// object.cc -- support for an object file for linking in gold

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cerrno>
#include <cstring>
#include <cstdarg>
#include "demangle.h"
#include "libiberty.h"

#include "gc.h"
#include "target-select.h"
#include "dwarf_reader.h"
#include "layout.h"
#include "output.h"
#include "symtab.h"
#include "cref.h"
#include "reloc.h"
#include "object.h"
#include "dynobj.h"
#include "plugin.h"
#include "compressed_output.h"
#include "incremental.h"
#include "merge.h"

namespace gold
{

// Struct Read_symbols_data.

// Destroy any remaining File_view objects and buffers of decompressed
// sections.

Read_symbols_data::~Read_symbols_data()
{
 if (this->section_headers != NULL)
   delete this->section_headers;
 if (this->section_names != NULL)
   delete this->section_names;
 if (this->symbols != NULL)
   delete this->symbols;
 if (this->symbol_names != NULL)
   delete this->symbol_names;
 if (this->versym != NULL)
   delete this->versym;
 if (this->verdef != NULL)
   delete this->verdef;
 if (this->verneed != NULL)
   delete this->verneed;
}

// Class Xindex.

// Initialize the symtab_xindex_ array.  Find the SHT_SYMTAB_SHNDX
// section and read it in.  SYMTAB_SHNDX is the index of the symbol
// table we care about.

template<int size, bool big_endian>
void
Xindex::initialize_symtab_xindex(Object* object, unsigned int symtab_shndx)
{
 if (!this->symtab_xindex_.empty())
   return;

 gold_assert(symtab_shndx != 0);

 // Look through the sections in reverse order, on the theory that it
 // is more likely to be near the end than the beginning.
 unsigned int i = object->shnum();
 while (i > 0)
   {
     --i;
     if (object->section_type(i) == elfcpp::SHT_SYMTAB_SHNDX
         && this->adjust_shndx(object->section_link(i)) == symtab_shndx)
       {
         this->read_symtab_xindex<size, big_endian>(object, i, NULL);
         return;
       }
   }

 object->error(_("missing SHT_SYMTAB_SHNDX section"));
}

// Read in the symtab_xindex_ array, given the section index of the
// SHT_SYMTAB_SHNDX section.  If PSHDRS is not NULL, it points at the
// section headers.

template<int size, bool big_endian>
void
Xindex::read_symtab_xindex(Object* object, unsigned int xindex_shndx,
                          const unsigned char* pshdrs)
{
 section_size_type bytecount;
 const unsigned char* contents;
 if (pshdrs == NULL)
   contents = object->section_contents(xindex_shndx, &bytecount, false);
 else
   {
     const unsigned char* p = (pshdrs
                               + (xindex_shndx
                                  * elfcpp::Elf_sizes<size>::shdr_size));
     typename elfcpp::Shdr<size, big_endian> shdr(p);
     bytecount = convert_to_section_size_type(shdr.get_sh_size());
     contents = object->get_view(shdr.get_sh_offset(), bytecount, true, false);
   }

 gold_assert(this->symtab_xindex_.empty());
 this->symtab_xindex_.reserve(bytecount / 4);
 for (section_size_type i = 0; i < bytecount; i += 4)
   {
     unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(contents + i);
     // We preadjust the section indexes we save.
     this->symtab_xindex_.push_back(this->adjust_shndx(shndx));
   }
}

// Symbol symndx has a section of SHN_XINDEX; return the real section
// index.

unsigned int
Xindex::sym_xindex_to_shndx(Object* object, unsigned int symndx)
{
 if (symndx >= this->symtab_xindex_.size())
   {
     object->error(_("symbol %u out of range for SHT_SYMTAB_SHNDX section"),
                   symndx);
     return elfcpp::SHN_UNDEF;
   }
 unsigned int shndx = this->symtab_xindex_[symndx];
 if (shndx < elfcpp::SHN_LORESERVE || shndx >= object->shnum())
   {
     object->error(_("extended index for symbol %u out of range: %u"),
                   symndx, shndx);
     return elfcpp::SHN_UNDEF;
   }
 return shndx;
}

// Class Object.

// Report an error for this object file.  This is used by the
// elfcpp::Elf_file interface, and also called by the Object code
// itself.

void
Object::error(const char* format, ...) const
{
 va_list args;
 va_start(args, format);
 char* buf = NULL;
 if (vasprintf(&buf, format, args) < 0)
   gold_nomem();
 va_end(args);
 gold_error(_("%s: %s"), this->name().c_str(), buf);
 free(buf);
}

// Return a view of the contents of a section.

const unsigned char*
Object::section_contents(unsigned int shndx, section_size_type* plen,
                        bool cache)
{ return this->do_section_contents(shndx, plen, cache); }

// Read the section data into SD.  This is code common to Sized_relobj_file
// and Sized_dynobj, so we put it into Object.

template<int size, bool big_endian>
void
Object::read_section_data(elfcpp::Elf_file<size, big_endian, Object>* elf_file,
                         Read_symbols_data* sd)
{
 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;

 // Read the section headers.
 const off_t shoff = elf_file->shoff();
 const unsigned int shnum = this->shnum();
 sd->section_headers = this->get_lasting_view(shoff, shnum * shdr_size,
                                              true, true);

 // Read the section names.
 const unsigned char* pshdrs = sd->section_headers->data();
 const unsigned char* pshdrnames = pshdrs + elf_file->shstrndx() * shdr_size;
 typename elfcpp::Shdr<size, big_endian> shdrnames(pshdrnames);

 if (shdrnames.get_sh_type() != elfcpp::SHT_STRTAB)
   this->error(_("section name section has wrong type: %u"),
               static_cast<unsigned int>(shdrnames.get_sh_type()));

 sd->section_names_size =
   convert_to_section_size_type(shdrnames.get_sh_size());
 sd->section_names = this->get_lasting_view(shdrnames.get_sh_offset(),
                                            sd->section_names_size, false,
                                            false);
}

// If NAME is the name of a special .gnu.warning section, arrange for
// the warning to be issued.  SHNDX is the section index.  Return
// whether it is a warning section.

bool
Object::handle_gnu_warning_section(const char* name, unsigned int shndx,
                                  Symbol_table* symtab)
{
 const char warn_prefix[] = ".gnu.warning.";
 const int warn_prefix_len = sizeof warn_prefix - 1;
 if (strncmp(name, warn_prefix, warn_prefix_len) == 0)
   {
     // Read the section contents to get the warning text.  It would
     // be nicer if we only did this if we have to actually issue a
     // warning.  Unfortunately, warnings are issued as we relocate
     // sections.  That means that we can not lock the object then,
     // as we might try to issue the same warning multiple times
     // simultaneously.
     section_size_type len;
     const unsigned char* contents = this->section_contents(shndx, &len,
                                                            false);
     if (len == 0)
       {
         const char* warning = name + warn_prefix_len;
         contents = reinterpret_cast<const unsigned char*>(warning);
         len = strlen(warning);
       }
     std::string warning(reinterpret_cast<const char*>(contents), len);
     symtab->add_warning(name + warn_prefix_len, this, warning);
     return true;
   }
 return false;
}

// If NAME is the name of the special section which indicates that
// this object was compiled with -fsplit-stack, mark it accordingly.

bool
Object::handle_split_stack_section(const char* name)
{
 if (strcmp(name, ".note.GNU-split-stack") == 0)
   {
     this->uses_split_stack_ = true;
     return true;
   }
 if (strcmp(name, ".note.GNU-no-split-stack") == 0)
   {
     this->has_no_split_stack_ = true;
     return true;
   }
 return false;
}

// Class Relobj

template<int size>
void
Relobj::initialize_input_to_output_map(unsigned int shndx,
         typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
         Unordered_map<section_offset_type,
         typename elfcpp::Elf_types<size>::Elf_Addr>* output_addresses) const {
 Object_merge_map *map = this->object_merge_map_;
 map->initialize_input_to_output_map<size>(shndx, starting_address,
                                           output_addresses);
}

void
Relobj::add_merge_mapping(Output_section_data *output_data,
                         unsigned int shndx, section_offset_type offset,
                         section_size_type length,
                         section_offset_type output_offset) {
 Object_merge_map* object_merge_map = this->get_or_create_merge_map();
 object_merge_map->add_mapping(output_data, shndx, offset, length, output_offset);
}

bool
Relobj::merge_output_offset(unsigned int shndx, section_offset_type offset,
                           section_offset_type *poutput) const {
 Object_merge_map* object_merge_map = this->object_merge_map_;
 if (object_merge_map == NULL)
   return false;
 return object_merge_map->get_output_offset(shndx, offset, poutput);
}

const Output_section_data*
Relobj::find_merge_section(unsigned int shndx) const {
 Object_merge_map* object_merge_map = this->object_merge_map_;
 if (object_merge_map == NULL)
   return NULL;
 return object_merge_map->find_merge_section(shndx);
}

// To copy the symbols data read from the file to a local data structure.
// This function is called from do_layout only while doing garbage
// collection.

void
Relobj::copy_symbols_data(Symbols_data* gc_sd, Read_symbols_data* sd,
                         unsigned int section_header_size)
{
 gc_sd->section_headers_data =
        new unsigned char[(section_header_size)];
 memcpy(gc_sd->section_headers_data, sd->section_headers->data(),
        section_header_size);
 gc_sd->section_names_data =
        new unsigned char[sd->section_names_size];
 memcpy(gc_sd->section_names_data, sd->section_names->data(),
        sd->section_names_size);
 gc_sd->section_names_size = sd->section_names_size;
 if (sd->symbols != NULL)
   {
     gc_sd->symbols_data =
            new unsigned char[sd->symbols_size];
     memcpy(gc_sd->symbols_data, sd->symbols->data(),
           sd->symbols_size);
   }
 else
   {
     gc_sd->symbols_data = NULL;
   }
 gc_sd->symbols_size = sd->symbols_size;
 gc_sd->external_symbols_offset = sd->external_symbols_offset;
 if (sd->symbol_names != NULL)
   {
     gc_sd->symbol_names_data =
            new unsigned char[sd->symbol_names_size];
     memcpy(gc_sd->symbol_names_data, sd->symbol_names->data(),
           sd->symbol_names_size);
   }
 else
   {
     gc_sd->symbol_names_data = NULL;
   }
 gc_sd->symbol_names_size = sd->symbol_names_size;
}

// This function determines if a particular section name must be included
// in the link.  This is used during garbage collection to determine the
// roots of the worklist.

bool
Relobj::is_section_name_included(const char* name)
{
 if (is_prefix_of(".ctors", name)
     || is_prefix_of(".dtors", name)
     || is_prefix_of(".note", name)
     || is_prefix_of(".init", name)
     || is_prefix_of(".fini", name)
     || is_prefix_of(".gcc_except_table", name)
     || is_prefix_of(".jcr", name)
     || is_prefix_of(".preinit_array", name)
     || (is_prefix_of(".text", name)
         && strstr(name, "personality"))
     || (is_prefix_of(".data", name)
         && strstr(name, "personality"))
     || (is_prefix_of(".sdata", name)
         && strstr(name, "personality"))
     || (is_prefix_of(".gnu.linkonce.d", name)
         && strstr(name, "personality"))
     || (is_prefix_of(".rodata", name)
         && strstr(name, "nptl_version")))
   {
     return true;
   }
 return false;
}

// Finalize the incremental relocation information.  Allocates a block
// of relocation entries for each symbol, and sets the reloc_bases_
// array to point to the first entry in each block.  If CLEAR_COUNTS
// is TRUE, also clear the per-symbol relocation counters.

void
Relobj::finalize_incremental_relocs(Layout* layout, bool clear_counts)
{
 unsigned int nsyms = this->get_global_symbols()->size();
 this->reloc_bases_ = new unsigned int[nsyms];

 gold_assert(this->reloc_bases_ != NULL);
 gold_assert(layout->incremental_inputs() != NULL);

 unsigned int rindex = layout->incremental_inputs()->get_reloc_count();
 for (unsigned int i = 0; i < nsyms; ++i)
   {
     this->reloc_bases_[i] = rindex;
     rindex += this->reloc_counts_[i];
     if (clear_counts)
       this->reloc_counts_[i] = 0;
   }
 layout->incremental_inputs()->set_reloc_count(rindex);
}

Object_merge_map*
Relobj::get_or_create_merge_map()
{
 if (!this->object_merge_map_)
   this->object_merge_map_ = new Object_merge_map();
 return this->object_merge_map_;
}

// Class Sized_relobj.

