncate(o, offset + len) < 0)
   return errno;
 return 0;
}

// Output_data variables.

bool Output_data::allocated_sizes_are_fixed;

// Output_data methods.

Output_data::~Output_data()
{
}

// Return the default alignment for the target size.

uint64_t
Output_data::default_alignment()
{
 return Output_data::default_alignment_for_size(
     parameters->target().get_size());
}

// Return the default alignment for a size--32 or 64.

uint64_t
Output_data::default_alignment_for_size(int size)
{
 if (size == 32)
   return 4;
 else if (size == 64)
   return 8;
 else
   gold_unreachable();
}

// Output_section_header methods.  This currently assumes that the
// segment and section lists are complete at construction time.

Output_section_headers::Output_section_headers(
   const Layout* layout,
   const Layout::Segment_list* segment_list,
   const Layout::Section_list* section_list,
   const Layout::Section_list* unattached_section_list,
   const Stringpool* secnamepool,
   const Output_section* shstrtab_section)
 : layout_(layout),
   segment_list_(segment_list),
   section_list_(section_list),
   unattached_section_list_(unattached_section_list),
   secnamepool_(secnamepool),
   shstrtab_section_(shstrtab_section)
{
}

// Compute the current data size.

off_t
Output_section_headers::do_size() const
{
 // Count all the sections.  Start with 1 for the null section.
 off_t count = 1;
 if (!parameters->options().relocatable())
   {
     for (Layout::Segment_list::const_iterator p =
            this->segment_list_->begin();
          p != this->segment_list_->end();
          ++p)
       if ((*p)->type() == elfcpp::PT_LOAD)
         count += (*p)->output_section_count();
   }
 else
   {
     for (Layout::Section_list::const_iterator p =
            this->section_list_->begin();
          p != this->section_list_->end();
          ++p)
       if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
         ++count;
   }
 count += this->unattached_section_list_->size();

 const int size = parameters->target().get_size();
 int shdr_size;
 if (size == 32)
   shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
 else if (size == 64)
   shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
 else
   gold_unreachable();

 return count * shdr_size;
}

// Write out the section headers.

void
Output_section_headers::do_write(Output_file* of)
{
 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->do_sized_write<32, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->do_sized_write<32, true>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->do_sized_write<64, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->do_sized_write<64, true>(of);
     break;
#endif
   default:
     gold_unreachable();
   }
}

template<int size, bool big_endian>
void
Output_section_headers::do_sized_write(Output_file* of)
{
 off_t all_shdrs_size = this->data_size();
 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);

 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 unsigned char* v = view;

 {
   typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
   oshdr.put_sh_name(0);
   oshdr.put_sh_type(elfcpp::SHT_NULL);
   oshdr.put_sh_flags(0);
   oshdr.put_sh_addr(0);
   oshdr.put_sh_offset(0);

   size_t section_count = (this->data_size()
                           / elfcpp::Elf_sizes<size>::shdr_size);
   if (section_count < elfcpp::SHN_LORESERVE)
     oshdr.put_sh_size(0);
   else
     oshdr.put_sh_size(section_count);

   unsigned int shstrndx = this->shstrtab_section_->out_shndx();
   if (shstrndx < elfcpp::SHN_LORESERVE)
     oshdr.put_sh_link(0);
   else
     oshdr.put_sh_link(shstrndx);

   size_t segment_count = this->segment_list_->size();
   oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);

   oshdr.put_sh_addralign(0);
   oshdr.put_sh_entsize(0);
 }

 v += shdr_size;

 unsigned int shndx = 1;
 if (!parameters->options().relocatable())
   {
     for (Layout::Segment_list::const_iterator p =
            this->segment_list_->begin();
          p != this->segment_list_->end();
          ++p)
       v = (*p)->write_section_headers<size, big_endian>(this->layout_,
                                                         this->secnamepool_,
                                                         v,
                                                         &shndx);
   }
 else
   {
     for (Layout::Section_list::const_iterator p =
            this->section_list_->begin();
          p != this->section_list_->end();
          ++p)
       {
         // We do unallocated sections below, except that group
         // sections have to come first.
         if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
             && (*p)->type() != elfcpp::SHT_GROUP)
           continue;
         gold_assert(shndx == (*p)->out_shndx());
         elfcpp::Shdr_write<size, big_endian> oshdr(v);
         (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
         v += shdr_size;
         ++shndx;
       }
   }

 for (Layout::Section_list::const_iterator p =
        this->unattached_section_list_->begin();
      p != this->unattached_section_list_->end();
      ++p)
   {
     // For a relocatable link, we did unallocated group sections
     // above, since they have to come first.
     if ((*p)->type() == elfcpp::SHT_GROUP
         && parameters->options().relocatable())
       continue;
     gold_assert(shndx == (*p)->out_shndx());
     elfcpp::Shdr_write<size, big_endian> oshdr(v);
     (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
     v += shdr_size;
     ++shndx;
   }

 of->write_output_view(this->offset(), all_shdrs_size, view);
}

// Output_segment_header methods.

Output_segment_headers::Output_segment_headers(
   const Layout::Segment_list& segment_list)
 : segment_list_(segment_list)
{
 this->set_current_data_size_for_child(this->do_size());
}

void
Output_segment_headers::do_write(Output_file* of)
{
 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->do_sized_write<32, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->do_sized_write<32, true>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->do_sized_write<64, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->do_sized_write<64, true>(of);
     break;
#endif
   default:
     gold_unreachable();
   }
}

template<int size, bool big_endian>
void
Output_segment_headers::do_sized_write(Output_file* of)
{
 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
 gold_assert(all_phdrs_size == this->data_size());
 unsigned char* view = of->get_output_view(this->offset(),
                                           all_phdrs_size);
 unsigned char* v = view;
 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     elfcpp::Phdr_write<size, big_endian> ophdr(v);
     (*p)->write_header(&ophdr);
     v += phdr_size;
   }

 gold_assert(v - view == all_phdrs_size);

 of->write_output_view(this->offset(), all_phdrs_size, view);
}

off_t
Output_segment_headers::do_size() const
{
 const int size = parameters->target().get_size();
 int phdr_size;
 if (size == 32)
   phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
 else if (size == 64)
   phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
 else
   gold_unreachable();

 return this->segment_list_.size() * phdr_size;
}

// Output_file_header methods.

Output_file_header::Output_file_header(Target* target,
                                      const Symbol_table* symtab,
                                      const Output_segment_headers* osh)
 : target_(target),
   symtab_(symtab),
   segment_header_(osh),
   section_header_(NULL),
   shstrtab_(NULL)
{
 this->set_data_size(this->do_size());
}

// Set the section table information for a file header.

void
Output_file_header::set_section_info(const Output_section_headers* shdrs,
                                    const Output_section* shstrtab)
{
 this->section_header_ = shdrs;
 this->shstrtab_ = shstrtab;
}

// Write out the file header.

void
Output_file_header::do_write(Output_file* of)
{
 gold_assert(this->offset() == 0);

 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->do_sized_write<32, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->do_sized_write<32, true>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->do_sized_write<64, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->do_sized_write<64, true>(of);
     break;
#endif
   default:
     gold_unreachable();
   }
}

// Write out the file header with appropriate size and endianness.

template<int size, bool big_endian>
void
Output_file_header::do_sized_write(Output_file* of)
{
 gold_assert(this->offset() == 0);

 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
 unsigned char* view = of->get_output_view(0, ehdr_size);
 elfcpp::Ehdr_write<size, big_endian> oehdr(view);

 unsigned char e_ident[elfcpp::EI_NIDENT];
 memset(e_ident, 0, elfcpp::EI_NIDENT);
 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
 if (size == 32)
   e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
 else if (size == 64)
   e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
 else
   gold_unreachable();
 e_ident[elfcpp::EI_DATA] = (big_endian
                             ? elfcpp::ELFDATA2MSB
                             : elfcpp::ELFDATA2LSB);
 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
 oehdr.put_e_ident(e_ident);

 elfcpp::ET e_type;
 if (parameters->options().relocatable())
   e_type = elfcpp::ET_REL;
 else if (parameters->options().output_is_position_independent())
   e_type = elfcpp::ET_DYN;
 else
   e_type = elfcpp::ET_EXEC;
 oehdr.put_e_type(e_type);

 oehdr.put_e_machine(this->target_->machine_code());
 oehdr.put_e_version(elfcpp::EV_CURRENT);

 oehdr.put_e_entry(this->entry<size>());

 if (this->segment_header_ == NULL)
   oehdr.put_e_phoff(0);
 else
   oehdr.put_e_phoff(this->segment_header_->offset());

 oehdr.put_e_shoff(this->section_header_->offset());
 oehdr.put_e_flags(this->target_->processor_specific_flags());
 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);

 if (this->segment_header_ == NULL)
   {
     oehdr.put_e_phentsize(0);
     oehdr.put_e_phnum(0);
   }
 else
   {
     oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
     size_t phnum = (this->segment_header_->data_size()
                     / elfcpp::Elf_sizes<size>::phdr_size);
     if (phnum > elfcpp::PN_XNUM)
       phnum = elfcpp::PN_XNUM;
     oehdr.put_e_phnum(phnum);
   }

 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
 size_t section_count = (this->section_header_->data_size()
                         / elfcpp::Elf_sizes<size>::shdr_size);

 if (section_count < elfcpp::SHN_LORESERVE)
   oehdr.put_e_shnum(this->section_header_->data_size()
                     / elfcpp::Elf_sizes<size>::shdr_size);
 else
   oehdr.put_e_shnum(0);

 unsigned int shstrndx = this->shstrtab_->out_shndx();
 if (shstrndx < elfcpp::SHN_LORESERVE)
   oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
 else
   oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);

 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
 // the e_ident field.
 this->target_->adjust_elf_header(view, ehdr_size);

 of->write_output_view(0, ehdr_size, view);
}

// Return the value to use for the entry address.

template<int size>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_file_header::entry()
{
 const bool should_issue_warning = (parameters->options().entry() != NULL
                                    && !parameters->options().relocatable()
                                    && !parameters->options().shared());
 const char* entry = parameters->entry();
 Symbol* sym = this->symtab_->lookup(entry);

 typename Sized_symbol<size>::Value_type v;
 if (sym != NULL)
   {
     Sized_symbol<size>* ssym;
     ssym = this->symtab_->get_sized_symbol<size>(sym);
     if (!ssym->is_defined() && should_issue_warning)
       gold_warning("entry symbol '%s' exists but is not defined", entry);
     v = ssym->value();
   }
 else
   {
     // We couldn't find the entry symbol.  See if we can parse it as
     // a number.  This supports, e.g., -e 0x1000.
     char* endptr;
     v = strtoull(entry, &endptr, 0);
     if (*endptr != '\0')
       {
         if (should_issue_warning)
           gold_warning("cannot find entry symbol '%s'", entry);
         v = 0;
       }
   }

 return v;
}

// Compute the current data size.

off_t
Output_file_header::do_size() const
{
 const int size = parameters->target().get_size();
 if (size == 32)
   return elfcpp::Elf_sizes<32>::ehdr_size;
 else if (size == 64)
   return elfcpp::Elf_sizes<64>::ehdr_size;
 else
   gold_unreachable();
}

// Output_data_const methods.

void
Output_data_const::do_write(Output_file* of)
{
 of->write(this->offset(), this->data_.data(), this->data_.size());
}

// Output_data_const_buffer methods.

void
Output_data_const_buffer::do_write(Output_file* of)
{
 of->write(this->offset(), this->p_, this->data_size());
}

// Output_section_data methods.

// Record the output section, and set the entry size and such.

void
Output_section_data::set_output_section(Output_section* os)
{
 gold_assert(this->output_section_ == NULL);
 this->output_section_ = os;
 this->do_adjust_output_section(os);
}

// Return the section index of the output section.

unsigned int
Output_section_data::do_out_shndx() const
{
 gold_assert(this->output_section_ != NULL);
 return this->output_section_->out_shndx();
}

// Set the alignment, which means we may need to update the alignment
// of the output section.

void
Output_section_data::set_addralign(uint64_t addralign)
{
 this->addralign_ = addralign;
 if (this->output_section_ != NULL
     && this->output_section_->addralign() < addralign)
   this->output_section_->set_addralign(addralign);
}

// Output_data_strtab methods.

// Set the final data size.

void
Output_data_strtab::set_final_data_size()
{
 this->strtab_->set_string_offsets();
 this->set_data_size(this->strtab_->get_strtab_size());
}

// Write out a string table.

void
Output_data_strtab::do_write(Output_file* of)
{
 this->strtab_->write(of, this->offset());
}

// Output_reloc methods.

// A reloc against a global symbol.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Symbol* gsym,
   unsigned int type,
   Output_data* od,
   Address address,
   bool is_relative,
   bool is_symbolless,
   bool use_plt_offset)
 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
   is_relative_(is_relative), is_symbolless_(is_symbolless),
   is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
{
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.gsym = gsym;
 this->u2_.od = od;
 if (dynamic)
   this->set_needs_dynsym_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Symbol* gsym,
   unsigned int type,
   Sized_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   Address address,
   bool is_relative,
   bool is_symbolless,
   bool use_plt_offset)
 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
   is_relative_(is_relative), is_symbolless_(is_symbolless),
   is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
{
 gold_assert(shndx != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.gsym = gsym;
 this->u2_.relobj = relobj;
 if (dynamic)
   this->set_needs_dynsym_index();
}

// A reloc against a local symbol.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Sized_relobj<size, big_endian>* relobj,
   unsigned int local_sym_index,
   unsigned int type,
   Output_data* od,
   Address address,
   bool is_relative,
   bool is_symbolless,
   bool is_section_symbol,
   bool use_plt_offset)
 : address_(address), local_sym_index_(local_sym_index), type_(type),
   is_relative_(is_relative), is_symbolless_(is_symbolless),
   is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
   shndx_(INVALID_CODE)
{
 gold_assert(local_sym_index != GSYM_CODE
             && local_sym_index != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.relobj = relobj;
 this->u2_.od = od;
 if (dynamic)
   this->set_needs_dynsym_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Sized_relobj<size, big_endian>* relobj,
   unsigned int local_sym_index,
   unsigned int type,
   unsigned int shndx,
   Address address,
   bool is_relative,
   bool is_symbolless,
   bool is_section_symbol,
   bool use_plt_offset)
 : address_(address), local_sym_index_(local_sym_index), type_(type),
   is_relative_(is_relative), is_symbolless_(is_symbolless),
   is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
   shndx_(shndx)
{
 gold_assert(local_sym_index != GSYM_CODE
             && local_sym_index != INVALID_CODE);
 gold_assert(shndx != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.relobj = relobj;
 this->u2_.relobj = relobj;
 if (dynamic)
   this->set_needs_dynsym_index();
}

// A reloc against the STT_SECTION symbol of an output section.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Output_section* os,
   unsigned int type,
   Output_data* od,
   Address address,
   bool is_relative)
 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
   is_relative_(is_relative), is_symbolless_(is_relative),
   is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
{
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.os = os;
 this->u2_.od = od;
 if (dynamic)
   this->set_needs_dynsym_index();
 else
   os->set_needs_symtab_index();
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   Output_section* os,
   unsigned int type,
   Sized_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   Address address,
   bool is_relative)
 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
   is_relative_(is_relative), is_symbolless_(is_relative),
   is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
{
 gold_assert(shndx != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.os = os;
 this->u2_.relobj = relobj;
 if (dynamic)
   this->set_needs_dynsym_index();
 else
   os->set_needs_symtab_index();
}

// An absolute or relative relocation.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   unsigned int type,
   Output_data* od,
   Address address,
   bool is_relative)
 : address_(address), local_sym_index_(0), type_(type),
   is_relative_(is_relative), is_symbolless_(false),
   is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
{
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.relobj = NULL;
 this->u2_.od = od;
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   unsigned int type,
   Sized_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   Address address,
   bool is_relative)
 : address_(address), local_sym_index_(0), type_(type),
   is_relative_(is_relative), is_symbolless_(false),
   is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
{
 gold_assert(shndx != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.relobj = NULL;
 this->u2_.relobj = relobj;
}

// A target specific relocation.