// Iterate over local symbols, calling a visitor class V for each GOT offset
// associated with a local symbol.

template<int size, bool big_endian>
void
Sized_relobj<size, big_endian>::do_for_all_local_got_entries(
   Got_offset_list::Visitor* v) const
{
 unsigned int nsyms = this->local_symbol_count();
 for (unsigned int i = 0; i < nsyms; i++)
   {
     Local_got_entry_key key(i);
     Local_got_offsets::const_iterator p = this->local_got_offsets_.find(key);
     if (p != this->local_got_offsets_.end())
       {
         const Got_offset_list* got_offsets = p->second;
         got_offsets->for_all_got_offsets(v);
       }
   }
}

// Get the address of an output section.

template<int size, bool big_endian>
uint64_t
Sized_relobj<size, big_endian>::do_output_section_address(
   unsigned int shndx)
{
 // If the input file is linked as --just-symbols, the output
 // section address is the input section address.
 if (this->just_symbols())
   return this->section_address(shndx);

 const Output_section* os = this->do_output_section(shndx);
 gold_assert(os != NULL);
 return os->address();
}

// Class Sized_relobj_file.

template<int size, bool big_endian>
Sized_relobj_file<size, big_endian>::Sized_relobj_file(
   const std::string& name,
   Input_file* input_file,
   off_t offset,
   const elfcpp::Ehdr<size, big_endian>& ehdr)
 : Sized_relobj<size, big_endian>(name, input_file, offset),
   elf_file_(this, ehdr),
   osabi_(ehdr.get_ei_osabi()),
   e_type_(ehdr.get_e_type()),
   symtab_shndx_(-1U),
   local_symbol_count_(0),
   output_local_symbol_count_(0),
   output_local_dynsym_count_(0),
   symbols_(),
   defined_count_(0),
   local_symbol_offset_(0),
   local_dynsym_offset_(0),
   local_values_(),
   local_plt_offsets_(),
   kept_comdat_sections_(),
   has_eh_frame_(false),
   is_deferred_layout_(false),
   deferred_layout_(),
   deferred_layout_relocs_(),
   output_views_(NULL)
{
}

template<int size, bool big_endian>
Sized_relobj_file<size, big_endian>::~Sized_relobj_file()
{
}

// Set up an object file based on the file header.  This sets up the
// section information.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_setup()
{
 const unsigned int shnum = this->elf_file_.shnum();
 this->set_shnum(shnum);
}

// Find the SHT_SYMTAB section, given the section headers.  The ELF
// standard says that maybe in the future there can be more than one
// SHT_SYMTAB section.  Until somebody figures out how that could
// work, we assume there is only one.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::find_symtab(const unsigned char* pshdrs)
{
 const unsigned int shnum = this->shnum();
 this->symtab_shndx_ = 0;
 if (shnum > 0)
   {
     // Look through the sections in reverse order, since gas tends
     // to put the symbol table at the end.
     const unsigned char* p = pshdrs + shnum * This::shdr_size;
     unsigned int i = shnum;
     unsigned int xindex_shndx = 0;
     unsigned int xindex_link = 0;
     while (i > 0)
       {
         --i;
         p -= This::shdr_size;
         typename This::Shdr shdr(p);
         if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
           {
             this->symtab_shndx_ = i;
             if (xindex_shndx > 0 && xindex_link == i)
               {
                 Xindex* xindex =
                   new Xindex(this->elf_file_.large_shndx_offset());
                 xindex->read_symtab_xindex<size, big_endian>(this,
                                                              xindex_shndx,
                                                              pshdrs);
                 this->set_xindex(xindex);
               }
             break;
           }

         // Try to pick up the SHT_SYMTAB_SHNDX section, if there is
         // one.  This will work if it follows the SHT_SYMTAB
         // section.
         if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB_SHNDX)
           {
             xindex_shndx = i;
             xindex_link = this->adjust_shndx(shdr.get_sh_link());
           }
       }
   }
}

// Return the Xindex structure to use for object with lots of
// sections.

template<int size, bool big_endian>
Xindex*
Sized_relobj_file<size, big_endian>::do_initialize_xindex()
{
 gold_assert(this->symtab_shndx_ != -1U);
 Xindex* xindex = new Xindex(this->elf_file_.large_shndx_offset());
 xindex->initialize_symtab_xindex<size, big_endian>(this, this->symtab_shndx_);
 return xindex;
}

// Return whether SHDR has the right type and flags to be a GNU
// .eh_frame section.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::check_eh_frame_flags(
   const elfcpp::Shdr<size, big_endian>* shdr) const
{
 elfcpp::Elf_Word sh_type = shdr->get_sh_type();
 return ((sh_type == elfcpp::SHT_PROGBITS
          || sh_type == parameters->target().unwind_section_type())
         && (shdr->get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
}

// Find the section header with the given name.

template<int size, bool big_endian>
const unsigned char*
Object::find_shdr(
   const unsigned char* pshdrs,
   const char* name,
   const char* names,
   section_size_type names_size,
   const unsigned char* hdr) const
{
 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 const unsigned int shnum = this->shnum();
 const unsigned char* hdr_end = pshdrs + shdr_size * shnum;
 size_t sh_name = 0;

 while (1)
   {
     if (hdr)
       {
         // We found HDR last time we were called, continue looking.
         typename elfcpp::Shdr<size, big_endian> shdr(hdr);
         sh_name = shdr.get_sh_name();
       }
     else
       {
         // Look for the next occurrence of NAME in NAMES.
         // The fact that .shstrtab produced by current GNU tools is
         // string merged means we shouldn't have both .not.foo and
         // .foo in .shstrtab, and multiple .foo sections should all
         // have the same sh_name.  However, this is not guaranteed
         // by the ELF spec and not all ELF object file producers may
         // be so clever.
         size_t len = strlen(name) + 1;
         const char *p = sh_name ? names + sh_name + len : names;
         p = reinterpret_cast<const char*>(memmem(p, names_size - (p - names),
                                                  name, len));
         if (p == NULL)
           return NULL;
         sh_name = p - names;
         hdr = pshdrs;
         if (sh_name == 0)
           return hdr;
       }

     hdr += shdr_size;
     while (hdr < hdr_end)
       {
         typename elfcpp::Shdr<size, big_endian> shdr(hdr);
         if (shdr.get_sh_name() == sh_name)
           return hdr;
         hdr += shdr_size;
       }
     hdr = NULL;
     if (sh_name == 0)
       return hdr;
   }
}

// Return whether there is a GNU .eh_frame section, given the section
// headers and the section names.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::find_eh_frame(
   const unsigned char* pshdrs,
   const char* names,
   section_size_type names_size) const
{
 const unsigned char* s = NULL;

 while (1)
   {
     s = this->template find_shdr<size, big_endian>(pshdrs, ".eh_frame",
                                                    names, names_size, s);
     if (s == NULL)
       return false;

     typename This::Shdr shdr(s);
     if (this->check_eh_frame_flags(&shdr))
       return true;
   }
}

// Return TRUE if this is a section whose contents will be needed in the
// Add_symbols task.  This function is only called for sections that have
// already passed the test in is_compressed_debug_section() and the debug
// section name prefix, ".debug"/".zdebug", has been skipped.

static bool
need_decompressed_section(const char* name)
{
 if (*name++ != '_')
   return false;

#ifdef ENABLE_THREADS
 // Decompressing these sections now will help only if we're
 // multithreaded.
 if (parameters->options().threads())
   {
     // We will need .zdebug_str if this is not an incremental link
     // (i.e., we are processing string merge sections) or if we need
     // to build a gdb index.
     if ((!parameters->incremental() || parameters->options().gdb_index())
         && strcmp(name, "str") == 0)
       return true;

     // We will need these other sections when building a gdb index.
     if (parameters->options().gdb_index()
         && (strcmp(name, "info") == 0
             || strcmp(name, "types") == 0
             || strcmp(name, "pubnames") == 0
             || strcmp(name, "pubtypes") == 0
             || strcmp(name, "ranges") == 0
             || strcmp(name, "abbrev") == 0))
       return true;
   }
#endif

 // Even when single-threaded, we will need .zdebug_str if this is
 // not an incremental link and we are building a gdb index.
 // Otherwise, we would decompress the section twice: once for
 // string merge processing, and once for building the gdb index.
 if (!parameters->incremental()
     && parameters->options().gdb_index()
     && strcmp(name, "str") == 0)
   return true;

 return false;
}

// Build a table for any compressed debug sections, mapping each section index
// to the uncompressed size and (if needed) the decompressed contents.

template<int size, bool big_endian>
Compressed_section_map*
build_compressed_section_map(
   const unsigned char* pshdrs,
   unsigned int shnum,
   const char* names,
   section_size_type names_size,
   Object* obj,
   bool decompress_if_needed)
{
 Compressed_section_map* uncompressed_map = new Compressed_section_map();
 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 const unsigned char* p = pshdrs + shdr_size;

 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
   {
     typename elfcpp::Shdr<size, big_endian> shdr(p);
     if (shdr.get_sh_type() == elfcpp::SHT_PROGBITS
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         if (shdr.get_sh_name() >= names_size)
           {
             obj->error(_("bad section name offset for section %u: %lu"),
                        i, static_cast<unsigned long>(shdr.get_sh_name()));
             continue;
           }

         const char* name = names + shdr.get_sh_name();
         bool is_compressed = ((shdr.get_sh_flags()
                                & elfcpp::SHF_COMPRESSED) != 0);
         bool is_zcompressed = (!is_compressed
                                && is_compressed_debug_section(name));

         if (is_zcompressed || is_compressed)
           {
             section_size_type len;
             const unsigned char* contents =
                 obj->section_contents(i, &len, false);
             uint64_t uncompressed_size;
             Compressed_section_info info;
             if (is_zcompressed)
               {
                 // Skip over the ".zdebug" prefix.
                 name += 7;
                 uncompressed_size = get_uncompressed_size(contents, len);
                 info.addralign = shdr.get_sh_addralign();
               }
             else
               {
                 // Skip over the ".debug" prefix.
                 name += 6;
                 elfcpp::Chdr<size, big_endian> chdr(contents);
                 uncompressed_size = chdr.get_ch_size();
                 info.addralign = chdr.get_ch_addralign();
               }
             info.size = convert_to_section_size_type(uncompressed_size);
             info.flag = shdr.get_sh_flags();
             info.contents = NULL;
             if (uncompressed_size != -1ULL)
               {
                 unsigned char* uncompressed_data = NULL;
                 if (decompress_if_needed && need_decompressed_section(name))
                   {
                     uncompressed_data = new unsigned char[uncompressed_size];
                     if (decompress_input_section(contents, len,
                                                  uncompressed_data,
                                                  uncompressed_size,
                                                  size, big_endian,
                                                  shdr.get_sh_flags()))
                       info.contents = uncompressed_data;
                     else
                       delete[] uncompressed_data;
                   }
                 (*uncompressed_map)[i] = info;
               }
           }
       }
   }
 return uncompressed_map;
}

// Stash away info for a number of special sections.
// Return true if any of the sections found require local symbols to be read.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::do_find_special_sections(
   Read_symbols_data* sd)
{
 const unsigned char* const pshdrs = sd->section_headers->data();
 const unsigned char* namesu = sd->section_names->data();
 const char* names = reinterpret_cast<const char*>(namesu);

 if (this->find_eh_frame(pshdrs, names, sd->section_names_size))
   this->has_eh_frame_ = true;

 Compressed_section_map* compressed_sections =
   build_compressed_section_map<size, big_endian>(
     pshdrs, this->shnum(), names, sd->section_names_size, this, true);
 if (compressed_sections != NULL)
   this->set_compressed_sections(compressed_sections);

 return (this->has_eh_frame_
         || (!parameters->options().relocatable()
             && parameters->options().gdb_index()
             && (memmem(names, sd->section_names_size, "debug_info", 11) != NULL
                 || memmem(names, sd->section_names_size,
                           "debug_types", 12) != NULL)));
}

// Read the sections and symbols from an object file.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
{
 this->base_read_symbols(sd);
}

// Read the sections and symbols from an object file.  This is common
// code for all target-specific overrides of do_read_symbols().