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   unsigned int type,
   void* arg,
   Output_data* od,
   Address address)
 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
   is_relative_(false), is_symbolless_(false),
   is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
{
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.arg = arg;
 this->u2_.od = od;
}

template<bool dynamic, int size, bool big_endian>
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
   unsigned int type,
   void* arg,
   Sized_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   Address address)
 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
   is_relative_(false), is_symbolless_(false),
   is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
{
 gold_assert(shndx != INVALID_CODE);
 // this->type_ is a bitfield; make sure TYPE fits.
 gold_assert(this->type_ == type);
 this->u1_.arg = arg;
 this->u2_.relobj = relobj;
}

// Record that we need a dynamic symbol index for this relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
set_needs_dynsym_index()
{
 if (this->is_symbolless_)
   return;
 switch (this->local_sym_index_)
   {
   case INVALID_CODE:
     gold_unreachable();

   case GSYM_CODE:
     this->u1_.gsym->set_needs_dynsym_entry();
     break;

   case SECTION_CODE:
     this->u1_.os->set_needs_dynsym_index();
     break;

   case TARGET_CODE:
     // The target must take care of this if necessary.
     break;

   case 0:
     break;

   default:
     {
       const unsigned int lsi = this->local_sym_index_;
       Sized_relobj_file<size, big_endian>* relobj =
           this->u1_.relobj->sized_relobj();
       gold_assert(relobj != NULL);
       if (!this->is_section_symbol_)
         relobj->set_needs_output_dynsym_entry(lsi);
       else
         relobj->output_section(lsi)->set_needs_dynsym_index();
     }
     break;
   }
}

// Get the symbol index of a relocation.

template<bool dynamic, int size, bool big_endian>
unsigned int
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
 const
{
 unsigned int index;
 if (this->is_symbolless_)
   return 0;
 switch (this->local_sym_index_)
   {
   case INVALID_CODE:
     gold_unreachable();

   case GSYM_CODE:
     if (this->u1_.gsym == NULL)
       index = 0;
     else if (dynamic)
       index = this->u1_.gsym->dynsym_index();
     else
       index = this->u1_.gsym->symtab_index();
     break;

   case SECTION_CODE:
     if (dynamic)
       index = this->u1_.os->dynsym_index();
     else
       index = this->u1_.os->symtab_index();
     break;

   case TARGET_CODE:
     index = parameters->target().reloc_symbol_index(this->u1_.arg,
                                                     this->type_);
     break;

   case 0:
     // Relocations without symbols use a symbol index of 0.
     index = 0;
     break;

   default:
     {
       const unsigned int lsi = this->local_sym_index_;
       Sized_relobj_file<size, big_endian>* relobj =
           this->u1_.relobj->sized_relobj();
       gold_assert(relobj != NULL);
       if (!this->is_section_symbol_)
         {
           if (dynamic)
             index = relobj->dynsym_index(lsi);
           else
             index = relobj->symtab_index(lsi);
         }
       else
         {
           Output_section* os = relobj->output_section(lsi);
           gold_assert(os != NULL);
           if (dynamic)
             index = os->dynsym_index();
           else
             index = os->symtab_index();
         }
     }
     break;
   }
 gold_assert(index != -1U);
 return index;
}

// For a local section symbol, get the address of the offset ADDEND
// within the input section.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
 local_section_offset(Addend addend) const
{
 gold_assert(this->local_sym_index_ != GSYM_CODE
             && this->local_sym_index_ != SECTION_CODE
             && this->local_sym_index_ != TARGET_CODE
             && this->local_sym_index_ != INVALID_CODE
             && this->local_sym_index_ != 0
             && this->is_section_symbol_);
 const unsigned int lsi = this->local_sym_index_;
 Output_section* os = this->u1_.relobj->output_section(lsi);
 gold_assert(os != NULL);
 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
 if (offset != invalid_address)
   return offset + addend;
 // This is a merge section.
 Sized_relobj_file<size, big_endian>* relobj =
     this->u1_.relobj->sized_relobj();
 gold_assert(relobj != NULL);
 offset = os->output_address(relobj, lsi, addend);
 gold_assert(offset != invalid_address);
 return offset;
}

// Get the output address of a relocation.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
{
 Address address = this->address_;
 if (this->shndx_ != INVALID_CODE)
   {
     Output_section* os = this->u2_.relobj->output_section(this->shndx_);
     gold_assert(os != NULL);
     Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
     if (off != invalid_address)
       address += os->address() + off;
     else
       {
         Sized_relobj_file<size, big_endian>* relobj =
             this->u2_.relobj->sized_relobj();
         gold_assert(relobj != NULL);
         address = os->output_address(relobj, this->shndx_, address);
         gold_assert(address != invalid_address);
       }
   }
 else if (this->u2_.od != NULL)
   address += this->u2_.od->address();
 return address;
}

// Write out the offset and info fields of a Rel or Rela relocation
// entry.

template<bool dynamic, int size, bool big_endian>
template<typename Write_rel>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
   Write_rel* wr) const
{
 wr->put_r_offset(this->get_address());
 unsigned int sym_index = this->get_symbol_index();
 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
}

// Write out a Rel relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
   unsigned char* pov) const
{
 elfcpp::Rel_write<size, big_endian> orel(pov);
 this->write_rel(&orel);
}

// Get the value of the symbol referred to by a Rel relocation.

template<bool dynamic, int size, bool big_endian>
typename elfcpp::Elf_types<size>::Elf_Addr
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
   Addend addend) const
{
 if (this->local_sym_index_ == GSYM_CODE)
   {
     const Sized_symbol<size>* sym;
     sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
     if (this->use_plt_offset_ && sym->has_plt_offset())
       return parameters->target().plt_address_for_global(sym);
     else
       return sym->value() + addend;
   }
 if (this->local_sym_index_ == SECTION_CODE)
   {
     gold_assert(!this->use_plt_offset_);
     return this->u1_.os->address() + addend;
   }
 gold_assert(this->local_sym_index_ != TARGET_CODE
             && this->local_sym_index_ != INVALID_CODE
             && this->local_sym_index_ != 0
             && !this->is_section_symbol_);
 const unsigned int lsi = this->local_sym_index_;
 Sized_relobj_file<size, big_endian>* relobj =
     this->u1_.relobj->sized_relobj();
 gold_assert(relobj != NULL);
 if (this->use_plt_offset_)
   return parameters->target().plt_address_for_local(relobj, lsi);
 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
 return symval->value(relobj, addend);
}

// Reloc comparison.  This function sorts the dynamic relocs for the
// benefit of the dynamic linker.  First we sort all relative relocs
// to the front.  Among relative relocs, we sort by output address.
// Among non-relative relocs, we sort by symbol index, then by output
// address.

template<bool dynamic, int size, bool big_endian>
int
Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
   const
{
 if (this->is_relative_)
   {
     if (!r2.is_relative_)
       return -1;
     // Otherwise sort by reloc address below.
   }
 else if (r2.is_relative_)
   return 1;
 else
   {
     unsigned int sym1 = this->get_symbol_index();
     unsigned int sym2 = r2.get_symbol_index();
     if (sym1 < sym2)
       return -1;
     else if (sym1 > sym2)
       return 1;
     // Otherwise sort by reloc address.
   }

 section_offset_type addr1 = this->get_address();
 section_offset_type addr2 = r2.get_address();
 if (addr1 < addr2)
   return -1;
 else if (addr1 > addr2)
   return 1;

 // Final tie breaker, in order to generate the same output on any
 // host: reloc type.
 unsigned int type1 = this->type_;
 unsigned int type2 = r2.type_;
 if (type1 < type2)
   return -1;
 else if (type1 > type2)
   return 1;

 // These relocs appear to be exactly the same.
 return 0;
}

// Write out a Rela relocation.

template<bool dynamic, int size, bool big_endian>
void
Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
   unsigned char* pov) const
{
 elfcpp::Rela_write<size, big_endian> orel(pov);
 this->rel_.write_rel(&orel);
 Addend addend = this->addend_;
 if (this->rel_.is_target_specific())
   addend = parameters->target().reloc_addend(this->rel_.target_arg(),
                                              this->rel_.type(), addend);
 else if (this->rel_.is_symbolless())
   addend = this->rel_.symbol_value(addend);
 else if (this->rel_.is_local_section_symbol())
   addend = this->rel_.local_section_offset(addend);
 orel.put_r_addend(addend);
}

// Output_data_reloc_base methods.

// Adjust the output section.

template<int sh_type, bool dynamic, int size, bool big_endian>
void
Output_data_reloc_base<sh_type, dynamic, size, big_endian>
   ::do_adjust_output_section(Output_section* os)
{
 if (sh_type == elfcpp::SHT_REL)
   os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
 else if (sh_type == elfcpp::SHT_RELA)
   os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
 else
   gold_unreachable();

 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
 // static link.  The backends will generate a dynamic reloc section
 // to hold this.  In that case we don't want to link to the dynsym
 // section, because there isn't one.
 if (!dynamic)
   os->set_should_link_to_symtab();
 else if (parameters->doing_static_link())
   ;
 else
   os->set_should_link_to_dynsym();
}

// Standard relocation writer, which just calls Output_reloc::write().

template<int sh_type, bool dynamic, int size, bool big_endian>
struct Output_reloc_writer
{
 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
 typedef std::vector<Output_reloc_type> Relocs;

 static void
 write(typename Relocs::const_iterator p, unsigned char* pov)
 { p->write(pov); }
};

// Write out relocation data.

template<int sh_type, bool dynamic, int size, bool big_endian>
void
Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
   Output_file* of)
{
 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
 this->do_write_generic<Writer>(of);
}

// Class Output_relocatable_relocs.

template<int sh_type, int size, bool big_endian>
void
Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
{
 this->set_data_size(this->rr_->output_reloc_count()
                     * Reloc_types<sh_type, size, big_endian>::reloc_size);
}

// class Output_data_group.

template<int size, bool big_endian>
Output_data_group<size, big_endian>::Output_data_group(
   Sized_relobj_file<size, big_endian>* relobj,
   section_size_type entry_count,
   elfcpp::Elf_Word flags,
   std::vector<unsigned int>* input_shndxes)
 : Output_section_data(entry_count * 4, 4, false),
   relobj_(relobj),
   flags_(flags)
{
 this->input_shndxes_.swap(*input_shndxes);
}

// Write out the section group, which means translating the section
// indexes to apply to the output file.

template<int size, bool big_endian>
void
Output_data_group<size, big_endian>::do_write(Output_file* of)
{
 const off_t off = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(off, oview_size);

 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
 ++contents;

 for (std::vector<unsigned int>::const_iterator p =
        this->input_shndxes_.begin();
      p != this->input_shndxes_.end();
      ++p, ++contents)
   {
     Output_section* os = this->relobj_->output_section(*p);

     unsigned int output_shndx;
     if (os != NULL)
       output_shndx = os->out_shndx();
     else
       {
         this->relobj_->error(_("section group retained but "
                                "group element discarded"));
         output_shndx = 0;
       }

     elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
   }

 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
 gold_assert(wrote == oview_size);

 of->write_output_view(off, oview_size, oview);

 // We no longer need this information.
 this->input_shndxes_.clear();
}

// Output_data_got::Got_entry methods.

// Write out the entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::Got_entry::write(
   Output_data_got_base* got,
   unsigned int got_indx,
   unsigned char* pov) const
{
 Valtype val = 0;

 switch (this->local_sym_index_)
   {
   case GSYM_CODE:
     {
       // If the symbol is resolved locally, we need to write out the
       // link-time value, which will be relocated dynamically by a
       // RELATIVE relocation.
       Symbol* gsym = this->u_.gsym;
       if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
         val = parameters->target().plt_address_for_global(gsym);
       else
         {
           switch (parameters->size_and_endianness())
             {
#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
             case Parameters::TARGET_32_LITTLE:
             case Parameters::TARGET_32_BIG:
               {
                 // This cast is ugly.  We don't want to put a
                 // virtual method in Symbol, because we want Symbol
                 // to be as small as possible.
                 Sized_symbol<32>::Value_type v;
                 v = static_cast<Sized_symbol<32>*>(gsym)->value();
                 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
               }
               break;
#endif
#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
             case Parameters::TARGET_64_LITTLE:
             case Parameters::TARGET_64_BIG:
               {
                 Sized_symbol<64>::Value_type v;
                 v = static_cast<Sized_symbol<64>*>(gsym)->value();
                 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
               }
               break;
#endif
             default:
               gold_unreachable();
             }
           // If this is a GOT entry for a known value global symbol,
           // then the value should include the addend.  If the value
           // is not known leave the value as zero; The GOT entry
           // will be set by a dynamic relocation.
           if (this->addend_ && gsym->final_value_is_known())
             val += this->addend_;
           if (this->use_plt_or_tls_offset_
               && gsym->type() == elfcpp::STT_TLS)
             val += parameters->target().tls_offset_for_global(gsym,
                                                               got, got_indx,
                                                               this->addend_);
         }
     }
     break;

   case CONSTANT_CODE:
     val = this->u_.constant;
     break;

   case RESERVED_CODE:
     // If we're doing an incremental update, don't touch this GOT entry.
     if (parameters->incremental_update())
       return;
     val = this->u_.constant;
     break;

   default:
     {
       const Relobj* object = this->u_.object;
       const unsigned int lsi = this->local_sym_index_;
       bool is_tls = object->local_is_tls(lsi);
       if (this->use_plt_or_tls_offset_ && !is_tls)
         val = parameters->target().plt_address_for_local(object, lsi);
       else
         {
           uint64_t lval = object->local_symbol_value(lsi, this->addend_);
           val = convert_types<Valtype, uint64_t>(lval);
           if (this->use_plt_or_tls_offset_ && is_tls)
             val += parameters->target().tls_offset_for_local(object, lsi,
                                                              got, got_indx,
                                                              this->addend_);
         }
     }
     break;
   }

 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
}

// Output_data_got methods.

// Add an entry for a global symbol to the GOT.  This returns true if
// this is a new GOT entry, false if the symbol already had a GOT
// entry.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_global(Symbol* gsym,
                                                 unsigned int got_type,
                                                 uint64_t addend)
{
 if (gsym->has_got_offset(got_type, addend))
   return false;

 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false, addend));
 gsym->set_got_offset(got_type, got_offset, addend);
 return true;
}

// Like add_global, but use the PLT offset.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
                                                     unsigned int got_type,
                                                     uint64_t addend)
{
 if (gsym->has_got_offset(got_type, addend))
   return false;

 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true, addend));
 gsym->set_got_offset(got_type, got_offset, addend);
 return true;
}

// Add an entry for a global symbol to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_global_with_rel(
   Symbol* gsym,
   unsigned int got_type,
   Output_data_reloc_generic* rel_dyn,
   unsigned int r_type,
   uint64_t addend)
{
 if (gsym->has_got_offset(got_type, addend))
   return;

 unsigned int got_offset = this->add_got_entry(Got_entry());
 gsym->set_got_offset(got_type, got_offset, addend);
 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, addend);
}

// Add a pair of entries for a global symbol to the GOT, and add
// dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
// If R_TYPE_2 == 0, add the second entry with no relocation.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
   Symbol* gsym,
   unsigned int got_type,
   Output_data_reloc_generic* rel_dyn,
   unsigned int r_type_1,
   unsigned int r_type_2,
   uint64_t addend)
{
 if (gsym->has_got_offset(got_type, addend))
   return;

 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
 gsym->set_got_offset(got_type, got_offset, addend);
 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, addend);

 if (r_type_2 != 0)
   rel_dyn->add_global_generic(gsym, r_type_2, this,
                               got_offset + got_size / 8, addend);
}

// Add an entry for a local symbol plus ADDEND to the GOT.  This returns
// true if this is a new GOT entry, false if the symbol already has a GOT
// entry.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_local(
   Relobj* object,
   unsigned int symndx,
   unsigned int got_type,
   uint64_t addend)
{
 if (object->local_has_got_offset(symndx, got_type, addend))
   return false;

 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
                                                         false, addend));
 object->set_local_got_offset(symndx, got_type, got_offset, addend);
 return true;
}

// Like add_local, but use the PLT offset.

template<int got_size, bool big_endian>
bool
Output_data_got<got_size, big_endian>::add_local_plt(
   Relobj* object,
   unsigned int symndx,
   unsigned int got_type,
   uint64_t addend)
{
 if (object->local_has_got_offset(symndx, got_type, addend))
   return false;

 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
                                                         true, addend));
 object->set_local_got_offset(symndx, got_type, got_offset, addend);
 return true;
}

// Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
// relocation of type R_TYPE for the GOT entry.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_with_rel(
   Relobj* object,
   unsigned int symndx,
   unsigned int got_type,
   Output_data_reloc_generic* rel_dyn,
   unsigned int r_type,
   uint64_t addend)
{
 if (object->local_has_got_offset(symndx, got_type, addend))
   return;

 unsigned int got_offset = this->add_got_entry(Got_entry());
 object->set_local_got_offset(symndx, got_type, got_offset, addend);
 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
                            addend);
}

// Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
// a dynamic relocation of type R_TYPE using the section symbol of
// the output section to which input section SHNDX maps, on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
   Relobj* object,
   unsigned int symndx,
   unsigned int shndx,
   unsigned int got_type,
   Output_data_reloc_generic* rel_dyn,
   unsigned int r_type,
   uint64_t addend)
{
 if (object->local_has_got_offset(symndx, got_type, addend))
   return;

 unsigned int got_offset =
     this->add_got_entry_pair(Got_entry(),
                              Got_entry(object, symndx, false, addend));
 object->set_local_got_offset(symndx, got_type, got_offset, addend);
 Output_section* os = object->output_section(shndx);
 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
}

// Add a pair of entries for a local symbol to the GOT, and add
// a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
// The first got entry will have a value of zero, the second the
// value of the local symbol offset by Target::tls_offset_for_local.
template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::add_local_tls_pair(
   Relobj* object,
   unsigned int symndx,
   unsigned int got_type,
   Output_data_reloc_generic* rel_dyn,
   unsigned int r_type,
   uint64_t addend)
{
 if (object->local_has_got_offset(symndx, got_type, addend))
   return;

 unsigned int got_offset
   = this->add_got_entry_pair(Got_entry(),
                              Got_entry(object, symndx, true, addend));
 object->set_local_got_offset(symndx, got_type, got_offset, addend);
 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, addend);
}

// Reserve a slot in the GOT for a local symbol or the second slot of a pair.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::reserve_local(
   unsigned int i,
   Relobj* object,
   unsigned int sym_index,
   unsigned int got_type,
   uint64_t addend)
{
 this->do_reserve_slot(i);
 object->set_local_got_offset(sym_index, got_type, this->got_offset(i), addend);
}

// Reserve a slot in the GOT for a global symbol.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::reserve_global(
   unsigned int i,
   Symbol* gsym,
   unsigned int got_type,
   uint64_t addend)
{
 this->do_reserve_slot(i);
 gsym->set_got_offset(got_type, this->got_offset(i), addend);
}

// Write out the GOT.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::do_write(Output_file* of)
{
 const int add = got_size / 8;

 const off_t off = this->offset();
 const off_t oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(off, oview_size);

 unsigned char* pov = oview;
 for (unsigned int i = 0; i < this->entries_.size(); ++i)
   {
     this->entries_[i].write(this, i, pov);
     pov += add;
   }

 gold_assert(pov - oview == oview_size);

 of->write_output_view(off, oview_size, oview);

 // We no longer need the GOT entries.
 this->entries_.clear();
}

// Create a new GOT entry and return its offset.

template<int got_size, bool big_endian>
unsigned int
Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
{
 if (!this->is_data_size_valid())
   {
     this->entries_.push_back(got_entry);
     this->set_got_size();
     return this->last_got_offset();
   }
 else
   {
     // For an incremental update, find an available slot.
     off_t got_offset = this->free_list_.allocate(got_size / 8,
                                                  got_size / 8, 0);
     if (got_offset == -1)
       gold_fallback(_("out of patch space (GOT);"
                       " relink with --incremental-full"));
     unsigned int got_index = got_offset / (got_size / 8);
     gold_assert(got_index < this->entries_.size());
     this->entries_[got_index] = got_entry;
     return static_cast<unsigned int>(got_offset);
   }
}

// Create a pair of new GOT entries and return the offset of the first.

template<int got_size, bool big_endian>
unsigned int
Output_data_got<got_size, big_endian>::add_got_entry_pair(
   Got_entry got_entry_1,
   Got_entry got_entry_2)
{
 if (!this->is_data_size_valid())
   {
     unsigned int got_offset;
     this->entries_.push_back(got_entry_1);
     got_offset = this->last_got_offset();
     this->entries_.push_back(got_entry_2);
     this->set_got_size();
     return got_offset;
   }
 else
   {
     // For an incremental update, find an available pair of slots.
     off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
                                                  got_size / 8, 0);
     if (got_offset == -1)
       gold_fallback(_("out of patch space (GOT);"
                       " relink with --incremental-full"));
     unsigned int got_index = got_offset / (got_size / 8);
     gold_assert(got_index < this->entries_.size());
     this->entries_[got_index] = got_entry_1;
     this->entries_[got_index + 1] = got_entry_2;
     return static_cast<unsigned int>(got_offset);
   }
}

// Replace GOT entry I with a new value.

template<int got_size, bool big_endian>
void
Output_data_got<got_size, big_endian>::replace_got_entry(
   unsigned int i,
   Got_entry got_entry)
{
 gold_assert(i < this->entries_.size());
 this->entries_[i] = got_entry;
}

// Output_data_dynamic::Dynamic_entry methods.

// Write out the entry.

template<int size, bool big_endian>
void
Output_data_dynamic::Dynamic_entry::write(
   unsigned char* pov,
   const Stringpool* pool) const
{
 typename elfcpp::Elf_types<size>::Elf_WXword val;
 switch (this->offset_)
   {
   case DYNAMIC_NUMBER:
     val = this->u_.val;
     break;

   case DYNAMIC_SECTION_SIZE:
     val = this->u_.od->data_size();
     if (this->od2 != NULL)
       val += this->od2->data_size();
     break;

   case DYNAMIC_SYMBOL:
     {
       const Sized_symbol<size>* s =
         static_cast<const Sized_symbol<size>*>(this->u_.sym);
       val = s->value();
     }
     break;

   case DYNAMIC_STRING:
     val = pool->get_offset(this->u_.str);
     break;

   case DYNAMIC_CUSTOM:
     val = parameters->target().dynamic_tag_custom_value(this->tag_);
     break;

   default:
     val = this->u_.od->address() + this->offset_;
     break;
   }

 elfcpp::Dyn_write<size, big_endian> dw(pov);
 dw.put_d_tag(this->tag_);
 dw.put_d_val(val);
}

// Output_data_dynamic methods.

// Adjust the output section to set the entry size.

void
Output_data_dynamic::do_adjust_output_section(Output_section* os)
{
 if (parameters->target().get_size() == 32)
   os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
 else if (parameters->target().get_size() == 64)
   os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
 else
   gold_unreachable();
}

// Get a dynamic entry offset.

unsigned int
Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
{
 int dyn_size;

 if (parameters->target().get_size() == 32)
   dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
 else if (parameters->target().get_size() == 64)
   dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
 else
   gold_unreachable();

 for (size_t i = 0; i < entries_.size(); ++i)
   if (entries_[i].tag() == tag)
     return i * dyn_size;

 return -1U;
}

// Set the final data size.

void
Output_data_dynamic::set_final_data_size()
{
 // Add the terminating entry if it hasn't been added.
 // Because of relaxation, we can run this multiple times.
 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
   {
     int extra = parameters->options().spare_dynamic_tags();
     for (int i = 0; i < extra; ++i)
       this->add_constant(elfcpp::DT_NULL, 0);
     this->add_constant(elfcpp::DT_NULL, 0);
   }

 int dyn_size;
 if (parameters->target().get_size() == 32)
   dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
 else if (parameters->target().get_size() == 64)
   dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
 else
   gold_unreachable();
 this->set_data_size(this->entries_.size() * dyn_size);
}

// Write out the dynamic entries.

void
Output_data_dynamic::do_write(Output_file* of)
{
 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->sized_write<32, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->sized_write<32, true>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->sized_write<64, false>(of);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->sized_write<64, true>(of);
     break;
#endif
   default:
     gold_unreachable();
   }
}

template<int size, bool big_endian>
void
Output_data_dynamic::sized_write(Output_file* of)
{
 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;

 const off_t offset = this->offset();
 const off_t oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 unsigned char* pov = oview;
 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
      p != this->entries_.end();
      ++p)
   {
     p->write<size, big_endian>(pov, this->pool_);
     pov += dyn_size;
   }

 gold_assert(pov - oview == oview_size);

 of->write_output_view(offset, oview_size, oview);

 // We no longer need the dynamic entries.
 this->entries_.clear();
}

// Class Output_symtab_xindex.

void
Output_symtab_xindex::do_write(Output_file* of)
{
 const off_t offset = this->offset();
 const off_t oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 memset(oview, 0, oview_size);

 if (parameters->target().is_big_endian())
   this->endian_do_write<true>(oview);
 else
   this->endian_do_write<false>(oview);

 of->write_output_view(offset, oview_size, oview);

 // We no longer need the data.
 this->entries_.clear();
}

template<bool big_endian>
void
Output_symtab_xindex::endian_do_write(unsigned char* const oview)
{
 for (Xindex_entries::const_iterator p = this->entries_.begin();
      p != this->entries_.end();
      ++p)
   {
     unsigned int symndx = p->first;
     gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
     elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
   }
}

// Output_fill_debug_info methods.

// Return the minimum size needed for a dummy compilation unit header.

size_t
Output_fill_debug_info::do_minimum_hole_size() const
{
 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
 // address_size.
 const size_t len = 4 + 2 + 4 + 1;
 // For type units, add type_signature, type_offset.
 if (this->is_debug_types_)
   return len + 8 + 4;
 return len;
}

// Write a dummy compilation unit header to fill a hole in the
// .debug_info or .debug_types section.

void
Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
{
 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
            static_cast<long>(off), static_cast<long>(len));

 gold_assert(len >= this->do_minimum_hole_size());

 unsigned char* const oview = of->get_output_view(off, len);
 unsigned char* pov = oview;

 // Write header fields: unit_length, version, debug_abbrev_offset,
 // address_size.
 if (this->is_big_endian())
   {
     elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
     elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
     elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
   }
 else
   {
     elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
     elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
     elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
   }
 pov += 4 + 2 + 4;
 *pov++ = 4;

 // For type units, the additional header fields -- type_signature,
 // type_offset -- can be filled with zeroes.

 // Fill the remainder of the free space with zeroes.  The first
 // zero should tell the consumer there are no DIEs to read in this
 // compilation unit.
 if (pov < oview + len)
   memset(pov, 0, oview + len - pov);

 of->write_output_view(off, len, oview);
}

// Output_fill_debug_line methods.

// Return the minimum size needed for a dummy line number program header.

size_t
Output_fill_debug_line::do_minimum_hole_size() const
{
 // Line number program header fields: unit_length, version, header_length,
 // minimum_instruction_length, default_is_stmt, line_base, line_range,
 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
 const size_t len = 4 + 2 + 4 + this->header_length;
 return len;
}

// Write a dummy line number program header to fill a hole in the
// .debug_line section.

void
Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
{
 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
            static_cast<long>(off), static_cast<long>(len));

 gold_assert(len >= this->do_minimum_hole_size());

 unsigned char* const oview = of->get_output_view(off, len);
 unsigned char* pov = oview;

 // Write header fields: unit_length, version, header_length,
 // minimum_instruction_length, default_is_stmt, line_base, line_range,
 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
 // We set the header_length field to cover the entire hole, so the
 // line number program is empty.
 if (this->is_big_endian())
   {
     elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
     elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
     elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
   }
 else
   {
     elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
     elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
     elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
   }
 pov += 4 + 2 + 4;
 *pov++ = 1;   // minimum_instruction_length
 *pov++ = 0;   // default_is_stmt
 *pov++ = 0;   // line_base
 *pov++ = 5;   // line_range
 *pov++ = 13;  // opcode_base
 *pov++ = 0;   // standard_opcode_lengths[1]
 *pov++ = 1;   // standard_opcode_lengths[2]
 *pov++ = 1;   // standard_opcode_lengths[3]
 *pov++ = 1;   // standard_opcode_lengths[4]
 *pov++ = 1;   // standard_opcode_lengths[5]
 *pov++ = 0;   // standard_opcode_lengths[6]
 *pov++ = 0;   // standard_opcode_lengths[7]
 *pov++ = 0;   // standard_opcode_lengths[8]
 *pov++ = 1;   // standard_opcode_lengths[9]
 *pov++ = 0;   // standard_opcode_lengths[10]
 *pov++ = 0;   // standard_opcode_lengths[11]
 *pov++ = 1;   // standard_opcode_lengths[12]
 *pov++ = 0;   // include_directories (empty)
 *pov++ = 0;   // filenames (empty)

 // Some consumers don't check the header_length field, and simply
 // start reading the line number program immediately following the
 // header.  For those consumers, we fill the remainder of the free
 // space with DW_LNS_set_basic_block opcodes.  These are effectively
 // no-ops: the resulting line table program will not create any rows.
 if (pov < oview + len)
   memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);

 of->write_output_view(off, len, oview);
}

// Output_section::Input_section methods.

// Return the current data size.  For an input section we store the size here.
// For an Output_section_data, we have to ask it for the size.

off_t
Output_section::Input_section::current_data_size() const
{
 if (this->is_input_section())
   return this->u1_.data_size;
 else
   {
     this->u2_.posd->pre_finalize_data_size();
     return this->u2_.posd->current_data_size();
   }
}

// Return the data size.  For an input section we store the size here.
// For an Output_section_data, we have to ask it for the size.

off_t
Output_section::Input_section::data_size() const
{
 if (this->is_input_section())
   return this->u1_.data_size;
 else
   return this->u2_.posd->data_size();
}

// Return the object for an input section.

Relobj*
Output_section::Input_section::relobj() const
{
 if (this->is_input_section())
   return this->u2_.object;
 else if (this->is_merge_section())
   {
     gold_assert(this->u2_.pomb->first_relobj() != NULL);
     return this->u2_.pomb->first_relobj();
   }
 else if (this->is_relaxed_input_section())
   return this->u2_.poris->relobj();
 else
   gold_unreachable();
}

// Return the input section index for an input section.

unsigned int
Output_section::Input_section::shndx() const
{
 if (this->is_input_section())
   return this->shndx_;
 else if (this->is_merge_section())
   {
     gold_assert(this->u2_.pomb->first_relobj() != NULL);
     return this->u2_.pomb->first_shndx();
   }
 else if (this->is_relaxed_input_section())
   return this->u2_.poris->shndx();
 else
   gold_unreachable();
}

// Set the address and file offset.

void
Output_section::Input_section::set_address_and_file_offset(
   uint64_t address,
   off_t file_offset,
   off_t section_file_offset)
{
 if (this->is_input_section())
   this->u2_.object->set_section_offset(this->shndx_,
                                        file_offset - section_file_offset);
 else
   this->u2_.posd->set_address_and_file_offset(address, file_offset);
}

// Reset the address and file offset.

void
Output_section::Input_section::reset_address_and_file_offset()
{
 if (!this->is_input_section())
   this->u2_.posd->reset_address_and_file_offset();
}

// Finalize the data size.

void
Output_section::Input_section::finalize_data_size()
{
 if (!this->is_input_section())
   this->u2_.posd->finalize_data_size();
}

// Try to turn an input offset into an output offset.  We want to
// return the output offset relative to the start of this
// Input_section in the output section.

inline bool
Output_section::Input_section::output_offset(
   const Relobj* object,
   unsigned int shndx,
   section_offset_type offset,
   section_offset_type* poutput) const
{
 if (!this->is_input_section())
   return this->u2_.posd->output_offset(object, shndx, offset, poutput);
 else
   {
     if (this->shndx_ != shndx || this->u2_.object != object)
       return false;
     *poutput = offset;
     return true;
   }
}

// Write out the data.  We don't have to do anything for an input
// section--they are handled via Object::relocate--but this is where
// we write out the data for an Output_section_data.

void
Output_section::Input_section::write(Output_file* of)
{
 if (!this->is_input_section())
   this->u2_.posd->write(of);
}

// Write the data to a buffer.  As for write(), we don't have to do
// anything for an input section.

void
Output_section::Input_section::write_to_buffer(unsigned char* buffer)
{
 if (!this->is_input_section())
   this->u2_.posd->write_to_buffer(buffer);
}

// Print to a map file.

void
Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
{
 switch (this->shndx_)
   {
   case OUTPUT_SECTION_CODE:
   case MERGE_DATA_SECTION_CODE:
   case MERGE_STRING_SECTION_CODE:
     this->u2_.posd->print_to_mapfile(mapfile);
     break;

   case RELAXED_INPUT_SECTION_CODE:
     {
       Output_relaxed_input_section* relaxed_section =
         this->relaxed_input_section();
       mapfile->print_input_section(relaxed_section->relobj(),
                                    relaxed_section->shndx());
     }
     break;
   default:
     mapfile->print_input_section(this->u2_.object, this->shndx_);
     break;
   }
}

// Output_section methods.