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::base_read_symbols(Read_symbols_data* sd)
{
 this->read_section_data(&this->elf_file_, sd);

 const unsigned char* const pshdrs = sd->section_headers->data();

 this->find_symtab(pshdrs);

 bool need_local_symbols = this->do_find_special_sections(sd);

 sd->symbols = NULL;
 sd->symbols_size = 0;
 sd->external_symbols_offset = 0;
 sd->symbol_names = NULL;
 sd->symbol_names_size = 0;

 if (this->symtab_shndx_ == 0)
   {
     // No symbol table.  Weird but legal.
     return;
   }

 // Get the symbol table section header.
 typename This::Shdr symtabshdr(pshdrs
                                + this->symtab_shndx_ * This::shdr_size);
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

 // If this object has a .eh_frame section, or if building a .gdb_index
 // section and there is debug info, we need all the symbols.
 // Otherwise we only need the external symbols.  While it would be
 // simpler to just always read all the symbols, I've seen object
 // files with well over 2000 local symbols, which for a 64-bit
 // object file format is over 5 pages that we don't need to read
 // now.

 const int sym_size = This::sym_size;
 const unsigned int loccount = symtabshdr.get_sh_info();
 this->local_symbol_count_ = loccount;
 this->local_values_.resize(loccount);
 section_offset_type locsize = loccount * sym_size;
 off_t dataoff = symtabshdr.get_sh_offset();
 section_size_type datasize =
   convert_to_section_size_type(symtabshdr.get_sh_size());
 off_t extoff = dataoff + locsize;
 section_size_type extsize = datasize - locsize;

 off_t readoff = need_local_symbols ? dataoff : extoff;
 section_size_type readsize = need_local_symbols ? datasize : extsize;

 if (readsize == 0)
   {
     // No external symbols.  Also weird but also legal.
     return;
   }

 File_view* fvsymtab = this->get_lasting_view(readoff, readsize, true, false);

 // Read the section header for the symbol names.
 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
 if (strtab_shndx >= this->shnum())
   {
     this->error(_("invalid symbol table name index: %u"), strtab_shndx);
     return;
   }
 typename This::Shdr strtabshdr(pshdrs + strtab_shndx * This::shdr_size);
 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
   {
     this->error(_("symbol table name section has wrong type: %u"),
                 static_cast<unsigned int>(strtabshdr.get_sh_type()));
     return;
   }

 // Read the symbol names.
 File_view* fvstrtab = this->get_lasting_view(strtabshdr.get_sh_offset(),
                                              strtabshdr.get_sh_size(),
                                              false, true);

 sd->symbols = fvsymtab;
 sd->symbols_size = readsize;
 sd->external_symbols_offset = need_local_symbols ? locsize : 0;
 sd->symbol_names = fvstrtab;
 sd->symbol_names_size =
   convert_to_section_size_type(strtabshdr.get_sh_size());
}

// Return the section index of symbol SYM.  Set *VALUE to its value in
// the object file.  Set *IS_ORDINARY if this is an ordinary section
// index, not a special code between SHN_LORESERVE and SHN_HIRESERVE.
// Note that for a symbol which is not defined in this object file,
// this will set *VALUE to 0 and return SHN_UNDEF; it will not return
// the final value of the symbol in the link.

template<int size, bool big_endian>
unsigned int
Sized_relobj_file<size, big_endian>::symbol_section_and_value(unsigned int sym,
                                                             Address* value,
                                                             bool* is_ordinary)
{
 section_size_type symbols_size;
 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
                                                       &symbols_size,
                                                       false);

 const size_t count = symbols_size / This::sym_size;
 gold_assert(sym < count);

 elfcpp::Sym<size, big_endian> elfsym(symbols + sym * This::sym_size);
 *value = elfsym.get_st_value();

 return this->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
}

// Return whether to include a section group in the link.  LAYOUT is
// used to keep track of which section groups we have already seen.
// INDEX is the index of the section group and SHDR is the section
// header.  If we do not want to include this group, we set bits in
// OMIT for each section which should be discarded.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::include_section_group(
   Symbol_table* symtab,
   Layout* layout,
   unsigned int index,
   const char* name,
   const unsigned char* shdrs,
   const char* section_names,
   section_size_type section_names_size,
   std::vector<bool>* omit)
{
 // Read the section contents.
 typename This::Shdr shdr(shdrs + index * This::shdr_size);
 const unsigned char* pcon = this->get_view(shdr.get_sh_offset(),
                                            shdr.get_sh_size(), true, false);
 const elfcpp::Elf_Word* pword =
   reinterpret_cast<const elfcpp::Elf_Word*>(pcon);

 // The first word contains flags.  We only care about COMDAT section
 // groups.  Other section groups are always included in the link
 // just like ordinary sections.
 elfcpp::Elf_Word flags = elfcpp::Swap<32, big_endian>::readval(pword);

 // Look up the group signature, which is the name of a symbol.  ELF
 // uses a symbol name because some group signatures are long, and
 // the name is generally already in the symbol table, so it makes
 // sense to put the long string just once in .strtab rather than in
 // both .strtab and .shstrtab.

 // Get the appropriate symbol table header (this will normally be
 // the single SHT_SYMTAB section, but in principle it need not be).
 const unsigned int link = this->adjust_shndx(shdr.get_sh_link());
 typename This::Shdr symshdr(this, this->elf_file_.section_header(link));

 // Read the symbol table entry.
 unsigned int symndx = shdr.get_sh_info();
 if (symndx >= symshdr.get_sh_size() / This::sym_size)
   {
     this->error(_("section group %u info %u out of range"),
                 index, symndx);
     return false;
   }
 off_t symoff = symshdr.get_sh_offset() + symndx * This::sym_size;
 const unsigned char* psym = this->get_view(symoff, This::sym_size, true,
                                            false);
 elfcpp::Sym<size, big_endian> sym(psym);

 // Read the symbol table names.
 section_size_type symnamelen;
 const unsigned char* psymnamesu;
 psymnamesu = this->section_contents(this->adjust_shndx(symshdr.get_sh_link()),
                                     &symnamelen, true);
 const char* psymnames = reinterpret_cast<const char*>(psymnamesu);

 // Get the section group signature.
 if (sym.get_st_name() >= symnamelen)
   {
     this->error(_("symbol %u name offset %u out of range"),
                 symndx, sym.get_st_name());
     return false;
   }

 std::string signature(psymnames + sym.get_st_name());

 // It seems that some versions of gas will create a section group
 // associated with a section symbol, and then fail to give a name to
 // the section symbol.  In such a case, use the name of the section.
 if (signature[0] == '\0' && sym.get_st_type() == elfcpp::STT_SECTION)
   {
     bool is_ordinary;
     unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
                                                     sym.get_st_shndx(),
                                                     &is_ordinary);
     if (!is_ordinary || sym_shndx >= this->shnum())
       {
         this->error(_("symbol %u invalid section index %u"),
                     symndx, sym_shndx);
         return false;
       }
     typename This::Shdr member_shdr(shdrs + sym_shndx * This::shdr_size);
     if (member_shdr.get_sh_name() < section_names_size)
       signature = section_names + member_shdr.get_sh_name();
   }

 // Record this section group in the layout, and see whether we've already
 // seen one with the same signature.
 bool include_group;
 bool is_comdat;
 Kept_section* kept_section = NULL;

 if ((flags & elfcpp::GRP_COMDAT) == 0)
   {
     include_group = true;
     is_comdat = false;
   }
 else
   {
     include_group = layout->find_or_add_kept_section(signature,
                                                      this, index, true,
                                                      true, &kept_section);
     is_comdat = true;
   }

 if (is_comdat && include_group)
   {
     Incremental_inputs* incremental_inputs = layout->incremental_inputs();
     if (incremental_inputs != NULL)
       incremental_inputs->report_comdat_group(this, signature.c_str());
   }

 size_t count = shdr.get_sh_size() / sizeof(elfcpp::Elf_Word);

 std::vector<unsigned int> shndxes;
 bool relocate_group = include_group && parameters->options().relocatable();
 if (relocate_group)
   shndxes.reserve(count - 1);

 for (size_t i = 1; i < count; ++i)
   {
     elfcpp::Elf_Word shndx =
       this->adjust_shndx(elfcpp::Swap<32, big_endian>::readval(pword + i));

     if (relocate_group)
       shndxes.push_back(shndx);

     if (shndx >= this->shnum())
       {
         this->error(_("section %u in section group %u out of range"),
                     shndx, index);
         continue;
       }

     // Check for an earlier section number, since we're going to get
     // it wrong--we may have already decided to include the section.
     if (shndx < index)
       this->error(_("invalid section group %u refers to earlier section %u"),
                   index, shndx);

     // Get the name of the member section.
     typename This::Shdr member_shdr(shdrs + shndx * This::shdr_size);
     if (member_shdr.get_sh_name() >= section_names_size)
       {
         // This is an error, but it will be diagnosed eventually
         // in do_layout, so we don't need to do anything here but
         // ignore it.
         continue;
       }
     std::string mname(section_names + member_shdr.get_sh_name());

     if (include_group)
       {
         if (is_comdat)
           kept_section->add_comdat_section(mname, shndx,
                                            member_shdr.get_sh_size());
       }
     else
       {
         (*omit)[shndx] = true;

         // Store a mapping from this section to the Kept_section
         // information for the group.  This mapping is used for
         // relocation processing and diagnostics.
         // If the kept section is a linkonce section, we don't
         // bother with it unless the comdat group contains just
         // a single section, making it easy to match up.
         if (is_comdat
             && (kept_section->is_comdat() || count == 2))
           this->set_kept_comdat_section(shndx, true, symndx,
                                         member_shdr.get_sh_size(),
                                         kept_section);
       }
   }

 if (relocate_group)
   layout->layout_group(symtab, this, index, name, signature.c_str(),
                        shdr, flags, &shndxes);

 return include_group;
}

// Whether to include a linkonce section in the link.  NAME is the
// name of the section and SHDR is the section header.

// Linkonce sections are a GNU extension implemented in the original
// GNU linker before section groups were defined.  The semantics are
// that we only include one linkonce section with a given name.  The
// name of a linkonce section is normally .gnu.linkonce.T.SYMNAME,
// where T is the type of section and SYMNAME is the name of a symbol.
// In an attempt to make linkonce sections interact well with section
// groups, we try to identify SYMNAME and use it like a section group
// signature.  We want to block section groups with that signature,
// but not other linkonce sections with that signature.  We also use
// the full name of the linkonce section as a normal section group
// signature.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::include_linkonce_section(
   Layout* layout,
   unsigned int index,
   const char* name,
   const elfcpp::Shdr<size, big_endian>& shdr)
{
 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
 // In general the symbol name we want will be the string following
 // the last '.'.  However, we have to handle the case of
 // .gnu.linkonce.t.__i686.get_pc_thunk.bx, which was generated by
 // some versions of gcc.  So we use a heuristic: if the name starts
 // with ".gnu.linkonce.t.", we use everything after that.  Otherwise
 // we look for the last '.'.  We can't always simply skip
 // ".gnu.linkonce.X", because we have to deal with cases like
 // ".gnu.linkonce.d.rel.ro.local".
 const char* const linkonce_t = ".gnu.linkonce.t.";
 const char* symname;
 if (strncmp(name, linkonce_t, strlen(linkonce_t)) == 0)
   symname = name + strlen(linkonce_t);
 else
   symname = strrchr(name, '.') + 1;
 std::string sig1(symname);
 std::string sig2(name);
 Kept_section* kept1;
 Kept_section* kept2;
 bool include1 = layout->find_or_add_kept_section(sig1, this, index, false,
                                                  false, &kept1);
 bool include2 = layout->find_or_add_kept_section(sig2, this, index, false,
                                                  true, &kept2);

 if (!include2)
   {
     // We are not including this section because we already saw the
     // name of the section as a signature.  This normally implies
     // that the kept section is another linkonce section.  If it is
     // the same size, record it as the section which corresponds to
     // this one.
     if (kept2->object() != NULL && !kept2->is_comdat())
       this->set_kept_comdat_section(index, false, 0, sh_size, kept2);
   }
 else if (!include1)
   {
     // The section is being discarded on the basis of its symbol
     // name.  This means that the corresponding kept section was
     // part of a comdat group, and it will be difficult to identify
     // the specific section within that group that corresponds to
     // this linkonce section.  We'll handle the simple case where
     // the group has only one member section.  Otherwise, it's not
     // worth the effort.
     if (kept1->object() != NULL && kept1->is_comdat())
       this->set_kept_comdat_section(index, false, 0, sh_size, kept1);
   }
 else
   {
     kept1->set_linkonce_size(sh_size);
     kept2->set_linkonce_size(sh_size);
   }

 return include1 && include2;
}

// Layout an input section.

template<int size, bool big_endian>
inline void
Sized_relobj_file<size, big_endian>::layout_section(
   Layout* layout,
   unsigned int shndx,
   const char* name,
   const typename This::Shdr& shdr,
   unsigned int sh_type,
   unsigned int reloc_shndx,
   unsigned int reloc_type)
{
 off_t offset;
 Output_section* os = layout->layout(this, shndx, name, shdr, sh_type,
                                     reloc_shndx, reloc_type, &offset);

 this->output_sections()[shndx] = os;
 if (offset == -1)
   this->section_offsets()[shndx] = invalid_address;
 else
   this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);

 // If this section requires special handling, and if there are
 // relocs that apply to it, then we must do the special handling
 // before we apply the relocs.
 if (offset == -1 && reloc_shndx != 0)
   this->set_relocs_must_follow_section_writes();
}

// Layout an input .eh_frame section.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::layout_eh_frame_section(
   Layout* layout,
   const unsigned char* symbols_data,
   section_size_type symbols_size,
   const unsigned char* symbol_names_data,
   section_size_type symbol_names_size,
   unsigned int shndx,
   const typename This::Shdr& shdr,
   unsigned int reloc_shndx,
   unsigned int reloc_type)
{
 gold_assert(this->has_eh_frame_);

 off_t offset;
 Output_section* os = layout->layout_eh_frame(this,
                                              symbols_data,
                                              symbols_size,
                                              symbol_names_data,
                                              symbol_names_size,
                                              shndx,
                                              shdr,
                                              reloc_shndx,
                                              reloc_type,
                                              &offset);
 this->output_sections()[shndx] = os;
 if (os == NULL || offset == -1)
   this->section_offsets()[shndx] = invalid_address;
 else
   this->section_offsets()[shndx] = convert_types<Address, off_t>(offset);

 // If this section requires special handling, and if there are
 // relocs that aply to it, then we must do the special handling
 // before we apply the relocs.
 if (os != NULL && offset == -1 && reloc_shndx != 0)
   this->set_relocs_must_follow_section_writes();
}

// Layout an input .note.gnu.property section.