// Construct an Output_section.  NAME will point into a Stringpool.

Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
                              elfcpp::Elf_Xword flags)
 : name_(name),
   addralign_(0),
   entsize_(0),
   load_address_(0),
   link_section_(NULL),
   link_(0),
   info_section_(NULL),
   info_symndx_(NULL),
   info_(0),
   type_(type),
   flags_(flags),
   order_(ORDER_INVALID),
   out_shndx_(-1U),
   symtab_index_(0),
   dynsym_index_(0),
   input_sections_(),
   first_input_offset_(0),
   fills_(),
   postprocessing_buffer_(NULL),
   needs_symtab_index_(false),
   needs_dynsym_index_(false),
   should_link_to_symtab_(false),
   should_link_to_dynsym_(false),
   after_input_sections_(false),
   requires_postprocessing_(false),
   found_in_sections_clause_(false),
   has_load_address_(false),
   info_uses_section_index_(false),
   input_section_order_specified_(false),
   may_sort_attached_input_sections_(false),
   must_sort_attached_input_sections_(false),
   attached_input_sections_are_sorted_(false),
   is_relro_(false),
   is_small_section_(false),
   is_large_section_(false),
   generate_code_fills_at_write_(false),
   is_entsize_zero_(false),
   section_offsets_need_adjustment_(false),
   is_noload_(false),
   always_keeps_input_sections_(false),
   has_fixed_layout_(false),
   is_patch_space_allowed_(false),
   is_unique_segment_(false),
   tls_offset_(0),
   extra_segment_flags_(0),
   segment_alignment_(0),
   checkpoint_(NULL),
   lookup_maps_(new Output_section_lookup_maps),
   free_list_(),
   free_space_fill_(NULL),
   patch_space_(0),
   reloc_section_(NULL)
{
 // An unallocated section has no address.  Forcing this means that
 // we don't need special treatment for symbols defined in debug
 // sections.
 if ((flags & elfcpp::SHF_ALLOC) == 0)
   this->set_address(0);
}

Output_section::~Output_section()
{
 delete this->checkpoint_;
}

// Set the entry size.

void
Output_section::set_entsize(uint64_t v)
{
 if (this->is_entsize_zero_)
   ;
 else if (this->entsize_ == 0)
   this->entsize_ = v;
 else if (this->entsize_ != v)
   {
     this->entsize_ = 0;
     this->is_entsize_zero_ = 1;
   }
}

// Add the input section SHNDX, with header SHDR, named SECNAME, in
// OBJECT, to the Output_section.  RELOC_SHNDX is the index of a
// relocation section which applies to this section, or 0 if none, or
// -1U if more than one.  Return the offset of the input section
// within the output section.  Return -1 if the input section will
// receive special handling.  In the normal case we don't always keep
// track of input sections for an Output_section.  Instead, each
// Object keeps track of the Output_section for each of its input
// sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep
// track of input sections here; this is used when SECTIONS appears in
// a linker script.

template<int size, bool big_endian>
off_t
Output_section::add_input_section(Layout* layout,
                                 Sized_relobj_file<size, big_endian>* object,
                                 unsigned int shndx,
                                 const char* secname,
                                 const elfcpp::Shdr<size, big_endian>& shdr,
                                 unsigned int reloc_shndx,
                                 bool have_sections_script)
{
 section_size_type input_section_size = shdr.get_sh_size();
 section_size_type uncompressed_size;
 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
 if (object->section_is_compressed(shndx, &uncompressed_size,
                                   &addralign))
   input_section_size = uncompressed_size;

 if ((addralign & (addralign - 1)) != 0)
   {
     object->error(_("invalid alignment %lu for section \"%s\""),
                   static_cast<unsigned long>(addralign), secname);
     addralign = 1;
   }

 if (addralign > this->addralign_)
   this->addralign_ = addralign;

 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
 uint64_t entsize = shdr.get_sh_entsize();

 // .debug_str is a mergeable string section, but is not always so
 // marked by compilers.  Mark manually here so we can optimize.
 if (strcmp(secname, ".debug_str") == 0)
   {
     sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
     entsize = 1;
   }

 this->update_flags_for_input_section(sh_flags);
 this->set_entsize(entsize);

 // If this is a SHF_MERGE section, we pass all the input sections to
 // a Output_data_merge.  We don't try to handle relocations for such
 // a section.  We don't try to handle empty merge sections--they
 // mess up the mappings, and are useless anyhow.
 // FIXME: Need to handle merge sections during incremental update.
 if ((sh_flags & elfcpp::SHF_MERGE) != 0
     && reloc_shndx == 0
     && shdr.get_sh_size() > 0
     && !parameters->incremental())
   {
     // Keep information about merged input sections for rebuilding fast
     // lookup maps if we have sections-script or we do relaxation.
     bool keeps_input_sections = (this->always_keeps_input_sections_
                                  || have_sections_script
                                  || parameters->target().may_relax());

     if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
                                       addralign, keeps_input_sections))
       {
         // Tell the relocation routines that they need to call the
         // output_offset method to determine the final address.
         return -1;
       }
   }

 off_t offset_in_section;

 if (this->has_fixed_layout())
   {
     // For incremental updates, find a chunk of unused space in the section.
     offset_in_section = this->free_list_.allocate(input_section_size,
                                                   addralign, 0);
     if (offset_in_section == -1)
       gold_fallback(_("out of patch space in section %s; "
                       "relink with --incremental-full"),
                     this->name());
     return offset_in_section;
   }

 offset_in_section = this->current_data_size_for_child();
 off_t aligned_offset_in_section = align_address(offset_in_section,
                                                 addralign);
 this->set_current_data_size_for_child(aligned_offset_in_section
                                       + input_section_size);

 // Determine if we want to delay code-fill generation until the output
 // section is written.  When the target is relaxing, we want to delay fill
 // generating to avoid adjusting them during relaxation.  Also, if we are
 // sorting input sections we must delay fill generation.
 if (!this->generate_code_fills_at_write_
     && !have_sections_script
     && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
     && parameters->target().has_code_fill()
     && (parameters->target().may_relax()
         || layout->is_section_ordering_specified()))
   {
     gold_assert(this->fills_.empty());
     this->generate_code_fills_at_write_ = true;
   }

 if (aligned_offset_in_section > offset_in_section
     && !this->generate_code_fills_at_write_
     && !have_sections_script
     && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
     && parameters->target().has_code_fill())
   {
     // We need to add some fill data.  Using fill_list_ when
     // possible is an optimization, since we will often have fill
     // sections without input sections.
     off_t fill_len = aligned_offset_in_section - offset_in_section;
     if (this->input_sections_.empty())
       this->fills_.push_back(Fill(offset_in_section, fill_len));
     else
       {
         std::string fill_data(parameters->target().code_fill(fill_len));
         Output_data_const* odc = new Output_data_const(fill_data, 1);
         this->input_sections_.push_back(Input_section(odc));
       }
   }

 // We need to keep track of this section if we are already keeping
 // track of sections, or if we are relaxing.  Also, if this is a
 // section which requires sorting, or which may require sorting in
 // the future, we keep track of the sections.  If the
 // --section-ordering-file option is used to specify the order of
 // sections, we need to keep track of sections.
 if (this->always_keeps_input_sections_
     || have_sections_script
     || !this->input_sections_.empty()
     || this->may_sort_attached_input_sections()
     || this->must_sort_attached_input_sections()
     || parameters->options().user_set_Map()
     || parameters->target().may_relax()
     || layout->is_section_ordering_specified())
   {
     Input_section isecn(object, shndx, input_section_size, addralign);
     /* If section ordering is requested by specifying a ordering file,
        using --section-ordering-file, match the section name with
        a pattern.  */
     if (parameters->options().section_ordering_file())
       {
         unsigned int section_order_index =
           layout->find_section_order_index(std::string(secname));
         if (section_order_index != 0)
           {
             isecn.set_section_order_index(section_order_index);
             this->set_input_section_order_specified();
           }
       }
     this->input_sections_.push_back(isecn);
   }

 return aligned_offset_in_section;
}

// Add arbitrary data to an output section.

void
Output_section::add_output_section_data(Output_section_data* posd)
{
 Input_section inp(posd);
 this->add_output_section_data(&inp);

 if (posd->is_data_size_valid())
   {
     off_t offset_in_section;
     if (this->has_fixed_layout())
       {
         // For incremental updates, find a chunk of unused space.
         offset_in_section = this->free_list_.allocate(posd->data_size(),
                                                       posd->addralign(), 0);
         if (offset_in_section == -1)
           gold_fallback(_("out of patch space in section %s; "
                           "relink with --incremental-full"),
                         this->name());
         // Finalize the address and offset now.
         uint64_t addr = this->address();
         off_t offset = this->offset();
         posd->set_address_and_file_offset(addr + offset_in_section,
                                           offset + offset_in_section);
       }
     else
       {
         offset_in_section = this->current_data_size_for_child();
         off_t aligned_offset_in_section = align_address(offset_in_section,
                                                         posd->addralign());
         this->set_current_data_size_for_child(aligned_offset_in_section
                                               + posd->data_size());
       }
   }
 else if (this->has_fixed_layout())
   {
     // For incremental updates, arrange for the data to have a fixed layout.
     // This will mean that additions to the data must be allocated from
     // free space within the containing output section.
     uint64_t addr = this->address();
     posd->set_address(addr);
     posd->set_file_offset(0);
     // FIXME: This should eventually be unreachable.
     // gold_unreachable();
   }
}

// Add a relaxed input section.

void
Output_section::add_relaxed_input_section(Layout* layout,
                                         Output_relaxed_input_section* poris,
                                         const std::string& name)
{
 Input_section inp(poris);

 // If the --section-ordering-file option is used to specify the order of
 // sections, we need to keep track of sections.
 if (layout->is_section_ordering_specified())
   {
     unsigned int section_order_index =
       layout->find_section_order_index(name);
     if (section_order_index != 0)
       {
         inp.set_section_order_index(section_order_index);
         this->set_input_section_order_specified();
       }
   }

 this->add_output_section_data(&inp);
 if (this->lookup_maps_->is_valid())
   this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
                                                 poris->shndx(), poris);

 // For a relaxed section, we use the current data size.  Linker scripts
 // get all the input sections, including relaxed one from an output
 // section and add them back to the same output section to compute the
 // output section size.  If we do not account for sizes of relaxed input
 // sections, an output section would be incorrectly sized.
 off_t offset_in_section = this->current_data_size_for_child();
 off_t aligned_offset_in_section = align_address(offset_in_section,
                                                 poris->addralign());
 this->set_current_data_size_for_child(aligned_offset_in_section
                                       + poris->current_data_size());
}

// Add arbitrary data to an output section by Input_section.

void
Output_section::add_output_section_data(Input_section* inp)
{
 if (this->input_sections_.empty())
   this->first_input_offset_ = this->current_data_size_for_child();

 this->input_sections_.push_back(*inp);

 uint64_t addralign = inp->addralign();
 if (addralign > this->addralign_)
   this->addralign_ = addralign;

 inp->set_output_section(this);
}

// Add a merge section to an output section.

void
Output_section::add_output_merge_section(Output_section_data* posd,
                                        bool is_string, uint64_t entsize)
{
 Input_section inp(posd, is_string, entsize);
 this->add_output_section_data(&inp);
}

// Add an input section to a SHF_MERGE section.

bool
Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
                                       uint64_t flags, uint64_t entsize,
                                       uint64_t addralign,
                                       bool keeps_input_sections)
{
 // We cannot merge sections with entsize == 0.
 if (entsize == 0)
   return false;

 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;

 // We cannot restore merged input section states.
 gold_assert(this->checkpoint_ == NULL);

 // Look up merge sections by required properties.
 // Currently, we only invalidate the lookup maps in script processing
 // and relaxation.  We should not have done either when we reach here.
 // So we assume that the lookup maps are valid to simply code.
 gold_assert(this->lookup_maps_->is_valid());
 Merge_section_properties msp(is_string, entsize, addralign);
 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
 bool is_new = false;
 if (pomb != NULL)
   {
     gold_assert(pomb->is_string() == is_string
                 && pomb->entsize() == entsize
                 && pomb->addralign() == addralign);
   }
 else
   {
     // Create a new Output_merge_data or Output_merge_string_data.
     if (!is_string)
       pomb = new Output_merge_data(entsize, addralign);
     else
       {
         switch (entsize)
           {
           case 1:
             pomb = new Output_merge_string<char>(addralign);
             break;
           case 2:
             pomb = new Output_merge_string<char16_t>(addralign);
             break;
           case 4:
             pomb = new Output_merge_string<char32_t>(addralign);
             break;
           default:
             return false;
           }
       }
     // If we need to do script processing or relaxation, we need to keep
     // the original input sections to rebuild the fast lookup maps.
     if (keeps_input_sections)
       pomb->set_keeps_input_sections();
     is_new = true;
   }

 if (pomb->add_input_section(object, shndx))
   {
     // Add new merge section to this output section and link merge
     // section properties to new merge section in map.
     if (is_new)
       {
         this->add_output_merge_section(pomb, is_string, entsize);
         this->lookup_maps_->add_merge_section(msp, pomb);
       }

     return true;
   }
 else
   {
     // If add_input_section failed, delete new merge section to avoid
     // exporting empty merge sections in Output_section::get_input_section.
     if (is_new)
       delete pomb;
     return false;
   }
}

// Build a relaxation map to speed up relaxation of existing input sections.
// Look up to the first LIMIT elements in INPUT_SECTIONS.

void
Output_section::build_relaxation_map(
 const Input_section_list& input_sections,
 size_t limit,
 Relaxation_map* relaxation_map) const
{
 for (size_t i = 0; i < limit; ++i)
   {
     const Input_section& is(input_sections[i]);
     if (is.is_input_section() || is.is_relaxed_input_section())
       {
         Section_id sid(is.relobj(), is.shndx());
         (*relaxation_map)[sid] = i;
       }
   }
}

// Convert regular input sections in INPUT_SECTIONS into relaxed input
// sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id
// indices of INPUT_SECTIONS.

void
Output_section::convert_input_sections_in_list_to_relaxed_sections(
 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
 const Relaxation_map& map,
 Input_section_list* input_sections)
{
 for (size_t i = 0; i < relaxed_sections.size(); ++i)
   {
     Output_relaxed_input_section* poris = relaxed_sections[i];
     Section_id sid(poris->relobj(), poris->shndx());
     Relaxation_map::const_iterator p = map.find(sid);
     gold_assert(p != map.end());
     gold_assert((*input_sections)[p->second].is_input_section());

     // Remember section order index of original input section
     // if it is set.  Copy it to the relaxed input section.
     unsigned int soi =
       (*input_sections)[p->second].section_order_index();
     (*input_sections)[p->second] = Input_section(poris);
     (*input_sections)[p->second].set_section_order_index(soi);
   }
}

// Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
// is a vector of pointers to Output_relaxed_input_section or its derived
// classes.  The relaxed sections must correspond to existing input sections.

void
Output_section::convert_input_sections_to_relaxed_sections(
 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
{
 gold_assert(parameters->target().may_relax());

 // We want to make sure that restore_states does not undo the effect of
 // this.  If there is no checkpoint active, just search the current
 // input section list and replace the sections there.  If there is
 // a checkpoint, also replace the sections there.

 // By default, we look at the whole list.
 size_t limit = this->input_sections_.size();

 if (this->checkpoint_ != NULL)
   {
     // Replace input sections with relaxed input section in the saved
     // copy of the input section list.
     if (this->checkpoint_->input_sections_saved())
       {
         Relaxation_map map;
         this->build_relaxation_map(
                   *(this->checkpoint_->input_sections()),
                   this->checkpoint_->input_sections()->size(),
                   &map);
         this->convert_input_sections_in_list_to_relaxed_sections(
                   relaxed_sections,
                   map,
                   this->checkpoint_->input_sections());
       }
     else
       {
         // We have not copied the input section list yet.  Instead, just
         // look at the portion that would be saved.
         limit = this->checkpoint_->input_sections_size();
       }
   }

 // Convert input sections in input_section_list.
 Relaxation_map map;
 this->build_relaxation_map(this->input_sections_, limit, &map);
 this->convert_input_sections_in_list_to_relaxed_sections(
           relaxed_sections,
           map,
           &this->input_sections_);

 // Update fast look-up map.
 if (this->lookup_maps_->is_valid())
   for (size_t i = 0; i < relaxed_sections.size(); ++i)
     {
       Output_relaxed_input_section* poris = relaxed_sections[i];
       this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
                                                     poris->shndx(), poris);
     }
}

// Update the output section flags based on input section flags.

void
Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
{
 // If we created the section with SHF_ALLOC clear, we set the
 // address.  If we are now setting the SHF_ALLOC flag, we need to
 // undo that.
 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
     && (flags & elfcpp::SHF_ALLOC) != 0)
   this->mark_address_invalid();

 this->flags_ |= (flags
                  & (elfcpp::SHF_WRITE
                     | elfcpp::SHF_ALLOC
                     | elfcpp::SHF_EXECINSTR));

 if ((flags & elfcpp::SHF_MERGE) == 0)
   this->flags_ &=~ elfcpp::SHF_MERGE;
 else
   {
     if (this->current_data_size_for_child() == 0)
       this->flags_ |= elfcpp::SHF_MERGE;
   }

 if ((flags & elfcpp::SHF_STRINGS) == 0)
   this->flags_ &=~ elfcpp::SHF_STRINGS;
 else
   {
     if (this->current_data_size_for_child() == 0)
       this->flags_ |= elfcpp::SHF_STRINGS;
   }
}

// Find the merge section into which an input section with index SHNDX in
// OBJECT has been added.  Return NULL if none found.

const Output_section_data*
Output_section::find_merge_section(const Relobj* object,
                                  unsigned int shndx) const
{
 return object->find_merge_section(shndx);
}

// Build the lookup maps for relaxed sections.  This needs
// to be declared as a const method so that it is callable with a const
// Output_section pointer.  The method only updates states of the maps.

void
Output_section::build_lookup_maps() const
{
 this->lookup_maps_->clear();
 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     if (p->is_relaxed_input_section())
       {
         Output_relaxed_input_section* poris = p->relaxed_input_section();
         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
                                                       poris->shndx(), poris);
       }
   }
}

// Find an relaxed input section corresponding to an input section
// in OBJECT with index SHNDX.

const Output_relaxed_input_section*
Output_section::find_relaxed_input_section(const Relobj* object,
                                          unsigned int shndx) const
{
 if (!this->lookup_maps_->is_valid())
   this->build_lookup_maps();
 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
}

// Given an address OFFSET relative to the start of input section
// SHNDX in OBJECT, return whether this address is being included in
// the final link.  This should only be called if SHNDX in OBJECT has
// a special mapping.

bool
Output_section::is_input_address_mapped(const Relobj* object,
                                       unsigned int shndx,
                                       off_t offset) const
{
 // Look at the Output_section_data_maps first.
 const Output_section_data* posd = this->find_merge_section(object, shndx);
 if (posd == NULL)
   posd = this->find_relaxed_input_section(object, shndx);

 if (posd != NULL)
   {
     section_offset_type output_offset;
     bool found = posd->output_offset(object, shndx, offset, &output_offset);
     // By default we assume that the address is mapped. See comment at the
     // end.
     if (!found)
       return true;
     return output_offset != -1;
   }

 // Fall back to the slow look-up.
 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     section_offset_type output_offset;
     if (p->output_offset(object, shndx, offset, &output_offset))
       return output_offset != -1;
   }

 // By default we assume that the address is mapped.  This should
 // only be called after we have passed all sections to Layout.  At
 // that point we should know what we are discarding.
 return true;
}

// Given an address OFFSET relative to the start of input section
// SHNDX in object OBJECT, return the output offset relative to the
// start of the input section in the output section.  This should only
// be called if SHNDX in OBJECT has a special mapping.

section_offset_type
Output_section::output_offset(const Relobj* object, unsigned int shndx,
                             section_offset_type offset) const
{
 // This can only be called meaningfully when we know the data size
 // of this.
 gold_assert(this->is_data_size_valid());

 // Look at the Output_section_data_maps first.
 const Output_section_data* posd = this->find_merge_section(object, shndx);
 if (posd == NULL)
   posd = this->find_relaxed_input_section(object, shndx);
 if (posd != NULL)
   {
     section_offset_type output_offset;
     bool found = posd->output_offset(object, shndx, offset, &output_offset);
     gold_assert(found);
     return output_offset;
   }

 // Fall back to the slow look-up.
 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     section_offset_type output_offset;
     if (p->output_offset(object, shndx, offset, &output_offset))
       return output_offset;
   }
 gold_unreachable();
}

// Return the output virtual address of OFFSET relative to the start
// of input section SHNDX in object OBJECT.

uint64_t
Output_section::output_address(const Relobj* object, unsigned int shndx,
                              off_t offset) const
{
 uint64_t addr = this->address() + this->first_input_offset_;

 // Look at the Output_section_data_maps first.
 const Output_section_data* posd = this->find_merge_section(object, shndx);
 if (posd == NULL)
   posd = this->find_relaxed_input_section(object, shndx);
 if (posd != NULL && posd->is_address_valid())
   {
     section_offset_type output_offset;
     bool found = posd->output_offset(object, shndx, offset, &output_offset);
     gold_assert(found);
     return posd->address() + output_offset;
   }

 // Fall back to the slow look-up.
 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     addr = align_address(addr, p->addralign());
     section_offset_type output_offset;
     if (p->output_offset(object, shndx, offset, &output_offset))
       {
         if (output_offset == -1)
           return -1ULL;
         return addr + output_offset;
       }
     addr += p->data_size();
   }

 // If we get here, it means that we don't know the mapping for this
 // input section.  This might happen in principle if
 // add_input_section were called before add_output_section_data.
 // But it should never actually happen.

 gold_unreachable();
}

// Find the output address of the start of the merged section for
// input section SHNDX in object OBJECT.

bool
Output_section::find_starting_output_address(const Relobj* object,
                                            unsigned int shndx,
                                            uint64_t* paddr) const
{
 const Output_section_data* data = this->find_merge_section(object, shndx);
 if (data == NULL)
   return false;

 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
 // Looking up the merge section map does not always work as we sometimes
 // find a merge section without its address set.
 uint64_t addr = this->address() + this->first_input_offset_;
 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     addr = align_address(addr, p->addralign());

     // It would be nice if we could use the existing output_offset
     // method to get the output offset of input offset 0.
     // Unfortunately we don't know for sure that input offset 0 is
     // mapped at all.
     if (!p->is_input_section() && p->output_section_data() == data)
       {
         *paddr = addr;
         return true;
       }

     addr += p->data_size();
   }

 // We couldn't find a merge output section for this input section.
 return false;
}

// Update the data size of an Output_section.

void
Output_section::update_data_size()
{
 if (this->input_sections_.empty())
     return;

 if (this->must_sort_attached_input_sections()
     || this->input_section_order_specified())
   this->sort_attached_input_sections();

 off_t off = this->first_input_offset_;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     off = align_address(off, p->addralign());
     off += p->current_data_size();
   }

 this->set_current_data_size_for_child(off);
}

// Set the data size of an Output_section.  This is where we handle
// setting the addresses of any Output_section_data objects.

void
Output_section::set_final_data_size()
{
 off_t data_size;

 if (this->input_sections_.empty())
   data_size = this->current_data_size_for_child();
 else
   {
     if (this->must_sort_attached_input_sections()
         || this->input_section_order_specified())
       this->sort_attached_input_sections();

     uint64_t address = this->address();
     off_t startoff = this->offset();
     off_t off = this->first_input_offset_;
     for (Input_section_list::iterator p = this->input_sections_.begin();
          p != this->input_sections_.end();
          ++p)
       {
         off = align_address(off, p->addralign());
         p->set_address_and_file_offset(address + off, startoff + off,
                                        startoff);
         off += p->data_size();
       }
     data_size = off;
   }

 // For full incremental links, we want to allocate some patch space
 // in most sections for subsequent incremental updates.
 if (this->is_patch_space_allowed_ && parameters->incremental_full())
   {
     double pct = parameters->options().incremental_patch();
     size_t extra = static_cast<size_t>(data_size * pct);
     if (this->free_space_fill_ != NULL
         && this->free_space_fill_->minimum_hole_size() > extra)
       extra = this->free_space_fill_->minimum_hole_size();
     off_t new_size = align_address(data_size + extra, this->addralign());
     this->patch_space_ = new_size - data_size;
     gold_debug(DEBUG_INCREMENTAL,
                "set_final_data_size: %08lx + %08lx: section %s",
                static_cast<long>(data_size),
                static_cast<long>(this->patch_space_),
                this->name());
     data_size = new_size;
   }

 this->set_data_size(data_size);
}

// Reset the address and file offset.

void
Output_section::do_reset_address_and_file_offset()
{
 // An unallocated section has no address.  Forcing this means that
 // we don't need special treatment for symbols defined in debug
 // sections.  We do the same in the constructor.  This does not
 // apply to NOLOAD sections though.
 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
    this->set_address(0);

 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   p->reset_address_and_file_offset();

 // Remove any patch space that was added in set_final_data_size.
 if (this->patch_space_ > 0)
   {
     this->set_current_data_size_for_child(this->current_data_size_for_child()
                                           - this->patch_space_);
     this->patch_space_ = 0;
   }
}

// Return true if address and file offset have the values after reset.

bool
Output_section::do_address_and_file_offset_have_reset_values() const
{
 if (this->is_offset_valid())
   return false;

 // An unallocated section has address 0 after its construction or a reset.
 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
   return this->is_address_valid() && this->address() == 0;
 else
   return !this->is_address_valid();
}

// Set the TLS offset.  Called only for SHT_TLS sections.

void
Output_section::do_set_tls_offset(uint64_t tls_base)
{
 this->tls_offset_ = this->address() - tls_base;
}

// In a few cases we need to sort the input sections attached to an
// output section.  This is used to implement the type of constructor
// priority ordering implemented by the GNU linker, in which the
// priority becomes part of the section name and the sections are
// sorted by name.  We only do this for an output section if we see an
// attached input section matching ".ctors.*", ".dtors.*",
// ".init_array.*" or ".fini_array.*".

class Output_section::Input_section_sort_entry
{
public:
 Input_section_sort_entry()
   : input_section_(), index_(-1U), section_name_()
 { }

 Input_section_sort_entry(const Input_section& input_section,
                          unsigned int index,
                          bool must_sort_attached_input_sections,
                          const char* output_section_name)
   : input_section_(input_section), index_(index), section_name_()
 {
   if ((input_section.is_input_section()
        || input_section.is_relaxed_input_section())
       && must_sort_attached_input_sections)
     {
       // This is only called single-threaded from Layout::finalize,
       // so it is OK to lock.  Unfortunately we have no way to pass
       // in a Task token.
       const Task* dummy_task = reinterpret_cast<const Task*>(-1);
       Object* obj = (input_section.is_input_section()
                      ? input_section.relobj()
                      : input_section.relaxed_input_section()->relobj());
       Task_lock_obj<Object> tl(dummy_task, obj);

       // This is a slow operation, which should be cached in
       // Layout::layout if this becomes a speed problem.
       this->section_name_ = obj->section_name(input_section.shndx());
     }
   else if (input_section.is_output_section_data()
            && must_sort_attached_input_sections)
     {
       // For linker-generated sections, use the output section name.
       this->section_name_.assign(output_section_name);
     }
 }

 // Return the Input_section.
 const Input_section&
 input_section() const
 {
   gold_assert(this->index_ != -1U);
   return this->input_section_;
 }

 // The index of this entry in the original list.  This is used to
 // make the sort stable.
 unsigned int
 index() const
 {
   gold_assert(this->index_ != -1U);
   return this->index_;
 }

 // The section name.
 const std::string&
 section_name() const
 {
   return this->section_name_;
 }

 // Return true if the section name has a priority.  This is assumed
 // to be true if it has a dot after the initial dot.
 bool
 has_priority() const
 {
   return this->section_name_.find('.', 1) != std::string::npos;
 }

 // Return the priority.  Believe it or not, gcc encodes the priority
 // differently for .ctors/.dtors and .init_array/.fini_array
 // sections.
 unsigned int
 get_priority() const
 {
   bool is_ctors;
   if (is_prefix_of(".ctors.", this->section_name_.c_str())
       || is_prefix_of(".dtors.", this->section_name_.c_str()))
     is_ctors = true;
   else if (is_prefix_of(".init_array.", this->section_name_.c_str())
            || is_prefix_of(".fini_array.", this->section_name_.c_str()))
     is_ctors = false;
   else
     return 0;
   char* end;
   unsigned long prio = strtoul((this->section_name_.c_str()
                                 + (is_ctors ? 7 : 12)),
                                &end, 10);
   if (*end != '\0')
     return 0;
   else if (is_ctors)
     return 65535 - prio;
   else
     return prio;
 }

 // Return true if this an input file whose base name matches
 // FILE_NAME.  The base name must have an extension of ".o", and
 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
 // This is to match crtbegin.o as well as crtbeginS.o without
 // getting confused by other possibilities.  Overall matching the
 // file name this way is a dreadful hack, but the GNU linker does it
 // in order to better support gcc, and we need to be compatible.
 bool
 match_file_name(const char* file_name) const
 {
   if (this->input_section_.is_output_section_data())
     return false;
   return Layout::match_file_name(this->input_section_.relobj(), file_name);
 }

 // Returns 1 if THIS should appear before S in section order, -1 if S
 // appears before THIS and 0 if they are not comparable.
 int
 compare_section_ordering(const Input_section_sort_entry& s) const
 {
   unsigned int this_secn_index = this->input_section_.section_order_index();
   unsigned int s_secn_index = s.input_section().section_order_index();
   if (this_secn_index > 0 && s_secn_index > 0)
     {
       if (this_secn_index < s_secn_index)
         return 1;
       else if (this_secn_index > s_secn_index)
         return -1;
     }
   return 0;
 }

private:
 // The Input_section we are sorting.
 Input_section input_section_;
 // The index of this Input_section in the original list.
 unsigned int index_;
 // The section name if there is one.
 std::string section_name_;
};

// Return true if S1 should come before S2 in the output section.

bool
Output_section::Input_section_sort_compare::operator()(
   const Output_section::Input_section_sort_entry& s1,
   const Output_section::Input_section_sort_entry& s2) const
{
 // crtbegin.o must come first.
 bool s1_begin = s1.match_file_name("crtbegin");
 bool s2_begin = s2.match_file_name("crtbegin");
 if (s1_begin || s2_begin)
   {
     if (!s1_begin)
       return false;
     if (!s2_begin)
       return true;
     return s1.index() < s2.index();
   }

 // crtend.o must come last.
 bool s1_end = s1.match_file_name("crtend");
 bool s2_end = s2.match_file_name("crtend");
 if (s1_end || s2_end)
   {
     if (!s1_end)
       return true;
     if (!s2_end)
       return false;
     return s1.index() < s2.index();
   }

 // A section with a priority follows a section without a priority.
 bool s1_has_priority = s1.has_priority();
 bool s2_has_priority = s2.has_priority();
 if (s1_has_priority && !s2_has_priority)
   return false;
 if (!s1_has_priority && s2_has_priority)
   return true;

 // Check if a section order exists for these sections through a section
 // ordering file.  If sequence_num is 0, an order does not exist.
 int sequence_num = s1.compare_section_ordering(s2);
 if (sequence_num != 0)
   return sequence_num == 1;

 // Otherwise we sort by name.
 int compare = s1.section_name().compare(s2.section_name());
 if (compare != 0)
   return compare < 0;

 // Otherwise we keep the input order.
 return s1.index() < s2.index();
}

// Return true if S1 should come before S2 in an .init_array or .fini_array
// output section.

bool
Output_section::Input_section_sort_init_fini_compare::operator()(
   const Output_section::Input_section_sort_entry& s1,
   const Output_section::Input_section_sort_entry& s2) const
{
 // A section without a priority follows a section with a priority.
 // This is the reverse of .ctors and .dtors sections.
 bool s1_has_priority = s1.has_priority();
 bool s2_has_priority = s2.has_priority();
 if (s1_has_priority && !s2_has_priority)
   return true;
 if (!s1_has_priority && s2_has_priority)
   return false;

 // .ctors and .dtors sections without priority come after
 // .init_array and .fini_array sections without priority.
 if (!s1_has_priority
     && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
     && s1.section_name() != s2.section_name())
   return false;
 if (!s2_has_priority
     && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
     && s2.section_name() != s1.section_name())
   return true;

 // Sort by priority if we can.
 if (s1_has_priority)
   {
     unsigned int s1_prio = s1.get_priority();
     unsigned int s2_prio = s2.get_priority();
     if (s1_prio < s2_prio)
       return true;
     else if (s1_prio > s2_prio)
       return false;
   }