// This note section has an *extremely* non-standard layout.
// The gABI spec says that ELF-64 files should have 8-byte fields and
// 8-byte alignment in the note section, but the Gnu tools generally
// use 4-byte fields and 4-byte alignment (see the comment for
// Layout::create_note).  This section uses 4-byte fields (i.e.,
// namesz, descsz, and type are always 4 bytes), the name field is
// padded to a multiple of 4 bytes, but the desc field is padded
// to a multiple of 4 or 8 bytes, depending on the ELF class.
// The individual properties within the desc field always use
// 4-byte pr_type and pr_datasz fields, but pr_data is padded to
// a multiple of 4 or 8 bytes, depending on the ELF class.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::layout_gnu_property_section(
   Layout* layout,
   unsigned int shndx)
{
 // We ignore Gnu property sections on incremental links.
 if (parameters->incremental())
   return;

 section_size_type contents_len;
 const unsigned char* pcontents = this->section_contents(shndx,
                                                         &contents_len,
                                                         false);
 const unsigned char* pcontents_end = pcontents + contents_len;

 // Loop over all the notes in this section.
 while (pcontents < pcontents_end)
   {
     if (pcontents + 16 > pcontents_end)
       {
         gold_warning(_("%s: corrupt .note.gnu.property section "
                        "(note too short)"),
                      this->name().c_str());
         return;
       }

     size_t namesz = elfcpp::Swap<32, big_endian>::readval(pcontents);
     size_t descsz = elfcpp::Swap<32, big_endian>::readval(pcontents + 4);
     unsigned int ntype = elfcpp::Swap<32, big_endian>::readval(pcontents + 8);
     const unsigned char* pname = pcontents + 12;

     if (namesz != 4 || strcmp(reinterpret_cast<const char*>(pname), "GNU") != 0)
       {
         gold_warning(_("%s: corrupt .note.gnu.property section "
                        "(name is not 'GNU')"),
                      this->name().c_str());
         return;
       }

     if (ntype != elfcpp::NT_GNU_PROPERTY_TYPE_0)
       {
         gold_warning(_("%s: unsupported note type %d "
                        "in .note.gnu.property section"),
                      this->name().c_str(), ntype);
         return;
       }

     size_t aligned_namesz = align_address(namesz, 4);
     const unsigned char* pdesc = pname + aligned_namesz;

     if (pdesc + descsz > pcontents + contents_len)
       {
         gold_warning(_("%s: corrupt .note.gnu.property section"),
                      this->name().c_str());
         return;
       }

     const unsigned char* pprop = pdesc;

     // Loop over the program properties in this note.
     while (pprop < pdesc + descsz)
       {
         if (pprop + 8 > pdesc + descsz)
           {
             gold_warning(_("%s: corrupt .note.gnu.property section"),
                          this->name().c_str());
             return;
           }
         unsigned int pr_type = elfcpp::Swap<32, big_endian>::readval(pprop);
         size_t pr_datasz = elfcpp::Swap<32, big_endian>::readval(pprop + 4);
         pprop += 8;
         if (pprop + pr_datasz > pdesc + descsz)
           {
             gold_warning(_("%s: corrupt .note.gnu.property section"),
                          this->name().c_str());
             return;
           }
         layout->layout_gnu_property(ntype, pr_type, pr_datasz, pprop, this);
         pprop += align_address(pr_datasz, size / 8);
       }

     pcontents = pdesc + align_address(descsz, size / 8);
   }
}

// This a copy of lto_section defined in GCC (lto-streamer.h)

struct lto_section
{
 int16_t major_version;
 int16_t minor_version;
 unsigned char slim_object;

 /* Flags is a private field that is not defined publicly.  */
 uint16_t flags;
};

// Lay out the input sections.  We walk through the sections and check
// whether they should be included in the link.  If they should, we
// pass them to the Layout object, which will return an output section
// and an offset.
// This function is called twice sometimes, two passes, when mapping
// of input sections to output sections must be delayed.
// This is true for the following :
// * Garbage collection (--gc-sections): Some input sections will be
// discarded and hence the assignment must wait until the second pass.
// In the first pass,  it is for setting up some sections as roots to
// a work-list for --gc-sections and to do comdat processing.
// * Identical Code Folding (--icf=<safe,all>): Some input sections
// will be folded and hence the assignment must wait.
// * Using plugins to map some sections to unique segments: Mapping
// some sections to unique segments requires mapping them to unique
// output sections too.  This can be done via plugins now and this
// information is not available in the first pass.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_layout(Symbol_table* symtab,
                                              Layout* layout,
                                              Read_symbols_data* sd)
{
 const unsigned int unwind_section_type =
     parameters->target().unwind_section_type();
 const unsigned int shnum = this->shnum();

 /* Should this function be called twice?  */
 bool is_two_pass = (parameters->options().gc_sections()
                     || parameters->options().icf_enabled()
                     || layout->is_unique_segment_for_sections_specified());

 /* Only one of is_pass_one and is_pass_two is true.  Both are false when
    a two-pass approach is not needed.  */
 bool is_pass_one = false;
 bool is_pass_two = false;

 Symbols_data* gc_sd = NULL;

 /* Check if do_layout needs to be two-pass.  If so, find out which pass
    should happen.  In the first pass, the data in sd is saved to be used
    later in the second pass.  */
 if (is_two_pass)
   {
     gc_sd = this->get_symbols_data();
     if (gc_sd == NULL)
       {
         gold_assert(sd != NULL);
         is_pass_one = true;
       }
     else
       {
         if (parameters->options().gc_sections())
           gold_assert(symtab->gc()->is_worklist_ready());
         if (parameters->options().icf_enabled())
           gold_assert(symtab->icf()->is_icf_ready());
         is_pass_two = true;
       }
   }

 if (shnum == 0)
   return;

 if (is_pass_one)
   {
     // During garbage collection save the symbols data to use it when
     // re-entering this function.
     gc_sd = new Symbols_data;
     this->copy_symbols_data(gc_sd, sd, This::shdr_size * shnum);
     this->set_symbols_data(gc_sd);
   }

 const unsigned char* section_headers_data = NULL;
 section_size_type section_names_size;
 const unsigned char* symbols_data = NULL;
 section_size_type symbols_size;
 const unsigned char* symbol_names_data = NULL;
 section_size_type symbol_names_size;

 if (is_two_pass)
   {
     section_headers_data = gc_sd->section_headers_data;
     section_names_size = gc_sd->section_names_size;
     symbols_data = gc_sd->symbols_data;
     symbols_size = gc_sd->symbols_size;
     symbol_names_data = gc_sd->symbol_names_data;
     symbol_names_size = gc_sd->symbol_names_size;
   }
 else
   {
     section_headers_data = sd->section_headers->data();
     section_names_size = sd->section_names_size;
     if (sd->symbols != NULL)
       symbols_data = sd->symbols->data();
     symbols_size = sd->symbols_size;
     if (sd->symbol_names != NULL)
       symbol_names_data = sd->symbol_names->data();
     symbol_names_size = sd->symbol_names_size;
   }

 // Get the section headers.
 const unsigned char* shdrs = section_headers_data;
 const unsigned char* pshdrs;

 // Get the section names.
 const unsigned char* pnamesu = (is_two_pass
                                 ? gc_sd->section_names_data
                                 : sd->section_names->data());

 const char* pnames = reinterpret_cast<const char*>(pnamesu);

 // If any input files have been claimed by plugins, we need to defer
 // actual layout until the replacement files have arrived.
 const bool should_defer_layout =
     (parameters->options().has_plugins()
      && parameters->options().plugins()->should_defer_layout());
 unsigned int num_sections_to_defer = 0;

 // For each section, record the index of the reloc section if any.
 // Use 0 to mean that there is no reloc section, -1U to mean that
 // there is more than one.
 std::vector<unsigned int> reloc_shndx(shnum, 0);
 std::vector<unsigned int> reloc_type(shnum, elfcpp::SHT_NULL);
 // Skip the first, dummy, section.
 pshdrs = shdrs + This::shdr_size;
 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
   {
     typename This::Shdr shdr(pshdrs);

     // Count the number of sections whose layout will be deferred.
     if (should_defer_layout && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
       ++num_sections_to_defer;

     unsigned int sh_type = shdr.get_sh_type();
     if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
       {
         unsigned int target_shndx = this->adjust_shndx(shdr.get_sh_info());
         if (target_shndx == 0 || target_shndx >= shnum)
           {
             this->error(_("relocation section %u has bad info %u"),
                         i, target_shndx);
             continue;
           }

         if (reloc_shndx[target_shndx] != 0)
           reloc_shndx[target_shndx] = -1U;
         else
           {
             reloc_shndx[target_shndx] = i;
             reloc_type[target_shndx] = sh_type;
           }
       }
   }

 Output_sections& out_sections(this->output_sections());
 std::vector<Address>& out_section_offsets(this->section_offsets());

 if (!is_pass_two)
   {
     out_sections.resize(shnum);
     out_section_offsets.resize(shnum);
   }

 // If we are only linking for symbols, then there is nothing else to
 // do here.
 if (this->input_file()->just_symbols())
   {
     if (!is_pass_two)
       {
         delete sd->section_headers;
         sd->section_headers = NULL;
         delete sd->section_names;
         sd->section_names = NULL;
       }
     return;
   }

 if (num_sections_to_defer > 0)
   {
     parameters->options().plugins()->add_deferred_layout_object(this);
     this->deferred_layout_.reserve(num_sections_to_defer);
     this->is_deferred_layout_ = true;
   }

 // Whether we've seen a .note.GNU-stack section.
 bool seen_gnu_stack = false;
 // The flags of a .note.GNU-stack section.
 uint64_t gnu_stack_flags = 0;

 // Keep track of which sections to omit.
 std::vector<bool> omit(shnum, false);

 // Keep track of reloc sections when emitting relocations.
 const bool relocatable = parameters->options().relocatable();
 const bool emit_relocs = (relocatable
                           || parameters->options().emit_relocs());
 std::vector<unsigned int> reloc_sections;

 // Keep track of .eh_frame sections.
 std::vector<unsigned int> eh_frame_sections;

 // Keep track of .debug_info and .debug_types sections.
 std::vector<unsigned int> debug_info_sections;
 std::vector<unsigned int> debug_types_sections;

 // Skip the first, dummy, section.
 pshdrs = shdrs + This::shdr_size;
 for (unsigned int i = 1; i < shnum; ++i, pshdrs += This::shdr_size)
   {
     typename This::Shdr shdr(pshdrs);
     const unsigned int sh_name = shdr.get_sh_name();
     unsigned int sh_type = shdr.get_sh_type();

     if (sh_name >= section_names_size)
       {
         this->error(_("bad section name offset for section %u: %lu"),
                     i, static_cast<unsigned long>(sh_name));
         return;
       }

     const char* name = pnames + sh_name;

     if (!is_pass_two)
       {
         if (this->handle_gnu_warning_section(name, i, symtab))
           {
             if (!relocatable && !parameters->options().shared())
               omit[i] = true;
           }

         // The .note.GNU-stack section is special.  It gives the
         // protection flags that this object file requires for the stack
         // in memory.
         if (strcmp(name, ".note.GNU-stack") == 0)
           {
             seen_gnu_stack = true;
             gnu_stack_flags |= shdr.get_sh_flags();
             omit[i] = true;
           }

         // The .note.GNU-split-stack section is also special.  It
         // indicates that the object was compiled with
         // -fsplit-stack.
         if (this->handle_split_stack_section(name))
           {
             if (!relocatable && !parameters->options().shared())
               omit[i] = true;
           }

         // Skip attributes section.
         if (parameters->target().is_attributes_section(name))
           {
             omit[i] = true;
           }

         // Handle .note.gnu.property sections.
         if (sh_type == elfcpp::SHT_NOTE
             && strcmp(name, ".note.gnu.property") == 0)
           {
             this->layout_gnu_property_section(layout, i);
             omit[i] = true;
           }

         bool discard = omit[i];
         if (!discard)
           {
             if (sh_type == elfcpp::SHT_GROUP)
               {
                 if (!this->include_section_group(symtab, layout, i, name,
                                                  shdrs, pnames,
                                                  section_names_size,
                                                  &omit))
                   discard = true;
               }
             else if ((shdr.get_sh_flags() & elfcpp::SHF_GROUP) == 0
                      && Layout::is_linkonce(name))
               {
                 if (!this->include_linkonce_section(layout, i, name, shdr))
                   discard = true;
               }
           }

         // Add the section to the incremental inputs layout.
         Incremental_inputs* incremental_inputs = layout->incremental_inputs();
         if (incremental_inputs != NULL
             && !discard
             && can_incremental_update(sh_type))
           {
             off_t sh_size = shdr.get_sh_size();
             section_size_type uncompressed_size;
             if (this->section_is_compressed(i, &uncompressed_size))
               sh_size = uncompressed_size;
             incremental_inputs->report_input_section(this, i, name, sh_size);
           }

         if (discard)
           {
             // Do not include this section in the link.
             out_sections[i] = NULL;
             out_section_offsets[i] = invalid_address;
             continue;
           }
       }

     if (is_pass_one && parameters->options().gc_sections())
       {
         if (this->is_section_name_included(name)
             || layout->keep_input_section (this, name)
             || sh_type == elfcpp::SHT_INIT_ARRAY
             || sh_type == elfcpp::SHT_FINI_ARRAY
             || this->osabi().has_shf_retain(shdr.get_sh_flags()))
           {
             symtab->gc()->worklist().push_back(Section_id(this, i));
           }
         // If the section name XXX can be represented as a C identifier
         // it cannot be discarded if there are references to
         // __start_XXX and __stop_XXX symbols.  These need to be
         // specially handled.
         if (is_cident(name))
           {
             symtab->gc()->add_cident_section(name, Section_id(this, i));
           }
       }

     // When doing a relocatable link we are going to copy input
     // reloc sections into the output.  We only want to copy the
     // ones associated with sections which are not being discarded.
     // However, we don't know that yet for all sections.  So save
     // reloc sections and process them later. Garbage collection is
     // not triggered when relocatable code is desired.
     if (emit_relocs
         && (sh_type == elfcpp::SHT_REL
             || sh_type == elfcpp::SHT_RELA))
       {
         reloc_sections.push_back(i);
         continue;
       }

     if (relocatable && sh_type == elfcpp::SHT_GROUP)
       continue;

     // The .eh_frame section is special.  It holds exception frame
     // information that we need to read in order to generate the
     // exception frame header.  We process these after all the other
     // sections so that the exception frame reader can reliably
     // determine which sections are being discarded, and discard the
     // corresponding information.
     if (this->check_eh_frame_flags(&shdr)
         && strcmp(name, ".eh_frame") == 0)
       {
         // If the target has a special unwind section type, let's
         // canonicalize it here.
         sh_type = unwind_section_type;
         if (!relocatable)
           {
             if (is_pass_one)
               {
                 if (this->is_deferred_layout())
                   out_sections[i] = reinterpret_cast<Output_section*>(2);
                 else
                   out_sections[i] = reinterpret_cast<Output_section*>(1);
                 out_section_offsets[i] = invalid_address;
               }
             else if (this->is_deferred_layout())
               {
                 out_sections[i] = reinterpret_cast<Output_section*>(2);
                 out_section_offsets[i] = invalid_address;
                 this->deferred_layout_.push_back(
                     Deferred_layout(i, name, sh_type, pshdrs,
                                     reloc_shndx[i], reloc_type[i]));
               }
             else
               eh_frame_sections.push_back(i);
             continue;
           }
       }

     if (is_pass_two && parameters->options().gc_sections())
       {
         // This is executed during the second pass of garbage
         // collection. do_layout has been called before and some
         // sections have been already discarded. Simply ignore
         // such sections this time around.
         if (out_sections[i] == NULL)
           {
             gold_assert(out_section_offsets[i] == invalid_address);
             continue;
           }
         if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
             && symtab->gc()->is_section_garbage(this, i))
             {
               if (parameters->options().print_gc_sections())
                 gold_info(_("%s: removing unused section from '%s'"
                             " in file '%s'"),
                           program_name, this->section_name(i).c_str(),
                           this->name().c_str());
               out_sections[i] = NULL;
               out_section_offsets[i] = invalid_address;
               continue;
             }
       }

     if (is_pass_two && parameters->options().icf_enabled())
       {
         if (out_sections[i] == NULL)
           {
             gold_assert(out_section_offsets[i] == invalid_address);
             continue;
           }
         if (((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0)
             && symtab->icf()->is_section_folded(this, i))
             {
               if (parameters->options().print_icf_sections())
                 {
                   Section_id folded =
                               symtab->icf()->get_folded_section(this, i);
                   Relobj* folded_obj =
                               reinterpret_cast<Relobj*>(folded.first);
                   gold_info(_("%s: ICF folding section '%s' in file '%s' "
                               "into '%s' in file '%s'"),
                             program_name, this->section_name(i).c_str(),
                             this->name().c_str(),
                             folded_obj->section_name(folded.second).c_str(),
                             folded_obj->name().c_str());
                 }
               out_sections[i] = NULL;
               out_section_offsets[i] = invalid_address;
               continue;
             }
       }

     // Defer layout here if input files are claimed by plugins.  When gc
     // is turned on this function is called twice; we only want to do this
     // on the first pass.
     if (!is_pass_two
         && this->is_deferred_layout()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
       {
         this->deferred_layout_.push_back(Deferred_layout(i, name, sh_type,
                                                          pshdrs,
                                                          reloc_shndx[i],
                                                          reloc_type[i]));
         // Put dummy values here; real values will be supplied by
         // do_layout_deferred_sections.
         out_sections[i] = reinterpret_cast<Output_section*>(2);
         out_section_offsets[i] = invalid_address;
         continue;
       }

     // During gc_pass_two if a section that was previously deferred is
     // found, do not layout the section as layout_deferred_sections will
     // do it later from gold.cc.
     if (is_pass_two
         && (out_sections[i] == reinterpret_cast<Output_section*>(2)))
       continue;

     if (is_pass_one)
       {
         // This is during garbage collection. The out_sections are
         // assigned in the second call to this function.
         out_sections[i] = reinterpret_cast<Output_section*>(1);
         out_section_offsets[i] = invalid_address;
       }
     else
       {
         // When garbage collection is switched on the actual layout
         // only happens in the second call.
         this->layout_section(layout, i, name, shdr, sh_type, reloc_shndx[i],
                              reloc_type[i]);

         // When generating a .gdb_index section, we do additional
         // processing of .debug_info and .debug_types sections after all
         // the other sections for the same reason as above.
         if (!relocatable
             && parameters->options().gdb_index()
             && !(shdr.get_sh_flags() & elfcpp::SHF_ALLOC))
           {
             if (strcmp(name, ".debug_info") == 0
                 || strcmp(name, ".zdebug_info") == 0)
               debug_info_sections.push_back(i);
             else if (strcmp(name, ".debug_types") == 0
                      || strcmp(name, ".zdebug_types") == 0)
               debug_types_sections.push_back(i);
           }
       }

     /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
        section.  */
     const char *lto_section_name = ".gnu.lto_.lto.";
     if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
       {
         section_size_type contents_len;
         const unsigned char* pcontents
           = this->section_contents(i, &contents_len, false);
         if (contents_len >= sizeof(lto_section))
           {
             const lto_section* lsection
               = reinterpret_cast<const lto_section*>(pcontents);
             if (lsection->slim_object)
               layout->set_lto_slim_object();
           }
       }
   }

 if (!is_pass_two)
   {
     layout->merge_gnu_properties(this);
     layout->layout_gnu_stack(seen_gnu_stack, gnu_stack_flags, this);
   }

 // Handle the .eh_frame sections after the other sections.
 gold_assert(!is_pass_one || eh_frame_sections.empty());
 for (std::vector<unsigned int>::const_iterator p = eh_frame_sections.begin();
      p != eh_frame_sections.end();
      ++p)
   {
     unsigned int i = *p;
     const unsigned char* pshdr;
     pshdr = section_headers_data + i * This::shdr_size;
     typename This::Shdr shdr(pshdr);

     this->layout_eh_frame_section(layout,
                                   symbols_data,
                                   symbols_size,
                                   symbol_names_data,
                                   symbol_names_size,
                                   i,
                                   shdr,
                                   reloc_shndx[i],
                                   reloc_type[i]);
   }

 // When doing a relocatable link handle the reloc sections at the
 // end.  Garbage collection  and Identical Code Folding is not
 // turned on for relocatable code.
 if (emit_relocs)
   this->size_relocatable_relocs();

 gold_assert(!is_two_pass || reloc_sections.empty());

 for (std::vector<unsigned int>::const_iterator p = reloc_sections.begin();
      p != reloc_sections.end();
      ++p)
   {
     unsigned int i = *p;
     const unsigned char* pshdr;
     pshdr = section_headers_data + i * This::shdr_size;
     typename This::Shdr shdr(pshdr);

     unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());
     if (data_shndx >= shnum)
       {
         // We already warned about this above.
         continue;
       }

     Output_section* data_section = out_sections[data_shndx];
     if (data_section == reinterpret_cast<Output_section*>(2))
       {
         if (is_pass_two)
           continue;
         // The layout for the data section was deferred, so we need
         // to defer the relocation section, too.
         const char* name = pnames + shdr.get_sh_name();
         this->deferred_layout_relocs_.push_back(
             Deferred_layout(i, name, shdr.get_sh_type(), pshdr, 0,
                             elfcpp::SHT_NULL));
         out_sections[i] = reinterpret_cast<Output_section*>(2);
         out_section_offsets[i] = invalid_address;
         continue;
       }
     if (data_section == NULL)
       {
         out_sections[i] = NULL;
         out_section_offsets[i] = invalid_address;
         continue;
       }

     Relocatable_relocs* rr = new Relocatable_relocs();
     this->set_relocatable_relocs(i, rr);

     Output_section* os = layout->layout_reloc(this, i, shdr, data_section,
                                               rr);
     out_sections[i] = os;
     out_section_offsets[i] = invalid_address;
   }

 // When building a .gdb_index section, scan the .debug_info and
 // .debug_types sections.
 gold_assert(!is_pass_one
             || (debug_info_sections.empty() && debug_types_sections.empty()));
 for (std::vector<unsigned int>::const_iterator p
          = debug_info_sections.begin();
      p != debug_info_sections.end();
      ++p)
   {
     unsigned int i = *p;
     layout->add_to_gdb_index(false, this, symbols_data, symbols_size,
                              i, reloc_shndx[i], reloc_type[i]);
   }
 for (std::vector<unsigned int>::const_iterator p
          = debug_types_sections.begin();
      p != debug_types_sections.end();
      ++p)
   {
     unsigned int i = *p;
     layout->add_to_gdb_index(true, this, symbols_data, symbols_size,
                              i, reloc_shndx[i], reloc_type[i]);
   }

 if (is_pass_two)
   {
     delete[] gc_sd->section_headers_data;
     delete[] gc_sd->section_names_data;
     delete[] gc_sd->symbols_data;
     delete[] gc_sd->symbol_names_data;
     this->set_symbols_data(NULL);
   }
 else
   {
     delete sd->section_headers;
     sd->section_headers = NULL;
     delete sd->section_names;
     sd->section_names = NULL;
   }
}

// Layout sections whose layout was deferred while waiting for
// input files from a plugin.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_layout_deferred_sections(Layout* layout)
{
 typename std::vector<Deferred_layout>::iterator deferred;

 for (deferred = this->deferred_layout_.begin();
      deferred != this->deferred_layout_.end();
      ++deferred)
   {
     typename This::Shdr shdr(deferred->shdr_data_);

     if (!parameters->options().relocatable()
         && deferred->name_ == ".eh_frame"
         && this->check_eh_frame_flags(&shdr))
       {
         // Checking is_section_included is not reliable for
         // .eh_frame sections, because they do not have an output
         // section.  This is not a problem normally because we call
         // layout_eh_frame_section unconditionally, but when
         // deferring sections that is not true.  We don't want to
         // keep all .eh_frame sections because that will cause us to
         // keep all sections that they refer to, which is the wrong
         // way around.  Instead, the eh_frame code will discard
         // .eh_frame sections that refer to discarded sections.

         // Reading the symbols again here may be slow.
         Read_symbols_data sd;
         this->base_read_symbols(&sd);
         this->layout_eh_frame_section(layout,
                                       sd.symbols->data(),
                                       sd.symbols_size,
                                       sd.symbol_names->data(),
                                       sd.symbol_names_size,
                                       deferred->shndx_,
                                       shdr,
                                       deferred->reloc_shndx_,
                                       deferred->reloc_type_);
         continue;
       }

     // If the section is not included, it is because the garbage collector
     // decided it is not needed.  Avoid reverting that decision.
     if (!this->is_section_included(deferred->shndx_))
       continue;

     this->layout_section(layout, deferred->shndx_, deferred->name_.c_str(),
                          shdr, shdr.get_sh_type(), deferred->reloc_shndx_,
                          deferred->reloc_type_);
   }

 this->deferred_layout_.clear();

 // Now handle the deferred relocation sections.