 // Check if a section order exists for these sections through a section
 // ordering file.  If sequence_num is 0, an order does not exist.
 int sequence_num = s1.compare_section_ordering(s2);
 if (sequence_num != 0)
   return sequence_num == 1;

 // Otherwise we sort by name.
 int compare = s1.section_name().compare(s2.section_name());
 if (compare != 0)
   return compare < 0;

 // Otherwise we keep the input order.
 return s1.index() < s2.index();
}

// Return true if S1 should come before S2.  Sections that do not match
// any pattern in the section ordering file are placed ahead of the sections
// that match some pattern.

bool
Output_section::Input_section_sort_section_order_index_compare::operator()(
   const Output_section::Input_section_sort_entry& s1,
   const Output_section::Input_section_sort_entry& s2) const
{
 unsigned int s1_secn_index = s1.input_section().section_order_index();
 unsigned int s2_secn_index = s2.input_section().section_order_index();

 // Keep input order if section ordering cannot determine order.
 if (s1_secn_index == s2_secn_index)
   return s1.index() < s2.index();

 return s1_secn_index < s2_secn_index;
}

// Return true if S1 should come before S2.  This is the sort comparison
// function for .text to sort sections with prefixes
// .text.{unlikely,exit,startup,hot} before other sections.

bool
Output_section::Input_section_sort_section_prefix_special_ordering_compare
 ::operator()(
   const Output_section::Input_section_sort_entry& s1,
   const Output_section::Input_section_sort_entry& s2) const
{
 // Some input section names have special ordering requirements.
 const char *s1_section_name = s1.section_name().c_str();
 const char *s2_section_name = s2.section_name().c_str();
 int o1 = Layout::special_ordering_of_input_section(s1_section_name);
 int o2 = Layout::special_ordering_of_input_section(s2_section_name);
 if (o1 != o2)
   {
     if (o1 < 0)
       return false;
     else if (o2 < 0)
       return true;
     else
       return o1 < o2;
   }
 else if (is_prefix_of(".text.sorted", s1_section_name))
   return strcmp(s1_section_name, s2_section_name) <= 0;

 // Keep input order otherwise.
 return s1.index() < s2.index();
}

// Return true if S1 should come before S2.  This is the sort comparison
// function for sections to sort them by name.

bool
Output_section::Input_section_sort_section_name_compare
 ::operator()(
   const Output_section::Input_section_sort_entry& s1,
   const Output_section::Input_section_sort_entry& s2) const
{
 // We sort by name.
 int compare = s1.section_name().compare(s2.section_name());
 if (compare != 0)
   return compare < 0;

 // Keep input order otherwise.
 return s1.index() < s2.index();
}

// This updates the section order index of input sections according to the
// the order specified in the mapping from Section id to order index.

void
Output_section::update_section_layout(
 const Section_layout_order* order_map)
{
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     if (p->is_input_section()
         || p->is_relaxed_input_section())
       {
         Relobj* obj = (p->is_input_section()
                        ? p->relobj()
                        : p->relaxed_input_section()->relobj());
         unsigned int shndx = p->shndx();
         Section_layout_order::const_iterator it
           = order_map->find(Section_id(obj, shndx));
         if (it == order_map->end())
           continue;
         unsigned int section_order_index = it->second;
         if (section_order_index != 0)
           {
             p->set_section_order_index(section_order_index);
             this->set_input_section_order_specified();
           }
       }
   }
}

// Sort the input sections attached to an output section.

void
Output_section::sort_attached_input_sections()
{
 if (this->attached_input_sections_are_sorted_)
   return;

 if (this->checkpoint_ != NULL
     && !this->checkpoint_->input_sections_saved())
   this->checkpoint_->save_input_sections();

 // The only thing we know about an input section is the object and
 // the section index.  We need the section name.  Recomputing this
 // is slow but this is an unusual case.  If this becomes a speed
 // problem we can cache the names as required in Layout::layout.

 // We start by building a larger vector holding a copy of each
 // Input_section, plus its current index in the list and its name.
 std::vector<Input_section_sort_entry> sort_list;

 unsigned int i = 0;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p, ++i)
     sort_list.push_back(Input_section_sort_entry(*p, i,
                           this->must_sort_attached_input_sections(),
                           this->name()));

 // Sort the input sections.
 if (this->must_sort_attached_input_sections())
   {
     if (this->type() == elfcpp::SHT_PREINIT_ARRAY
         || this->type() == elfcpp::SHT_INIT_ARRAY
         || this->type() == elfcpp::SHT_FINI_ARRAY)
       std::sort(sort_list.begin(), sort_list.end(),
                 Input_section_sort_init_fini_compare());
     else if (strcmp(parameters->options().sort_section(), "name") == 0)
       std::sort(sort_list.begin(), sort_list.end(),
                 Input_section_sort_section_name_compare());
     else if (strcmp(this->name(), ".text") == 0)
       std::sort(sort_list.begin(), sort_list.end(),
                 Input_section_sort_section_prefix_special_ordering_compare());
     else
       std::sort(sort_list.begin(), sort_list.end(),
                 Input_section_sort_compare());
   }
 else
   {
     gold_assert(this->input_section_order_specified());
     std::sort(sort_list.begin(), sort_list.end(),
               Input_section_sort_section_order_index_compare());
   }

 // Copy the sorted input sections back to our list.
 this->input_sections_.clear();
 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
      p != sort_list.end();
      ++p)
   this->input_sections_.push_back(p->input_section());
 sort_list.clear();

 // Remember that we sorted the input sections, since we might get
 // called again.
 this->attached_input_sections_are_sorted_ = true;
}

// Write the section header to *OSHDR.

template<int size, bool big_endian>
void
Output_section::write_header(const Layout* layout,
                            const Stringpool* secnamepool,
                            elfcpp::Shdr_write<size, big_endian>* oshdr) const
{
 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
 oshdr->put_sh_type(this->type_);

 elfcpp::Elf_Xword flags = this->flags_;
 if (this->info_section_ != NULL && this->info_uses_section_index_)
   flags |= elfcpp::SHF_INFO_LINK;
 oshdr->put_sh_flags(flags);

 oshdr->put_sh_addr(this->address());
 oshdr->put_sh_offset(this->offset());
 oshdr->put_sh_size(this->data_size());
 if (this->link_section_ != NULL)
   oshdr->put_sh_link(this->link_section_->out_shndx());
 else if (this->should_link_to_symtab_)
   oshdr->put_sh_link(layout->symtab_section_shndx());
 else if (this->should_link_to_dynsym_)
   oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
 else
   oshdr->put_sh_link(this->link_);

 elfcpp::Elf_Word info;
 if (this->info_section_ != NULL)
   {
     if (this->info_uses_section_index_)
       info = this->info_section_->out_shndx();
     else
       info = this->info_section_->symtab_index();
   }
 else if (this->info_symndx_ != NULL)
   info = this->info_symndx_->symtab_index();
 else
   info = this->info_;
 oshdr->put_sh_info(info);

 oshdr->put_sh_addralign(this->addralign_);
 oshdr->put_sh_entsize(this->entsize_);
}

// Write out the data.  For input sections the data is written out by
// Object::relocate, but we have to handle Output_section_data objects
// here.

void
Output_section::do_write(Output_file* of)
{
 gold_assert(!this->requires_postprocessing());

 // If the target performs relaxation, we delay filler generation until now.
 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());

 off_t output_section_file_offset = this->offset();
 for (Fill_list::iterator p = this->fills_.begin();
      p != this->fills_.end();
      ++p)
   {
     std::string fill_data(parameters->target().code_fill(p->length()));
     of->write(output_section_file_offset + p->section_offset(),
               fill_data.data(), fill_data.size());
   }

 off_t off = this->offset() + this->first_input_offset_;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     off_t aligned_off = align_address(off, p->addralign());
     if (this->generate_code_fills_at_write_ && (off != aligned_off))
       {
         size_t fill_len = aligned_off - off;
         std::string fill_data(parameters->target().code_fill(fill_len));
         of->write(off, fill_data.data(), fill_data.size());
       }

     p->write(of);
     off = aligned_off + p->data_size();
   }

 // For incremental links, fill in unused chunks in debug sections
 // with dummy compilation unit headers.
 if (this->free_space_fill_ != NULL)
   {
     for (Free_list::Const_iterator p = this->free_list_.begin();
          p != this->free_list_.end();
          ++p)
       {
         off_t off = p->start_;
         size_t len = p->end_ - off;
         this->free_space_fill_->write(of, this->offset() + off, len);
       }
     if (this->patch_space_ > 0)
       {
         off_t off = this->current_data_size_for_child() - this->patch_space_;
         this->free_space_fill_->write(of, this->offset() + off,
                                       this->patch_space_);
       }
   }
}

// If a section requires postprocessing, create the buffer to use.

void
Output_section::create_postprocessing_buffer()
{
 gold_assert(this->requires_postprocessing());

 if (this->postprocessing_buffer_ != NULL)
   return;

 if (!this->input_sections_.empty())
   {
     off_t off = this->first_input_offset_;
     for (Input_section_list::iterator p = this->input_sections_.begin();
          p != this->input_sections_.end();
          ++p)
       {
         off = align_address(off, p->addralign());
         p->finalize_data_size();
         off += p->data_size();
       }
     this->set_current_data_size_for_child(off);
   }

 off_t buffer_size = this->current_data_size_for_child();
 this->postprocessing_buffer_ = new unsigned char[buffer_size];
}

// Write all the data of an Output_section into the postprocessing
// buffer.  This is used for sections which require postprocessing,
// such as compression.  Input sections are handled by
// Object::Relocate.

void
Output_section::write_to_postprocessing_buffer()
{
 gold_assert(this->requires_postprocessing());

 // If the target performs relaxation, we delay filler generation until now.
 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());

 unsigned char* buffer = this->postprocessing_buffer();
 for (Fill_list::iterator p = this->fills_.begin();
      p != this->fills_.end();
      ++p)
   {
     std::string fill_data(parameters->target().code_fill(p->length()));
     memcpy(buffer + p->section_offset(), fill_data.data(),
            fill_data.size());
   }

 off_t off = this->first_input_offset_;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     off_t aligned_off = align_address(off, p->addralign());
     if (this->generate_code_fills_at_write_ && (off != aligned_off))
       {
         size_t fill_len = aligned_off - off;
         std::string fill_data(parameters->target().code_fill(fill_len));
         memcpy(buffer + off, fill_data.data(), fill_data.size());
       }

     p->write_to_buffer(buffer + aligned_off);
     off = aligned_off + p->data_size();
   }
}

// Get the input sections for linker script processing.  We leave
// behind the Output_section_data entries.  Note that this may be
// slightly incorrect for merge sections.  We will leave them behind,
// but it is possible that the script says that they should follow
// some other input sections, as in:
//    .rodata { *(.rodata) *(.rodata.cst*) }
// For that matter, we don't handle this correctly:
//    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
// With luck this will never matter.

uint64_t
Output_section::get_input_sections(
   uint64_t address,
   const std::string& fill,
   std::list<Input_section>* input_sections)
{
 if (this->checkpoint_ != NULL
     && !this->checkpoint_->input_sections_saved())
   this->checkpoint_->save_input_sections();

 // Invalidate fast look-up maps.
 this->lookup_maps_->invalidate();

 uint64_t orig_address = address;

 address = align_address(address, this->addralign());

 Input_section_list remaining;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     if (p->is_input_section()
         || p->is_relaxed_input_section()
         || p->is_merge_section())
       input_sections->push_back(*p);
     else
       {
         uint64_t aligned_address = align_address(address, p->addralign());
         if (aligned_address != address && !fill.empty())
           {
             section_size_type length =
               convert_to_section_size_type(aligned_address - address);
             std::string this_fill;
             this_fill.reserve(length);
             while (this_fill.length() + fill.length() <= length)
               this_fill += fill;
             if (this_fill.length() < length)
               this_fill.append(fill, 0, length - this_fill.length());

             Output_section_data* posd = new Output_data_const(this_fill, 0);
             remaining.push_back(Input_section(posd));
           }
         address = aligned_address;

         remaining.push_back(*p);

         p->finalize_data_size();
         address += p->data_size();
       }
   }

 this->input_sections_.swap(remaining);
 this->first_input_offset_ = 0;

 uint64_t data_size = address - orig_address;
 this->set_current_data_size_for_child(data_size);
 return data_size;
}

// Add a script input section.  SIS is an Output_section::Input_section,
// which can be either a plain input section or a special input section like
// a relaxed input section.  For a special input section, its size must be
// finalized.

void
Output_section::add_script_input_section(const Input_section& sis)
{
 uint64_t data_size = sis.data_size();
 uint64_t addralign = sis.addralign();
 if (addralign > this->addralign_)
   this->addralign_ = addralign;

 off_t offset_in_section = this->current_data_size_for_child();
 off_t aligned_offset_in_section = align_address(offset_in_section,
                                                 addralign);

 this->set_current_data_size_for_child(aligned_offset_in_section
                                       + data_size);

 this->input_sections_.push_back(sis);

 // Update fast lookup maps if necessary.
 if (this->lookup_maps_->is_valid())
   {
     if (sis.is_relaxed_input_section())
       {
         Output_relaxed_input_section* poris = sis.relaxed_input_section();
         this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
                                                       poris->shndx(), poris);
       }
   }
}

// Save states for relaxation.

void
Output_section::save_states()
{
 gold_assert(this->checkpoint_ == NULL);
 Checkpoint_output_section* checkpoint =
   new Checkpoint_output_section(this->addralign_, this->flags_,
                                 this->input_sections_,
                                 this->first_input_offset_,
                                 this->attached_input_sections_are_sorted_);
 this->checkpoint_ = checkpoint;
 gold_assert(this->fills_.empty());
}

void
Output_section::discard_states()
{
 gold_assert(this->checkpoint_ != NULL);
 delete this->checkpoint_;
 this->checkpoint_ = NULL;
 gold_assert(this->fills_.empty());

 // Simply invalidate the fast lookup maps since we do not keep
 // track of them.
 this->lookup_maps_->invalidate();
}

void
Output_section::restore_states()
{
 gold_assert(this->checkpoint_ != NULL);
 Checkpoint_output_section* checkpoint = this->checkpoint_;

 this->addralign_ = checkpoint->addralign();
 this->flags_ = checkpoint->flags();
 this->first_input_offset_ = checkpoint->first_input_offset();

 if (!checkpoint->input_sections_saved())
   {
     // If we have not copied the input sections, just resize it.
     size_t old_size = checkpoint->input_sections_size();
     gold_assert(this->input_sections_.size() >= old_size);
     this->input_sections_.resize(old_size);
   }
 else
   {
     // We need to copy the whole list.  This is not efficient for
     // extremely large output with hundreads of thousands of input
     // objects.  We may need to re-think how we should pass sections
     // to scripts.
     this->input_sections_ = *checkpoint->input_sections();
   }

 this->attached_input_sections_are_sorted_ =
   checkpoint->attached_input_sections_are_sorted();

 // Simply invalidate the fast lookup maps since we do not keep
 // track of them.
 this->lookup_maps_->invalidate();
}

// Update the section offsets of input sections in this.  This is required if
// relaxation causes some input sections to change sizes.

void
Output_section::adjust_section_offsets()
{
 if (!this->section_offsets_need_adjustment_)
   return;

 off_t off = 0;
 for (Input_section_list::iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   {
     off = align_address(off, p->addralign());
     if (p->is_input_section())
       p->relobj()->set_section_offset(p->shndx(), off);
     off += p->data_size();
   }

 this->section_offsets_need_adjustment_ = false;
}

// Print to the map file.

void
Output_section::do_print_to_mapfile(Mapfile* mapfile) const
{
 mapfile->print_output_section(this);

 for (Input_section_list::const_iterator p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   p->print_to_mapfile(mapfile);
}

// Print stats for merge sections to stderr.

void
Output_section::print_merge_stats()
{
 Input_section_list::iterator p;
 for (p = this->input_sections_.begin();
      p != this->input_sections_.end();
      ++p)
   p->print_merge_stats(this->name_);
}

// Set a fixed layout for the section.  Used for incremental update links.

void
Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
                                off_t sh_size, uint64_t sh_addralign)
{
 this->addralign_ = sh_addralign;
 this->set_current_data_size(sh_size);
 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
   this->set_address(sh_addr);
 this->set_file_offset(sh_offset);
 this->finalize_data_size();
 this->free_list_.init(sh_size, false);
 this->has_fixed_layout_ = true;
}

// Reserve space within the fixed layout for the section.  Used for
// incremental update links.

void
Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
{
 this->free_list_.remove(sh_offset, sh_offset + sh_size);
}

// Allocate space from the free list for the section.  Used for
// incremental update links.

off_t
Output_section::allocate(off_t len, uint64_t addralign)
{
 return this->free_list_.allocate(len, addralign, 0);
}

// Output segment methods.

Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
 : vaddr_(0),
   paddr_(0),
   memsz_(0),
   align_(0),
   max_align_(0),
   min_p_align_(0),
   offset_(0),
   filesz_(0),
   type_(type),
   flags_(flags),
   is_max_align_known_(false),
   are_addresses_set_(false),
   is_large_data_segment_(false),
   is_unique_segment_(false)
{
 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
 // the flags.
 if (type == elfcpp::PT_TLS)
   this->flags_ = elfcpp::PF_R;
}

// Add an Output_section to a PT_LOAD Output_segment.

void
Output_segment::add_output_section_to_load(Layout* layout,
                                          Output_section* os,
                                          elfcpp::Elf_Word seg_flags)
{
 gold_assert(this->type() == elfcpp::PT_LOAD);
 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
 gold_assert(!this->is_max_align_known_);
 gold_assert(os->is_large_data_section() == this->is_large_data_segment());

 this->update_flags_for_output_section(seg_flags);

 // We don't want to change the ordering if we have a linker script
 // with a SECTIONS clause.
 Output_section_order order = os->order();
 if (layout->script_options()->saw_sections_clause())
   order = static_cast<Output_section_order>(0);
 else
   gold_assert(order != ORDER_INVALID);

 this->output_lists_[order].push_back(os);
}

// Add an Output_section to a non-PT_LOAD Output_segment.

void
Output_segment::add_output_section_to_nonload(Output_section* os,
                                             elfcpp::Elf_Word seg_flags)
{
 gold_assert(this->type() != elfcpp::PT_LOAD);
 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
 gold_assert(!this->is_max_align_known_);

 this->update_flags_for_output_section(seg_flags);

 this->output_lists_[0].push_back(os);
}

// Remove an Output_section from this segment.  It is an error if it
// is not present.

void
Output_segment::remove_output_section(Output_section* os)
{
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     Output_data_list* pdl = &this->output_lists_[i];
     for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
       {
         if (*p == os)
           {
             pdl->erase(p);
             return;
           }
       }
   }
 gold_unreachable();
}

// Add an Output_data (which need not be an Output_section) to the
// start of a segment.

void
Output_segment::add_initial_output_data(Output_data* od)
{
 gold_assert(!this->is_max_align_known_);
 Output_data_list::iterator p = this->output_lists_[0].begin();
 this->output_lists_[0].insert(p, od);
}

// Return true if this segment has any sections which hold actual
// data, rather than being a BSS section.

bool
Output_segment::has_any_data_sections() const
{
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     const Output_data_list* pdl = &this->output_lists_[i];
     for (Output_data_list::const_iterator p = pdl->begin();
          p != pdl->end();
          ++p)
       {
         if (!(*p)->is_section())
           return true;
         if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
           return true;
       }
   }
 return false;
}

// Return whether the first data section (not counting TLS sections)
// is a relro section.

bool
Output_segment::is_first_section_relro() const
{
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     if (i == static_cast<int>(ORDER_TLS_BSS))
       continue;
     const Output_data_list* pdl = &this->output_lists_[i];
     if (!pdl->empty())
       {
         Output_data* p = pdl->front();
         return p->is_section() && p->output_section()->is_relro();
       }
   }
 return false;
}

// Return the maximum alignment of the Output_data in Output_segment.

uint64_t
Output_segment::maximum_alignment()
{
 if (!this->is_max_align_known_)
   {
     for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
       {
         const Output_data_list* pdl = &this->output_lists_[i];
         uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
         if (addralign > this->max_align_)
           this->max_align_ = addralign;
       }
     this->is_max_align_known_ = true;
   }

 return this->max_align_;
}

// Return the maximum alignment of a list of Output_data.

uint64_t
Output_segment::maximum_alignment_list(const Output_data_list* pdl)
{
 uint64_t ret = 0;
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     uint64_t addralign = (*p)->addralign();
     if (addralign > ret)
       ret = addralign;
   }
 return ret;
}

// Return whether this segment has any dynamic relocs.

bool
Output_segment::has_dynamic_reloc() const
{
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
     return true;
 return false;
}

// Return whether this Output_data_list has any dynamic relocs.

bool
Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
{
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   if ((*p)->has_dynamic_reloc())
     return true;
 return false;
}

// Set the section addresses for an Output_segment.  If RESET is true,
// reset the addresses first.  ADDR is the address and *POFF is the
// file offset.  Set the section indexes starting with *PSHNDX.
// INCREASE_RELRO is the size of the portion of the first non-relro
// section that should be included in the PT_GNU_RELRO segment.
// If this segment has relro sections, and has been aligned for
// that purpose, set *HAS_RELRO to TRUE.  Return the address of
// the immediately following segment.  Update *HAS_RELRO, *POFF,
// and *PSHNDX.

uint64_t
Output_segment::set_section_addresses(const Target* target,
                                     Layout* layout, bool reset,
                                     uint64_t addr,
                                     unsigned int* increase_relro,
                                     bool* has_relro,
                                     off_t* poff,
                                     unsigned int* pshndx)
{
 gold_assert(this->type_ == elfcpp::PT_LOAD);

 uint64_t last_relro_pad = 0;
 off_t orig_off = *poff;

 bool in_tls = false;

 // If we have relro sections, we need to pad forward now so that the
 // relro sections plus INCREASE_RELRO end on an abi page boundary.
 if (parameters->options().relro()
     && this->is_first_section_relro()
     && (!this->are_addresses_set_ || reset))
   {
     uint64_t relro_size = 0;
     off_t off = *poff;
     uint64_t max_align = 0;
     for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
       {
         Output_data_list* pdl = &this->output_lists_[i];
         Output_data_list::iterator p;
         for (p = pdl->begin(); p != pdl->end(); ++p)
           {
             if (!(*p)->is_section())
               break;
             uint64_t align = (*p)->addralign();
             if (align > max_align)
               max_align = align;
             if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
               in_tls = true;
             else if (in_tls)
               {
                 // Align the first non-TLS section to the alignment
                 // of the TLS segment.
                 align = max_align;
                 in_tls = false;
               }
             // Ignore the size of the .tbss section.
             if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
                 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
               continue;
             relro_size = align_address(relro_size, align);
             if ((*p)->is_address_valid())
               relro_size += (*p)->data_size();
             else
               {
                 // FIXME: This could be faster.
                 (*p)->set_address_and_file_offset(relro_size,
                                                   relro_size);
                 relro_size += (*p)->data_size();
                 (*p)->reset_address_and_file_offset();
               }
           }
         if (p != pdl->end())
           break;
       }
     relro_size += *increase_relro;
     // Pad the total relro size to a multiple of the maximum
     // section alignment seen.
     uint64_t aligned_size = align_address(relro_size, max_align);
     // Note the amount of padding added after the last relro section.
     last_relro_pad = aligned_size - relro_size;
     *has_relro = true;

     uint64_t page_align = parameters->target().abi_pagesize();

     // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
     uint64_t desired_align = page_align - (aligned_size % page_align);
     if (desired_align < off % page_align)
       off += page_align;
     off += desired_align - off % page_align;
     addr += off - orig_off;
     orig_off = off;
     *poff = off;
   }

 if (!reset && this->are_addresses_set_)
   {
     gold_assert(this->paddr_ == addr);
     addr = this->vaddr_;
   }
 else
   {
     this->vaddr_ = addr;
     this->paddr_ = addr;
     this->are_addresses_set_ = true;
   }

 in_tls = false;

 this->offset_ = orig_off;

 off_t off = 0;
 off_t foff = *poff;
 uint64_t ret = 0;
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     if (i == static_cast<int>(ORDER_RELRO_LAST))
       {
         *poff += last_relro_pad;
         foff += last_relro_pad;
         addr += last_relro_pad;
         if (this->output_lists_[i].empty())
           {
             // If there is nothing in the ORDER_RELRO_LAST list,
             // the padding will occur at the end of the relro
             // segment, and we need to add it to *INCREASE_RELRO.
             *increase_relro += last_relro_pad;
           }
       }
     addr = this->set_section_list_addresses(layout, reset,
                                             &this->output_lists_[i],
                                             addr, poff, &foff, pshndx,
                                             &in_tls);

     // FOFF tracks the last offset used for the file image,
     // and *POFF tracks the last offset used for the memory image.
     // When not using a linker script, bss sections should all
     // be processed in the ORDER_SMALL_BSS and later buckets.
     gold_assert(*poff == foff
                 || i == static_cast<int>(ORDER_TLS_BSS)
                 || i >= static_cast<int>(ORDER_SMALL_BSS)
                 || layout->script_options()->saw_sections_clause());

     this->filesz_ = foff - orig_off;
     off = foff;

     ret = addr;
   }

 // If the last section was a TLS section, align upward to the
 // alignment of the TLS segment, so that the overall size of the TLS
 // segment is aligned.
 if (in_tls)
   {
     uint64_t segment_align = layout->tls_segment()->maximum_alignment();
     *poff = align_address(*poff, segment_align);
   }

 this->memsz_ = *poff - orig_off;

 // Ignore the file offset adjustments made by the BSS Output_data
 // objects.
 *poff = off;

 // If code segments must contain only code, and this code segment is
 // page-aligned in the file, then fill it out to a whole page with
 // code fill (the tail of the segment will not be within any section).
 // Thus the entire code segment can be mapped from the file as whole
 // pages and that mapping will contain only valid instructions.
 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
   {
     uint64_t abi_pagesize = target->abi_pagesize();
     if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
       {
         size_t fill_size = abi_pagesize - (off % abi_pagesize);

         std::string fill_data;
         if (target->has_code_fill())
           fill_data = target->code_fill(fill_size);
         else
           fill_data.resize(fill_size); // Zero fill.

         Output_data_const* fill = new Output_data_const(fill_data, 0);
         fill->set_address(this->vaddr_ + this->memsz_);
         fill->set_file_offset(off);
         layout->add_relax_output(fill);

         off += fill_size;
         gold_assert(off % abi_pagesize == 0);
         ret += fill_size;
         gold_assert(ret % abi_pagesize == 0);

         gold_assert((uint64_t) this->filesz_ == this->memsz_);
         this->memsz_ = this->filesz_ += fill_size;

         *poff = off;
       }
   }

 return ret;
}

// Set the addresses and file offsets in a list of Output_data
// structures.

uint64_t
Output_segment::set_section_list_addresses(Layout* layout, bool reset,
                                          Output_data_list* pdl,
                                          uint64_t addr, off_t* poff,
                                          off_t* pfoff,
                                          unsigned int* pshndx,
                                          bool* in_tls)
{
 off_t startoff = *poff;
 // For incremental updates, we may allocate non-fixed sections from
 // free space in the file.  This keeps track of the high-water mark.
 off_t maxoff = startoff;

 off_t off = startoff;
 off_t foff = *pfoff;
 for (Output_data_list::iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
     bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);

     if (reset)
       (*p)->reset_address_and_file_offset();

     // When doing an incremental update or when using a linker script,
     // the section will most likely already have an address.
     if (!(*p)->is_address_valid())
       {
         uint64_t align = (*p)->addralign();

         if (is_tls)
           {
             // Give the first TLS section the alignment of the
             // entire TLS segment.  Otherwise the TLS segment as a
             // whole may be misaligned.
             if (!*in_tls)
               {
                 Output_segment* tls_segment = layout->tls_segment();
                 gold_assert(tls_segment != NULL);
                 uint64_t segment_align = tls_segment->maximum_alignment();
                 gold_assert(segment_align >= align);
                 align = segment_align;

                 *in_tls = true;
               }
           }
         else
           {
             // If this is the first section after the TLS segment,
             // align it to at least the alignment of the TLS
             // segment, so that the size of the overall TLS segment
             // is aligned.
             if (*in_tls)
               {
                 uint64_t segment_align =
                     layout->tls_segment()->maximum_alignment();
                 if (segment_align > align)
                   align = segment_align;

                 *in_tls = false;
               }
           }

         if (!parameters->incremental_update())
           {
             gold_assert(off == foff || is_bss);
             off = align_address(off, align);
             if (is_tls || !is_bss)
               foff = off;
             (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
           }
         else
           {
             // Incremental update: allocate file space from free list.
             (*p)->pre_finalize_data_size();
             off_t current_size = (*p)->current_data_size();
             off = layout->allocate(current_size, align, startoff);
             foff = off;
             if (off == -1)
               {
                 gold_assert((*p)->output_section() != NULL);
                 gold_fallback(_("out of patch space for section %s; "
                                 "relink with --incremental-full"),
                               (*p)->output_section()->name());
               }
             (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
             if ((*p)->data_size() > current_size)
               {
                 gold_assert((*p)->output_section() != NULL);
                 gold_fallback(_("%s: section changed size; "
                                 "relink with --incremental-full"),
                               (*p)->output_section()->name());
               }
           }
       }
     else if (parameters->incremental_update())
       {
         // For incremental updates, use the fixed offset for the
         // high-water mark computation.
         off = (*p)->offset();
         foff = off;
       }
     else
       {
         // The script may have inserted a skip forward, but it
         // better not have moved backward.
         if ((*p)->address() >= addr + (off - startoff))
           {
             if (!is_bss && off > foff)
               gold_warning(_("script places BSS section in the middle "
                              "of a LOAD segment; space will be allocated "
                              "in the file"));
             off += (*p)->address() - (addr + (off - startoff));
             if (is_tls || !is_bss)
               foff = off;
           }
         else
           {
             if (!layout->script_options()->saw_sections_clause())
               gold_unreachable();
             else
               {
                 Output_section* os = (*p)->output_section();

                 // Cast to unsigned long long to avoid format warnings.
                 unsigned long long previous_dot =
                   static_cast<unsigned long long>(addr + (off - startoff));
                 unsigned long long dot =
                   static_cast<unsigned long long>((*p)->address());

                 if (os == NULL)
                   gold_error(_("dot moves backward in linker script "
                                "from 0x%llx to 0x%llx"), previous_dot, dot);
                 else
                   gold_error(_("address of section '%s' moves backward "
                                "from 0x%llx to 0x%llx"),
                              os->name(), previous_dot, dot);
               }
           }
         (*p)->set_file_offset(foff);
         (*p)->finalize_data_size();
       }

     if (parameters->incremental_update())
       gold_debug(DEBUG_INCREMENTAL,
                  "set_section_list_addresses: %08lx %08lx %s",
                  static_cast<long>(off),
                  static_cast<long>((*p)->data_size()),
                  ((*p)->output_section() != NULL
                   ? (*p)->output_section()->name() : "(special)"));

     // We want to ignore the size of a SHF_TLS SHT_NOBITS
     // section.  Such a section does not affect the size of a
     // PT_LOAD segment.
     if (!is_tls || !is_bss)
       off += (*p)->data_size();

     // We don't allocate space in the file for SHT_NOBITS sections,
     // unless a script has force-placed one in the middle of a segment.
     if (!is_bss)
       foff = off;

     if (off > maxoff)
       maxoff = off;

     if ((*p)->is_section())
       {
         (*p)->set_out_shndx(*pshndx);
         ++*pshndx;
       }
   }

 *poff = maxoff;
 *pfoff = foff;
 return addr + (maxoff - startoff);
}

// For a non-PT_LOAD segment, set the offset from the sections, if
// any.  Add INCREASE to the file size and the memory size.

void
Output_segment::set_offset(unsigned int increase)
{
 gold_assert(this->type_ != elfcpp::PT_LOAD);

 gold_assert(!this->are_addresses_set_);

 // A non-load section only uses output_lists_[0].