 Output_sections& out_sections(this->output_sections());
 std::vector<Address>& out_section_offsets(this->section_offsets());

 for (deferred = this->deferred_layout_relocs_.begin();
      deferred != this->deferred_layout_relocs_.end();
      ++deferred)
   {
     unsigned int shndx = deferred->shndx_;
     typename This::Shdr shdr(deferred->shdr_data_);
     unsigned int data_shndx = this->adjust_shndx(shdr.get_sh_info());

     Output_section* data_section = out_sections[data_shndx];
     if (data_section == NULL)
       {
         out_sections[shndx] = NULL;
         out_section_offsets[shndx] = invalid_address;
         continue;
       }

     Relocatable_relocs* rr = new Relocatable_relocs();
     this->set_relocatable_relocs(shndx, rr);

     Output_section* os = layout->layout_reloc(this, shndx, shdr,
                                               data_section, rr);
     out_sections[shndx] = os;
     out_section_offsets[shndx] = invalid_address;
   }
}

// Add the symbols to the symbol table.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_add_symbols(Symbol_table* symtab,
                                                   Read_symbols_data* sd,
                                                   Layout* layout)
{
 if (sd->symbols == NULL)
   {
     gold_assert(sd->symbol_names == NULL);
     return;
   }

 const int sym_size = This::sym_size;
 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
                    / sym_size);
 if (symcount * sym_size != sd->symbols_size - sd->external_symbols_offset)
   {
     this->error(_("size of symbols is not multiple of symbol size"));
     return;
   }

 this->symbols_.resize(symcount);

 if (!parameters->options().relocatable()
     && layout->is_lto_slim_object ())
   gold_info(_("%s: plugin needed to handle lto object"),
             this->name().c_str());

 const char* sym_names =
   reinterpret_cast<const char*>(sd->symbol_names->data());
 symtab->add_from_relobj(this,
                         sd->symbols->data() + sd->external_symbols_offset,
                         symcount, this->local_symbol_count_,
                         sym_names, sd->symbol_names_size,
                         &this->symbols_,
                         &this->defined_count_);

 delete sd->symbols;
 sd->symbols = NULL;
 delete sd->symbol_names;
 sd->symbol_names = NULL;
}

// Find out if this object, that is a member of a lib group, should be included
// in the link. We check every symbol defined by this object. If the symbol
// table has a strong undefined reference to that symbol, we have to include
// the object.

template<int size, bool big_endian>
Archive::Should_include
Sized_relobj_file<size, big_endian>::do_should_include_member(
   Symbol_table* symtab,
   Layout* layout,
   Read_symbols_data* sd,
   std::string* why)
{
 char* tmpbuf = NULL;
 size_t tmpbuflen = 0;
 const char* sym_names =
     reinterpret_cast<const char*>(sd->symbol_names->data());
 const unsigned char* syms =
     sd->symbols->data() + sd->external_symbols_offset;
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
                        / sym_size);

 const unsigned char* p = syms;

 for (size_t i = 0; i < symcount; ++i, p += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(p);
     unsigned int st_shndx = sym.get_st_shndx();
     if (st_shndx == elfcpp::SHN_UNDEF)
       continue;

     unsigned int st_name = sym.get_st_name();
     const char* name = sym_names + st_name;
     Symbol* symbol;
     Archive::Should_include t = Archive::should_include_member(symtab,
                                                                layout,
                                                                name,
                                                                &symbol, why,
                                                                &tmpbuf,
                                                                &tmpbuflen);
     if (t == Archive::SHOULD_INCLUDE_YES)
       {
         if (tmpbuf != NULL)
           free(tmpbuf);
         return t;
       }
   }
 if (tmpbuf != NULL)
   free(tmpbuf);
 return Archive::SHOULD_INCLUDE_UNKNOWN;
}

// Iterate over global defined symbols, calling a visitor class V for each.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_for_all_global_symbols(
   Read_symbols_data* sd,
   Library_base::Symbol_visitor_base* v)
{
 const char* sym_names =
     reinterpret_cast<const char*>(sd->symbol_names->data());
 const unsigned char* syms =
     sd->symbols->data() + sd->external_symbols_offset;
 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
 size_t symcount = ((sd->symbols_size - sd->external_symbols_offset)
                    / sym_size);
 const unsigned char* p = syms;

 for (size_t i = 0; i < symcount; ++i, p += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(p);
     if (sym.get_st_shndx() != elfcpp::SHN_UNDEF)
       v->visit(sym_names + sym.get_st_name());
   }
}

// Return whether the local symbol SYMNDX has a PLT offset.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::local_has_plt_offset(
   unsigned int symndx) const
{
 typename Local_plt_offsets::const_iterator p =
   this->local_plt_offsets_.find(symndx);
 return p != this->local_plt_offsets_.end();
}

// Get the PLT offset of a local symbol.

template<int size, bool big_endian>
unsigned int
Sized_relobj_file<size, big_endian>::do_local_plt_offset(
   unsigned int symndx) const
{
 typename Local_plt_offsets::const_iterator p =
   this->local_plt_offsets_.find(symndx);
 gold_assert(p != this->local_plt_offsets_.end());
 return p->second;
}

// Set the PLT offset of a local symbol.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::set_local_plt_offset(
   unsigned int symndx, unsigned int plt_offset)
{
 std::pair<typename Local_plt_offsets::iterator, bool> ins =
   this->local_plt_offsets_.insert(std::make_pair(symndx, plt_offset));
 gold_assert(ins.second);
}

// First pass over the local symbols.  Here we add their names to
// *POOL and *DYNPOOL, and we store the symbol value in
// THIS->LOCAL_VALUES_.  This function is always called from a
// singleton thread.  This is followed by a call to
// finalize_local_symbols.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_count_local_symbols(Stringpool* pool,
                                                           Stringpool* dynpool)
{
 gold_assert(this->symtab_shndx_ != -1U);
 if (this->symtab_shndx_ == 0)
   {
     // This object has no symbols.  Weird but legal.
     return;
   }

 // Read the symbol table section header.
 const unsigned int symtab_shndx = this->symtab_shndx_;
 typename This::Shdr symtabshdr(this,
                                this->elf_file_.section_header(symtab_shndx));
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

 // Read the local symbols.
 const int sym_size = This::sym_size;
 const unsigned int loccount = this->local_symbol_count_;
 gold_assert(loccount == symtabshdr.get_sh_info());
 off_t locsize = loccount * sym_size;
 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                             locsize, true, true);

 // Read the symbol names.
 const unsigned int strtab_shndx =
   this->adjust_shndx(symtabshdr.get_sh_link());
 section_size_type strtab_size;
 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
                                                       &strtab_size,
                                                       true);
 const char* pnames = reinterpret_cast<const char*>(pnamesu);

 // Loop over the local symbols.

 const Output_sections& out_sections(this->output_sections());
 std::vector<Address>& out_section_offsets(this->section_offsets());
 unsigned int shnum = this->shnum();
 unsigned int count = 0;
 unsigned int dyncount = 0;
 // Skip the first, dummy, symbol.
 psyms += sym_size;
 bool strip_all = parameters->options().strip_all();
 bool discard_all = parameters->options().discard_all();
 bool discard_locals = parameters->options().discard_locals();
 bool discard_sec_merge = parameters->options().discard_sec_merge();
 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(psyms);

     Symbol_value<size>& lv(this->local_values_[i]);

     bool is_ordinary;
     unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
                                                 &is_ordinary);
     lv.set_input_shndx(shndx, is_ordinary);

     if (sym.get_st_type() == elfcpp::STT_SECTION)
       lv.set_is_section_symbol();
     else if (sym.get_st_type() == elfcpp::STT_TLS)
       lv.set_is_tls_symbol();
     else if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
       lv.set_is_ifunc_symbol();

     // Save the input symbol value for use in do_finalize_local_symbols().
     lv.set_input_value(sym.get_st_value());

     // Decide whether this symbol should go into the output file.

     if (is_ordinary
         && shndx < shnum
         && (out_sections[shndx] == NULL
             || (out_sections[shndx]->order() == ORDER_EHFRAME
                 && out_section_offsets[shndx] == invalid_address)))
       {
         // This is either a discarded section or an optimized .eh_frame
         // section.
         lv.set_no_output_symtab_entry();
         gold_assert(!lv.needs_output_dynsym_entry());
         continue;
       }

     if (sym.get_st_type() == elfcpp::STT_SECTION
         || !this->adjust_local_symbol(&lv))
       {
         lv.set_no_output_symtab_entry();
         gold_assert(!lv.needs_output_dynsym_entry());
         continue;
       }

     if (sym.get_st_name() >= strtab_size)
       {
         this->error(_("local symbol %u section name out of range: %u >= %u"),
                     i, sym.get_st_name(),
                     static_cast<unsigned int>(strtab_size));
         lv.set_no_output_symtab_entry();
         continue;
       }

     const char* name = pnames + sym.get_st_name();

     // If needed, add the symbol to the dynamic symbol table string pool.
     if (lv.needs_output_dynsym_entry())
       {
         dynpool->add(name, true, NULL);
         ++dyncount;
       }

     if (strip_all
         || (discard_all && lv.may_be_discarded_from_output_symtab()))
       {
         lv.set_no_output_symtab_entry();
         continue;
       }

     // By default, discard temporary local symbols in merge sections.
     // If --discard-locals option is used, discard all temporary local
     // symbols.  These symbols start with system-specific local label
     // prefixes, typically .L for ELF system.  We want to be compatible
     // with GNU ld so here we essentially use the same check in
     // bfd_is_local_label().  The code is different because we already
     // know that:
     //
     //   - the symbol is local and thus cannot have global or weak binding.
     //   - the symbol is not a section symbol.
     //   - the symbol has a name.
     //
     // We do not discard a symbol if it needs a dynamic symbol entry.
     if ((discard_locals
          || (discard_sec_merge
              && is_ordinary
              && out_section_offsets[shndx] == invalid_address))
         && sym.get_st_type() != elfcpp::STT_FILE
         && !lv.needs_output_dynsym_entry()
         && lv.may_be_discarded_from_output_symtab()
         && parameters->target().is_local_label_name(name))
       {
         lv.set_no_output_symtab_entry();
         continue;
       }

     // Discard the local symbol if -retain_symbols_file is specified
     // and the local symbol is not in that file.
     if (!parameters->options().should_retain_symbol(name))
       {
         lv.set_no_output_symtab_entry();
         continue;
       }

     // Add the symbol to the symbol table string pool.
     pool->add(name, true, NULL);
     ++count;
   }

 this->output_local_symbol_count_ = count;
 this->output_local_dynsym_count_ = dyncount;
}

// Compute the final value of a local symbol.

template<int size, bool big_endian>
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
Sized_relobj_file<size, big_endian>::compute_final_local_value_internal(
   unsigned int r_sym,
   const Symbol_value<size>* lv_in,
   Symbol_value<size>* lv_out,
   bool relocatable,
   const Output_sections& out_sections,
   const std::vector<Address>& out_offsets,
   const Symbol_table* symtab)
{
 // We are going to overwrite *LV_OUT, if it has a merged symbol value,
 // we may have a memory leak.
 gold_assert(lv_out->has_output_value());

 bool is_ordinary;
 unsigned int shndx = lv_in->input_shndx(&is_ordinary);

 // Set the output symbol value.

 if (!is_ordinary)
   {
     if (shndx == elfcpp::SHN_ABS || Symbol::is_common_shndx(shndx))
       lv_out->set_output_value(lv_in->input_value());
     else
       {
         this->error(_("unknown section index %u for local symbol %u"),
                     shndx, r_sym);
         lv_out->set_output_value(0);
         return This::CFLV_ERROR;
       }
   }
 else
   {
     if (shndx >= this->shnum())
       {
         this->error(_("local symbol %u section index %u out of range"),
                     r_sym, shndx);
         lv_out->set_output_value(0);
         return This::CFLV_ERROR;
       }

     Output_section* os = out_sections[shndx];
     Address secoffset = out_offsets[shndx];
     if (symtab->is_section_folded(this, shndx))
       {
         gold_assert(os == NULL && secoffset == invalid_address);
         // Get the os of the section it is folded onto.
         Section_id folded = symtab->icf()->get_folded_section(this,
                                                               shndx);
         gold_assert(folded.first != NULL);
         Sized_relobj_file<size, big_endian>* folded_obj = reinterpret_cast
           <Sized_relobj_file<size, big_endian>*>(folded.first);
         os = folded_obj->output_section(folded.second);
         gold_assert(os != NULL);
         secoffset = folded_obj->get_output_section_offset(folded.second);

         // This could be a relaxed input section.
         if (secoffset == invalid_address)
           {
             const Output_relaxed_input_section* relaxed_section =
               os->find_relaxed_input_section(folded_obj, folded.second);
             gold_assert(relaxed_section != NULL);
             secoffset = relaxed_section->address() - os->address();
           }
       }

     if (os == NULL)
       {
         // This local symbol belongs to a section we are discarding.
         // In some cases when applying relocations later, we will
         // attempt to match it to the corresponding kept section,
         // so we leave the input value unchanged here.
         return This::CFLV_DISCARDED;
       }
     else if (secoffset == invalid_address)
       {
         uint64_t start;