 Output_data_list* pdl = &this->output_lists_[0];

 if (pdl->empty())
   {
     gold_assert(increase == 0);
     this->vaddr_ = 0;
     this->paddr_ = 0;
     this->are_addresses_set_ = true;
     this->memsz_ = 0;
     this->min_p_align_ = 0;
     this->offset_ = 0;
     this->filesz_ = 0;
     return;
   }

 // Find the first and last section by address.
 const Output_data* first = NULL;
 const Output_data* last_data = NULL;
 const Output_data* last_bss = NULL;
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     if (first == NULL
         || (*p)->address() < first->address()
         || ((*p)->address() == first->address()
             && (*p)->data_size() < first->data_size()))
       first = *p;
     const Output_data** plast;
     if ((*p)->is_section()
         && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
       plast = &last_bss;
     else
       plast = &last_data;
     if (*plast == NULL
         || (*p)->address() > (*plast)->address()
         || ((*p)->address() == (*plast)->address()
             && (*p)->data_size() > (*plast)->data_size()))
       *plast = *p;
   }

 this->vaddr_ = first->address();
 this->paddr_ = (first->has_load_address()
                 ? first->load_address()
                 : this->vaddr_);
 this->are_addresses_set_ = true;
 this->offset_ = first->offset();

 if (last_data == NULL)
   this->filesz_ = 0;
 else
   this->filesz_ = (last_data->address()
                    + last_data->data_size()
                    - this->vaddr_);

 const Output_data* last = last_bss != NULL ? last_bss : last_data;
 this->memsz_ = (last->address()
                 + last->data_size()
                 - this->vaddr_);

 this->filesz_ += increase;
 this->memsz_ += increase;

 // If this is a RELRO segment, verify that the segment ends at a
 // page boundary.
 if (this->type_ == elfcpp::PT_GNU_RELRO)
   {
     uint64_t page_align = parameters->target().abi_pagesize();
     uint64_t segment_end = this->vaddr_ + this->memsz_;
     if (parameters->incremental_update())
       {
         // The INCREASE_RELRO calculation is bypassed for an incremental
         // update, so we need to adjust the segment size manually here.
         segment_end = align_address(segment_end, page_align);
         this->memsz_ = segment_end - this->vaddr_;
       }
     else
       gold_assert(segment_end == align_address(segment_end, page_align));
   }

 // If this is a TLS segment, align the memory size.  The code in
 // set_section_list ensures that the section after the TLS segment
 // is aligned to give us room.
 if (this->type_ == elfcpp::PT_TLS)
   {
     uint64_t segment_align = this->maximum_alignment();
     gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
     this->memsz_ = align_address(this->memsz_, segment_align);
   }
}

// Set the TLS offsets of the sections in the PT_TLS segment.

void
Output_segment::set_tls_offsets()
{
 gold_assert(this->type_ == elfcpp::PT_TLS);

 for (Output_data_list::iterator p = this->output_lists_[0].begin();
      p != this->output_lists_[0].end();
      ++p)
   (*p)->set_tls_offset(this->vaddr_);
}

// Return the first section.

Output_section*
Output_segment::first_section() const
{
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     const Output_data_list* pdl = &this->output_lists_[i];
     for (Output_data_list::const_iterator p = pdl->begin();
          p != pdl->end();
          ++p)
       {
         if ((*p)->is_section())
           return (*p)->output_section();
       }
   }
 return NULL;
}

// Return the number of Output_sections in an Output_segment.

unsigned int
Output_segment::output_section_count() const
{
 unsigned int ret = 0;
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   ret += this->output_section_count_list(&this->output_lists_[i]);
 return ret;
}

// Return the number of Output_sections in an Output_data_list.

unsigned int
Output_segment::output_section_count_list(const Output_data_list* pdl) const
{
 unsigned int count = 0;
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     if ((*p)->is_section())
       ++count;
   }
 return count;
}

// Return the section attached to the list segment with the lowest
// load address.  This is used when handling a PHDRS clause in a
// linker script.

Output_section*
Output_segment::section_with_lowest_load_address() const
{
 Output_section* found = NULL;
 uint64_t found_lma = 0;
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   this->lowest_load_address_in_list(&this->output_lists_[i], &found,
                                     &found_lma);
 return found;
}

// Look through a list for a section with a lower load address.

void
Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
                                           Output_section** found,
                                           uint64_t* found_lma) const
{
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     if (!(*p)->is_section())
       continue;
     Output_section* os = static_cast<Output_section*>(*p);
     uint64_t lma = (os->has_load_address()
                     ? os->load_address()
                     : os->address());
     if (*found == NULL || lma < *found_lma)
       {
         *found = os;
         *found_lma = lma;
       }
   }
}

// Write the segment data into *OPHDR.

template<int size, bool big_endian>
void
Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
{
 ophdr->put_p_type(this->type_);
 ophdr->put_p_offset(this->offset_);
 ophdr->put_p_vaddr(this->vaddr_);
 ophdr->put_p_paddr(this->paddr_);
 ophdr->put_p_filesz(this->filesz_);
 ophdr->put_p_memsz(this->memsz_);
 ophdr->put_p_flags(this->flags_);
 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
}

// Write the section headers into V.

template<int size, bool big_endian>
unsigned char*
Output_segment::write_section_headers(const Layout* layout,
                                     const Stringpool* secnamepool,
                                     unsigned char* v,
                                     unsigned int* pshndx) const
{
 // Every section that is attached to a segment must be attached to a
 // PT_LOAD segment, so we only write out section headers for PT_LOAD
 // segments.
 if (this->type_ != elfcpp::PT_LOAD)
   return v;

 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   {
     const Output_data_list* pdl = &this->output_lists_[i];
     v = this->write_section_headers_list<size, big_endian>(layout,
                                                            secnamepool,
                                                            pdl,
                                                            v, pshndx);
   }

 return v;
}

template<int size, bool big_endian>
unsigned char*
Output_segment::write_section_headers_list(const Layout* layout,
                                          const Stringpool* secnamepool,
                                          const Output_data_list* pdl,
                                          unsigned char* v,
                                          unsigned int* pshndx) const
{
 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   {
     if ((*p)->is_section())
       {
         const Output_section* ps = static_cast<const Output_section*>(*p);
         gold_assert(*pshndx == ps->out_shndx());
         elfcpp::Shdr_write<size, big_endian> oshdr(v);
         ps->write_header(layout, secnamepool, &oshdr);
         v += shdr_size;
         ++*pshndx;
       }
   }
 return v;
}

// Print the output sections to the map file.

void
Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
{
 if (this->type() != elfcpp::PT_LOAD)
   return;
 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
   this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
}

// Print an output section list to the map file.

void
Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
                                             const Output_data_list* pdl) const
{
 for (Output_data_list::const_iterator p = pdl->begin();
      p != pdl->end();
      ++p)
   (*p)->print_to_mapfile(mapfile);
}

// Output_file methods.

Output_file::Output_file(const char* name)
 : name_(name),
   o_(-1),
   file_size_(0),
   base_(NULL),
   map_is_anonymous_(false),
   map_is_allocated_(false),
   is_temporary_(false)
{
}

// Try to open an existing file.  Returns false if the file doesn't
// exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not
// NULL, open that file as the base for incremental linking, and
// copy its contents to the new output file.  This routine can
// be called for incremental updates, in which case WRITABLE should
// be true, or by the incremental-dump utility, in which case
// WRITABLE should be false.

bool
Output_file::open_base_file(const char* base_name, bool writable)
{
 // The name "-" means "stdout".
 if (strcmp(this->name_, "-") == 0)
   return false;

 bool use_base_file = base_name != NULL;
 if (!use_base_file)
   base_name = this->name_;
 else if (strcmp(base_name, this->name_) == 0)
   gold_fatal(_("%s: incremental base and output file name are the same"),
              base_name);

 // Don't bother opening files with a size of zero.
 struct stat s;
 if (::stat(base_name, &s) != 0)
   {
     gold_info(_("%s: stat: %s"), base_name, strerror(errno));
     return false;
   }
 if (s.st_size == 0)
   {
     gold_info(_("%s: incremental base file is empty"), base_name);
     return false;
   }

 // If we're using a base file, we want to open it read-only.
 if (use_base_file)
   writable = false;

 int oflags = writable ? O_RDWR : O_RDONLY;
 int o = open_descriptor(-1, base_name, oflags, 0);
 if (o < 0)
   {
     gold_info(_("%s: open: %s"), base_name, strerror(errno));
     return false;
   }

 // If the base file and the output file are different, open a
 // new output file and read the contents from the base file into
 // the newly-mapped region.
 if (use_base_file)
   {
     this->open(s.st_size);
     ssize_t bytes_to_read = s.st_size;
     unsigned char* p = this->base_;
     while (bytes_to_read > 0)
       {
         ssize_t len = ::read(o, p, bytes_to_read);
         if (len < 0)
           {
             gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
             return false;
           }
         if (len == 0)
           {
             gold_info(_("%s: file too short: read only %lld of %lld bytes"),
                       base_name,
                       static_cast<long long>(s.st_size - bytes_to_read),
                       static_cast<long long>(s.st_size));
             return false;
           }
         p += len;
         bytes_to_read -= len;
       }
     ::close(o);
     return true;
   }

 this->o_ = o;
 this->file_size_ = s.st_size;

 if (!this->map_no_anonymous(writable))
   {
     release_descriptor(o, true);
     this->o_ = -1;
     this->file_size_ = 0;
     return false;
   }

 return true;
}

// Open the output file.

void
Output_file::open(off_t file_size)
{
 this->file_size_ = file_size;

 // Unlink the file first; otherwise the open() may fail if the file
 // is busy (e.g. it's an executable that's currently being executed).
 //
 // However, the linker may be part of a system where a zero-length
 // file is created for it to write to, with tight permissions (gcc
 // 2.95 did something like this).  Unlinking the file would work
 // around those permission controls, so we only unlink if the file
 // has a non-zero size.  We also unlink only regular files to avoid
 // trouble with directories/etc.
 //
 // If we fail, continue; this command is merely a best-effort attempt
 // to improve the odds for open().

 // We let the name "-" mean "stdout"
 if (!this->is_temporary_)
   {
     if (strcmp(this->name_, "-") == 0)
       this->o_ = STDOUT_FILENO;
     else
       {
         struct stat s;
         if (::stat(this->name_, &s) == 0
             && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
           {
             if (s.st_size != 0)
               ::unlink(this->name_);
             else if (!parameters->options().relocatable())
               {
                 // If we don't unlink the existing file, add execute
                 // permission where read permissions already exist
                 // and where the umask permits.
                 int mask = ::umask(0);
                 ::umask(mask);
                 s.st_mode |= (s.st_mode & 0444) >> 2;
                 ::chmod(this->name_, s.st_mode & ~mask);
               }
           }

         int mode = parameters->options().relocatable() ? 0666 : 0777;
         int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
                                 mode);
         if (o < 0)
           gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
         this->o_ = o;
       }
   }

 this->map();
}

// Resize the output file.

void
Output_file::resize(off_t file_size)
{
 // If the mmap is mapping an anonymous memory buffer, this is easy:
 // just mremap to the new size.  If it's mapping to a file, we want
 // to unmap to flush to the file, then remap after growing the file.
 if (this->map_is_anonymous_)
   {
     void* base;
     if (!this->map_is_allocated_)
       {
         base = ::mremap(this->base_, this->file_size_, file_size,
                         MREMAP_MAYMOVE);
         if (base == MAP_FAILED)
           gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
       }
     else
       {
         base = realloc(this->base_, file_size);
         if (base == NULL)
           gold_nomem();
         if (file_size > this->file_size_)
           memset(static_cast<char*>(base) + this->file_size_, 0,
                  file_size - this->file_size_);
       }
     this->base_ = static_cast<unsigned char*>(base);
     this->file_size_ = file_size;
   }
 else
   {
     this->unmap();
     this->file_size_ = file_size;
     if (!this->map_no_anonymous(true))
       gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
   }
}

// Map an anonymous block of memory which will later be written to the
// file.  Return whether the map succeeded.

bool
Output_file::map_anonymous()
{
 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
                     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 if (base == MAP_FAILED)
   {
     base = malloc(this->file_size_);
     if (base == NULL)
       return false;
     memset(base, 0, this->file_size_);
     this->map_is_allocated_ = true;
   }
 this->base_ = static_cast<unsigned char*>(base);
 this->map_is_anonymous_ = true;
 return true;
}

// Map the file into memory.  Return whether the mapping succeeded.
// If WRITABLE is true, map with write access.

bool
Output_file::map_no_anonymous(bool writable)
{
 const int o = this->o_;

 // If the output file is not a regular file, don't try to mmap it;
 // instead, we'll mmap a block of memory (an anonymous buffer), and
 // then later write the buffer to the file.
 void* base;
 struct stat statbuf;
 if (o == STDOUT_FILENO || o == STDERR_FILENO
     || ::fstat(o, &statbuf) != 0
     || !S_ISREG(statbuf.st_mode)
     || this->is_temporary_)
   return false;

 // Ensure that we have disk space available for the file.  If we
 // don't do this, it is possible that we will call munmap, close,
 // and exit with dirty buffers still in the cache with no assigned
 // disk blocks.  If the disk is out of space at that point, the
 // output file will wind up incomplete, but we will have already
 // exited.  The alternative to fallocate would be to use fdatasync,
 // but that would be a more significant performance hit.
 if (writable)
   {
     int err = gold_fallocate(o, 0, this->file_size_);
     if (err != 0)
      gold_fatal(_("%s: %s"), this->name_, strerror(err));
   }

 // Map the file into memory.
 int prot = PROT_READ;
 if (writable)
   prot |= PROT_WRITE;
 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);

 // The mmap call might fail because of file system issues: the file
 // system might not support mmap at all, or it might not support
 // mmap with PROT_WRITE.
 if (base == MAP_FAILED)
   return false;

 this->map_is_anonymous_ = false;
 this->base_ = static_cast<unsigned char*>(base);
 return true;
}

// Map the file into memory.

void
Output_file::map()
{
 if (parameters->options().mmap_output_file()
     && this->map_no_anonymous(true))
   return;

 // The mmap call might fail because of file system issues: the file
 // system might not support mmap at all, or it might not support
 // mmap with PROT_WRITE.  I'm not sure which errno values we will
 // see in all cases, so if the mmap fails for any reason and we
 // don't care about file contents, try for an anonymous map.
 if (this->map_anonymous())
   return;

 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
            this->name_, static_cast<unsigned long>(this->file_size_),
            strerror(errno));
}

// Unmap the file from memory.

void
Output_file::unmap()
{
 if (this->map_is_anonymous_)
   {
     // We've already written out the data, so there is no reason to
     // waste time unmapping or freeing the memory.
   }
 else
   {
     if (::munmap(this->base_, this->file_size_) < 0)
       gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
   }
 this->base_ = NULL;
}

// Close the output file.

void
Output_file::close()
{
 // If the map isn't file-backed, we need to write it now.
 if (this->map_is_anonymous_ && !this->is_temporary_)
   {
     size_t bytes_to_write = this->file_size_;
     size_t offset = 0;
     while (bytes_to_write > 0)
       {
         ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
                                         bytes_to_write);
         if (bytes_written == 0)
           gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
         else if (bytes_written < 0)
           gold_error(_("%s: write: %s"), this->name_, strerror(errno));
         else
           {
             bytes_to_write -= bytes_written;
             offset += bytes_written;
           }
       }
   }
 this->unmap();

 // We don't close stdout or stderr
 if (this->o_ != STDOUT_FILENO
     && this->o_ != STDERR_FILENO
     && !this->is_temporary_)
   if (::close(this->o_) < 0)
     gold_error(_("%s: close: %s"), this->name_, strerror(errno));
 this->o_ = -1;
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones for implemented targets.

#ifdef HAVE_TARGET_32_LITTLE
template
off_t
Output_section::add_input_section<32, false>(
   Layout* layout,
   Sized_relobj_file<32, false>* object,
   unsigned int shndx,
   const char* secname,
   const elfcpp::Shdr<32, false>& shdr,
   unsigned int reloc_shndx,
   bool have_sections_script);
#endif

#ifdef HAVE_TARGET_32_BIG
template
off_t
Output_section::add_input_section<32, true>(
   Layout* layout,
   Sized_relobj_file<32, true>* object,
   unsigned int shndx,
   const char* secname,
   const elfcpp::Shdr<32, true>& shdr,
   unsigned int reloc_shndx,
   bool have_sections_script);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
off_t
Output_section::add_input_section<64, false>(
   Layout* layout,
   Sized_relobj_file<64, false>* object,
   unsigned int shndx,
   const char* secname,
   const elfcpp::Shdr<64, false>& shdr,
   unsigned int reloc_shndx,
   bool have_sections_script);
#endif

#ifdef HAVE_TARGET_64_BIG
template
off_t
Output_section::add_input_section<64, true>(
   Layout* layout,
   Sized_relobj_file<64, true>* object,
   unsigned int shndx,
   const char* secname,
   const elfcpp::Shdr<64, true>& shdr,
   unsigned int reloc_shndx,
   bool have_sections_script);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Output_data_group<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Output_data_group<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Output_data_group<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Output_data_group<64, true>;
#endif

template
class Output_data_got<32, false>;

template
class Output_data_got<32, true>;

template
class Output_data_got<64, false>;

template
class Output_data_got<64, true>;

} // End namespace gold.