         // This is a SHF_MERGE section or one which otherwise
         // requires special handling.
         if (os->order() == ORDER_EHFRAME)
           {
             // This local symbol belongs to a discarded or optimized
             // .eh_frame section.  Just treat it like the case in which
             // os == NULL above.
             gold_assert(this->has_eh_frame_);
             return This::CFLV_DISCARDED;
           }
         else if (!lv_in->is_section_symbol())
           {
             // This is not a section symbol.  We can determine
             // the final value now.
             uint64_t value =
               os->output_address(this, shndx, lv_in->input_value());
             if (relocatable)
               value -= os->address();
             lv_out->set_output_value(value);
           }
         else if (!os->find_starting_output_address(this, shndx, &start))
           {
             // This is a section symbol, but apparently not one in a
             // merged section.  First check to see if this is a relaxed
             // input section.  If so, use its address.  Otherwise just
             // use the start of the output section.  This happens with
             // relocatable links when the input object has section
             // symbols for arbitrary non-merge sections.
             const Output_section_data* posd =
               os->find_relaxed_input_section(this, shndx);
             if (posd != NULL)
               {
                 uint64_t value = posd->address();
                 if (relocatable)
                   value -= os->address();
                 lv_out->set_output_value(value);
               }
             else
               lv_out->set_output_value(os->address());
           }
         else
           {
             // We have to consider the addend to determine the
             // value to use in a relocation.  START is the start
             // of this input section.  If we are doing a relocatable
             // link, use offset from start output section instead of
             // address.
             Address adjusted_start =
               relocatable ? start - os->address() : start;
             Merged_symbol_value<size>* msv =
               new Merged_symbol_value<size>(lv_in->input_value(),
                                             adjusted_start);
             lv_out->set_merged_symbol_value(msv);
           }
       }
     else if (lv_in->is_tls_symbol()
              || (lv_in->is_section_symbol()
                  && (os->flags() & elfcpp::SHF_TLS)))
       lv_out->set_output_value(os->tls_offset()
                                + secoffset
                                + lv_in->input_value());
     else
       lv_out->set_output_value((relocatable ? 0 : os->address())
                                + secoffset
                                + lv_in->input_value());
   }
 return This::CFLV_OK;
}

// Compute final local symbol value.  R_SYM is the index of a local
// symbol in symbol table.  LV points to a symbol value, which is
// expected to hold the input value and to be over-written by the
// final value.  SYMTAB points to a symbol table.  Some targets may want
// to know would-be-finalized local symbol values in relaxation.
// Hence we provide this method.  Since this method updates *LV, a
// callee should make a copy of the original local symbol value and
// use the copy instead of modifying an object's local symbols before
// everything is finalized.  The caller should also free up any allocated
// memory in the return value in *LV.
template<int size, bool big_endian>
typename Sized_relobj_file<size, big_endian>::Compute_final_local_value_status
Sized_relobj_file<size, big_endian>::compute_final_local_value(
   unsigned int r_sym,
   const Symbol_value<size>* lv_in,
   Symbol_value<size>* lv_out,
   const Symbol_table* symtab)
{
 // This is just a wrapper of compute_final_local_value_internal.
 const bool relocatable = parameters->options().relocatable();
 const Output_sections& out_sections(this->output_sections());
 const std::vector<Address>& out_offsets(this->section_offsets());
 return this->compute_final_local_value_internal(r_sym, lv_in, lv_out,
                                                 relocatable, out_sections,
                                                 out_offsets, symtab);
}

// Finalize the local symbols.  Here we set the final value in
// THIS->LOCAL_VALUES_ and set their output symbol table indexes.
// This function is always called from a singleton thread.  The actual
// output of the local symbols will occur in a separate task.

template<int size, bool big_endian>
unsigned int
Sized_relobj_file<size, big_endian>::do_finalize_local_symbols(
   unsigned int index,
   off_t off,
   Symbol_table* symtab)
{
 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));

 const unsigned int loccount = this->local_symbol_count_;
 this->local_symbol_offset_ = off;

 const bool relocatable = parameters->options().relocatable();
 const Output_sections& out_sections(this->output_sections());
 const std::vector<Address>& out_offsets(this->section_offsets());

 for (unsigned int i = 1; i < loccount; ++i)
   {
     Symbol_value<size>* lv = &this->local_values_[i];

     Compute_final_local_value_status cflv_status =
       this->compute_final_local_value_internal(i, lv, lv, relocatable,
                                                out_sections, out_offsets,
                                                symtab);
     switch (cflv_status)
       {
       case CFLV_OK:
         if (!lv->is_output_symtab_index_set())
           {
             lv->set_output_symtab_index(index);
             ++index;
           }
         if (lv->is_ifunc_symbol()
             && (lv->has_output_symtab_entry()
                 || lv->needs_output_dynsym_entry()))
           symtab->set_has_gnu_output();
         break;
       case CFLV_DISCARDED:
       case CFLV_ERROR:
         // Do nothing.
         break;
       default:
         gold_unreachable();
       }
   }
 return index;
}

// Set the output dynamic symbol table indexes for the local variables.

template<int size, bool big_endian>
unsigned int
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_indexes(
   unsigned int index)
{
 const unsigned int loccount = this->local_symbol_count_;
 for (unsigned int i = 1; i < loccount; ++i)
   {
     Symbol_value<size>& lv(this->local_values_[i]);
     if (lv.needs_output_dynsym_entry())
       {
         lv.set_output_dynsym_index(index);
         ++index;
       }
   }
 return index;
}

// Set the offset where local dynamic symbol information will be stored.
// Returns the count of local symbols contributed to the symbol table by
// this object.

template<int size, bool big_endian>
unsigned int
Sized_relobj_file<size, big_endian>::do_set_local_dynsym_offset(off_t off)
{
 gold_assert(off == static_cast<off_t>(align_address(off, size >> 3)));
 this->local_dynsym_offset_ = off;
 return this->output_local_dynsym_count_;
}

// If Symbols_data is not NULL get the section flags from here otherwise
// get it from the file.

template<int size, bool big_endian>
uint64_t
Sized_relobj_file<size, big_endian>::do_section_flags(unsigned int shndx)
{
 Symbols_data* sd = this->get_symbols_data();
 if (sd != NULL)
   {
     const unsigned char* pshdrs = sd->section_headers_data
                                   + This::shdr_size * shndx;
     typename This::Shdr shdr(pshdrs);
     return shdr.get_sh_flags();
   }
 // If sd is NULL, read the section header from the file.
 return this->elf_file_.section_flags(shndx);
}

// Get the section's ent size from Symbols_data.  Called by get_section_contents
// in icf.cc

template<int size, bool big_endian>
uint64_t
Sized_relobj_file<size, big_endian>::do_section_entsize(unsigned int shndx)
{
 Symbols_data* sd = this->get_symbols_data();
 gold_assert(sd != NULL);

 const unsigned char* pshdrs = sd->section_headers_data
                               + This::shdr_size * shndx;
 typename This::Shdr shdr(pshdrs);
 return shdr.get_sh_entsize();
}

// Write out the local symbols.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::write_local_symbols(
   Output_file* of,
   const Stringpool* sympool,
   const Stringpool* dynpool,
   Output_symtab_xindex* symtab_xindex,
   Output_symtab_xindex* dynsym_xindex,
   off_t symtab_off)
{
 const bool strip_all = parameters->options().strip_all();
 if (strip_all)
   {
     if (this->output_local_dynsym_count_ == 0)
       return;
     this->output_local_symbol_count_ = 0;
   }

 gold_assert(this->symtab_shndx_ != -1U);
 if (this->symtab_shndx_ == 0)
   {
     // This object has no symbols.  Weird but legal.
     return;
   }

 // Read the symbol table section header.
 const unsigned int symtab_shndx = this->symtab_shndx_;
 typename This::Shdr symtabshdr(this,
                                this->elf_file_.section_header(symtab_shndx));
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
 const unsigned int loccount = this->local_symbol_count_;
 gold_assert(loccount == symtabshdr.get_sh_info());

 // Read the local symbols.
 const int sym_size = This::sym_size;
 off_t locsize = loccount * sym_size;
 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                             locsize, true, false);

 // Read the symbol names.
 const unsigned int strtab_shndx =
   this->adjust_shndx(symtabshdr.get_sh_link());
 section_size_type strtab_size;
 const unsigned char* pnamesu = this->section_contents(strtab_shndx,
                                                       &strtab_size,
                                                       false);
 const char* pnames = reinterpret_cast<const char*>(pnamesu);

 // Get views into the output file for the portions of the symbol table
 // and the dynamic symbol table that we will be writing.
 off_t output_size = this->output_local_symbol_count_ * sym_size;
 unsigned char* oview = NULL;
 if (output_size > 0)
   oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
                               output_size);

 off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
 unsigned char* dyn_oview = NULL;
 if (dyn_output_size > 0)
   dyn_oview = of->get_output_view(this->local_dynsym_offset_,
                                   dyn_output_size);

 const Output_sections& out_sections(this->output_sections());

 gold_assert(this->local_values_.size() == loccount);

 unsigned char* ov = oview;
 unsigned char* dyn_ov = dyn_oview;
 psyms += sym_size;
 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   {
     elfcpp::Sym<size, big_endian> isym(psyms);

     Symbol_value<size>& lv(this->local_values_[i]);

     bool is_ordinary;
     unsigned int st_shndx = this->adjust_sym_shndx(i, isym.get_st_shndx(),
                                                    &is_ordinary);
     if (is_ordinary)
       {
         gold_assert(st_shndx < out_sections.size());
         if (out_sections[st_shndx] == NULL)
           continue;
         st_shndx = out_sections[st_shndx]->out_shndx();
         if (st_shndx >= elfcpp::SHN_LORESERVE)
           {
             if (lv.has_output_symtab_entry())
               symtab_xindex->add(lv.output_symtab_index(), st_shndx);
             if (lv.has_output_dynsym_entry())
               dynsym_xindex->add(lv.output_dynsym_index(), st_shndx);
             st_shndx = elfcpp::SHN_XINDEX;
           }
       }

     // Write the symbol to the output symbol table.
     if (lv.has_output_symtab_entry())
       {
         elfcpp::Sym_write<size, big_endian> osym(ov);

         gold_assert(isym.get_st_name() < strtab_size);
         const char* name = pnames + isym.get_st_name();
         osym.put_st_name(sympool->get_offset(name));
         osym.put_st_value(lv.value(this, 0));
         osym.put_st_size(isym.get_st_size());
         osym.put_st_info(isym.get_st_info());
         osym.put_st_other(isym.get_st_other());
         osym.put_st_shndx(st_shndx);

         ov += sym_size;
       }

     // Write the symbol to the output dynamic symbol table.
     if (lv.has_output_dynsym_entry())
       {
         gold_assert(dyn_ov < dyn_oview + dyn_output_size);
         elfcpp::Sym_write<size, big_endian> osym(dyn_ov);

         gold_assert(isym.get_st_name() < strtab_size);
         const char* name = pnames + isym.get_st_name();
         osym.put_st_name(dynpool->get_offset(name));
         osym.put_st_value(lv.value(this, 0));
         osym.put_st_size(isym.get_st_size());
         osym.put_st_info(isym.get_st_info());
         osym.put_st_other(isym.get_st_other());
         osym.put_st_shndx(st_shndx);

         dyn_ov += sym_size;
       }
   }


 if (output_size > 0)
   {
     gold_assert(ov - oview == output_size);
     of->write_output_view(symtab_off + this->local_symbol_offset_,
                           output_size, oview);
   }

 if (dyn_output_size > 0)
   {
     gold_assert(dyn_ov - dyn_oview == dyn_output_size);
     of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
                           dyn_oview);
   }
}

// Set *INFO to symbolic information about the offset OFFSET in the
// section SHNDX.  Return true if we found something, false if we
// found nothing.

template<int size, bool big_endian>
bool
Sized_relobj_file<size, big_endian>::get_symbol_location_info(
   unsigned int shndx,
   off_t offset,
   Symbol_location_info* info)
{
 if (this->symtab_shndx_ == 0)
   return false;

 section_size_type symbols_size;
 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
                                                       &symbols_size,
                                                       false);

 unsigned int symbol_names_shndx =
   this->adjust_shndx(this->section_link(this->symtab_shndx_));
 section_size_type names_size;
 const unsigned char* symbol_names_u =
   this->section_contents(symbol_names_shndx, &names_size, false);
 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);

 const int sym_size = This::sym_size;
 const size_t count = symbols_size / sym_size;

 const unsigned char* p = symbols;
 for (size_t i = 0; i < count; ++i, p += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(p);

     if (sym.get_st_type() == elfcpp::STT_FILE)
       {
         if (sym.get_st_name() >= names_size)
           info->source_file = "(invalid)";
         else
           info->source_file = symbol_names + sym.get_st_name();
         continue;
       }

     bool is_ordinary;
     unsigned int st_shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
                                                    &is_ordinary);
     if (is_ordinary
         && st_shndx == shndx
         && static_cast<off_t>(sym.get_st_value()) <= offset
         && (static_cast<off_t>(sym.get_st_value() + sym.get_st_size())
             > offset))
       {
         info->enclosing_symbol_type = sym.get_st_type();
         if (sym.get_st_name() > names_size)
           info->enclosing_symbol_name = "(invalid)";
         else
           {
             info->enclosing_symbol_name = symbol_names + sym.get_st_name();
             if (parameters->options().do_demangle())
               {
                 char* demangled_name = cplus_demangle(
                     info->enclosing_symbol_name.c_str(),
                     DMGL_ANSI | DMGL_PARAMS);
                 if (demangled_name != NULL)
                   {
                     info->enclosing_symbol_name.assign(demangled_name);
                     free(demangled_name);
                   }
               }
           }
         return true;
       }
   }

 return false;
}

// Look for a kept section corresponding to the given discarded section,
// and return its output address.  This is used only for relocations in
// debugging sections.  If we can't find the kept section, return 0.

template<int size, bool big_endian>
typename Sized_relobj_file<size, big_endian>::Address
Sized_relobj_file<size, big_endian>::map_to_kept_section(
   unsigned int shndx,
   std::string& section_name,
   bool* pfound) const
{
 Kept_section* kept_section;
 bool is_comdat;
 uint64_t sh_size;
 unsigned int symndx;
 bool found = false;

 if (this->get_kept_comdat_section(shndx, &is_comdat, &symndx, &sh_size,
                                   &kept_section))
   {
     Relobj* kept_object = kept_section->object();
     unsigned int kept_shndx = 0;
     if (!kept_section->is_comdat())
       {
         // The kept section is a linkonce section.
         if (sh_size == kept_section->linkonce_size())
           {
             kept_shndx = kept_section->shndx();
             found = true;
           }
       }
     else
       {
         uint64_t kept_size = 0;
         if (is_comdat)
           {
             // Find the corresponding kept section.
             // Since we're using this mapping for relocation processing,
             // we don't want to match sections unless they have the same
             // size.
             if (kept_section->find_comdat_section(section_name, &kept_shndx,
                                                   &kept_size))
               {
                 if (sh_size == kept_size)
                   found = true;
               }
           }
         if (!found)
           {
             if (kept_section->find_single_comdat_section(&kept_shndx,
                                                          &kept_size)
                 && sh_size == kept_size)
               found = true;
           }
       }

     if (found)
       {
         Sized_relobj_file<size, big_endian>* kept_relobj =
           static_cast<Sized_relobj_file<size, big_endian>*>(kept_object);
         Output_section* os = kept_relobj->output_section(kept_shndx);
         Address offset = kept_relobj->get_output_section_offset(kept_shndx);
         if (os != NULL && offset != invalid_address)
           {
             *pfound = true;
             return os->address() + offset;
           }
       }
   }
 *pfound = false;
 return 0;
}

// Look for a kept section corresponding to the given discarded section,
// and return its object file.

template<int size, bool big_endian>
Relobj*
Sized_relobj_file<size, big_endian>::find_kept_section_object(
   unsigned int shndx, unsigned int *symndx_p) const
{
 Kept_section* kept_section;
 bool is_comdat;
 uint64_t sh_size;
 if (this->get_kept_comdat_section(shndx, &is_comdat, symndx_p, &sh_size,
                                   &kept_section))
   return kept_section->object();
 return NULL;
}

// Return the name of symbol SYMNDX.

template<int size, bool big_endian>
std::string
Sized_relobj_file<size, big_endian>::get_symbol_name(unsigned int symndx)
{
 if (this->symtab_shndx_ == 0)
   return NULL;

 section_size_type symbols_size;
 const unsigned char* symbols = this->section_contents(this->symtab_shndx_,
                                                       &symbols_size,
                                                       false);

 const unsigned char* p = symbols + symndx * This::sym_size;
 if (p >= symbols + symbols_size)
   return NULL;

 elfcpp::Sym<size, big_endian> sym(p);

 if (sym.get_st_name() == 0 && sym.get_st_type() == elfcpp::STT_SECTION)
   {
     bool is_ordinary;
     unsigned int sym_shndx = this->adjust_sym_shndx(symndx,
                                                     sym.get_st_shndx(),
                                                     &is_ordinary);
     if (!is_ordinary || sym_shndx >= this->shnum())
       return NULL;

     return this->section_name(sym_shndx);
   }

 unsigned int symbol_names_shndx =
   this->adjust_shndx(this->section_link(this->symtab_shndx_));
 section_size_type names_size;
 const unsigned char* symbol_names_u =
   this->section_contents(symbol_names_shndx, &names_size, false);
 const char* symbol_names = reinterpret_cast<const char*>(symbol_names_u);

 unsigned int sym_name = sym.get_st_name();
 if (sym_name >= names_size)
   return NULL;
 const char* namep = symbol_names + sym_name;
 const void* endp = memchr(namep, 0, names_size - sym_name);
 if (!endp)
   endp = symbol_names + names_size;
 std::string name = std::string(namep, static_cast<const char*>(endp) - namep);

 if (!parameters->options().do_demangle())
   return name;

 char* demangled_name = cplus_demangle(name.c_str(), DMGL_ANSI | DMGL_PARAMS);
 if (!demangled_name)
   return name;

 name = demangled_name;
 free(demangled_name);
 return name;
}

// Get symbol counts.

template<int size, bool big_endian>
void
Sized_relobj_file<size, big_endian>::do_get_global_symbol_counts(
   const Symbol_table*,
   size_t* defined,
   size_t* used) const
{
 *defined = this->defined_count_;
 size_t count = 0;
 for (typename Symbols::const_iterator p = this->symbols_.begin();
      p != this->symbols_.end();
      ++p)
   if (*p != NULL
       && (*p)->source() == Symbol::FROM_OBJECT
       && (*p)->object() == this
       && (*p)->is_defined())
     ++count;
 *used = count;
}

// Return a view of the decompressed contents of a section.  Set *PLEN
// to the size.  Set *IS_NEW to true if the contents need to be freed
// by the caller.

const unsigned char*
Object::decompressed_section_contents(
   unsigned int shndx,
   section_size_type* plen,
   bool* is_new,
   uint64_t* palign)
{
 section_size_type buffer_size;
 const unsigned char* buffer = this->do_section_contents(shndx, &buffer_size,
                                                         false);

 if (this->compressed_sections_ == NULL)
   {
     *plen = buffer_size;
     *is_new = false;
     return buffer;
   }

 Compressed_section_map::const_iterator p =
     this->compressed_sections_->find(shndx);
 if (p == this->compressed_sections_->end())
   {
     *plen = buffer_size;
     *is_new = false;
     return buffer;
   }

 section_size_type uncompressed_size = p->second.size;
 if (p->second.contents != NULL)
   {
     *plen = uncompressed_size;
     *is_new = false;
     if (palign != NULL)
       *palign = p->second.addralign;
     return p->second.contents;
   }

 unsigned char* uncompressed_data = new unsigned char[uncompressed_size];
 if (!decompress_input_section(buffer,
                               buffer_size,
                               uncompressed_data,
                               uncompressed_size,
                               elfsize(),
                               is_big_endian(),
                               p->second.flag))
   this->error(_("could not decompress section %s"),
               this->do_section_name(shndx).c_str());

 // We could cache the results in p->second.contents and store
 // false in *IS_NEW, but build_compressed_section_map() would
 // have done so if it had expected it to be profitable.  If
 // we reach this point, we expect to need the contents only
 // once in this pass.
 *plen = uncompressed_size;
 *is_new = true;
 if (palign != NULL)
   *palign = p->second.addralign;
 return uncompressed_data;
}

// Discard any buffers of uncompressed sections.  This is done
// at the end of the Add_symbols task.

void
Object::discard_decompressed_sections()
{
 if (this->compressed_sections_ == NULL)
   return;

 for (Compressed_section_map::iterator p = this->compressed_sections_->begin();
      p != this->compressed_sections_->end();
      ++p)
   {
     if (p->second.contents != NULL)
       {
         delete[] p->second.contents;
         p->second.contents = NULL;
       }
   }
}

// Input_objects methods.

// Add a regular relocatable object to the list.  Return false if this
// object should be ignored.

bool
Input_objects::add_object(Object* obj)
{
 // Print the filename if the -t/--trace option is selected.
 if (parameters->options().trace())
   gold_trace("%s", obj->name().c_str());

 if (!obj->is_dynamic())
   this->relobj_list_.push_back(static_cast<Relobj*>(obj));
 else
   {
     // See if this is a duplicate SONAME.
     Dynobj* dynobj = static_cast<Dynobj*>(obj);
     const char* soname = dynobj->soname();

     Unordered_map<std::string, Object*>::value_type val(soname, obj);
     std::pair<Unordered_map<std::string, Object*>::iterator, bool> ins =
       this->sonames_.insert(val);
     if (!ins.second)
       {
         // We have already seen a dynamic object with this soname.
         // If any instances of this object on the command line have
         // the --no-as-needed flag, make sure the one we keep is
         // marked so.
         if (!obj->as_needed())
           {
             gold_assert(ins.first->second != NULL);
             ins.first->second->clear_as_needed();
           }
         return false;
       }

     this->dynobj_list_.push_back(dynobj);
   }

 // Add this object to the cross-referencer if requested.
 if (parameters->options().user_set_print_symbol_counts()
     || parameters->options().cref())
   {
     if (this->cref_ == NULL)
       this->cref_ = new Cref();
     this->cref_->add_object(obj);
   }

 return true;
}

// For each dynamic object, record whether we've seen all of its
// explicit dependencies.

void
Input_objects::check_dynamic_dependencies() const
{
 bool issued_copy_dt_needed_error = false;
 for (Dynobj_list::const_iterator p = this->dynobj_list_.begin();
      p != this->dynobj_list_.end();
      ++p)
   {
     const Dynobj::Needed& needed((*p)->needed());
     bool found_all = true;
     Dynobj::Needed::const_iterator pneeded;
     for (pneeded = needed.begin(); pneeded != needed.end(); ++pneeded)
       {
         if (this->sonames_.find(*pneeded) == this->sonames_.end())
           {
             found_all = false;
             break;
           }
       }
     (*p)->set_has_unknown_needed_entries(!found_all);

     // --copy-dt-needed-entries aka --add-needed is a GNU ld option
     // that gold does not support.  However, they cause no trouble
     // unless there is a DT_NEEDED entry that we don't know about;
     // warn only in that case.
     if (!found_all
         && !issued_copy_dt_needed_error
         && (parameters->options().copy_dt_needed_entries()
             || parameters->options().add_needed()))
       {
         const char* optname;
         if (parameters->options().copy_dt_needed_entries())
           optname = "--copy-dt-needed-entries";
         else
           optname = "--add-needed";
         gold_error(_("%s is not supported but is required for %s in %s"),
                    optname, (*pneeded).c_str(), (*p)->name().c_str());
         issued_copy_dt_needed_error = true;
       }
   }
}

// Start processing an archive.

void
Input_objects::archive_start(Archive* archive)
{
 if (parameters->options().user_set_print_symbol_counts()
     || parameters->options().cref())
   {
     if (this->cref_ == NULL)
       this->cref_ = new Cref();
     this->cref_->add_archive_start(archive);
   }
}

// Stop processing an archive.

void
Input_objects::archive_stop(Archive* archive)
{
 if (parameters->options().user_set_print_symbol_counts()
     || parameters->options().cref())
   this->cref_->add_archive_stop(archive);
}

// Print symbol counts

void
Input_objects::print_symbol_counts(const Symbol_table* symtab) const
{
 if (parameters->options().user_set_print_symbol_counts()
     && this->cref_ != NULL)
   this->cref_->print_symbol_counts(symtab);
}

// Print a cross reference table.

void
Input_objects::print_cref(const Symbol_table* symtab, FILE* f) const
{
 if (parameters->options().cref() && this->cref_ != NULL)
   this->cref_->print_cref(symtab, f);
}

// Relocate_info methods.

// Return a string describing the location of a relocation when file
// and lineno information is not available.  This is only used in
// error messages.

template<int size, bool big_endian>
std::string
Relocate_info<size, big_endian>::location(size_t, off_t offset) const
{
 Sized_dwarf_line_info<size, big_endian> line_info(this->object);
 std::string ret = line_info.addr2line(this->data_shndx, offset, NULL);
 if (!ret.empty())
   return ret;

 ret = this->object->name();

 Symbol_location_info info;
 if (this->object->get_symbol_location_info(this->data_shndx, offset, &info))
   {
     if (!info.source_file.empty())
       {
         ret += ":";
         ret += info.source_file;
       }
     ret += ":";
     if (info.enclosing_symbol_type == elfcpp::STT_FUNC)
       ret += _("function ");
     ret += info.enclosing_symbol_name;
     ret += ":";
   }

 ret += "(";
 ret += this->object->section_name(this->data_shndx);
 char buf[100];
 snprintf(buf, sizeof buf, "+0x%lx)", static_cast<long>(offset));
 ret += buf;
 return ret;
}

} // End namespace gold.

namespace
{

using namespace gold;

// Read an ELF file with the header and return the appropriate
// instance of Object.

template<int size, bool big_endian>
Object*
make_elf_sized_object(const std::string& name, Input_file* input_file,
                     off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr,
                     bool* punconfigured)
{
 Target* target = select_target(input_file, offset,
                                ehdr.get_e_machine(), size, big_endian,
                                ehdr.get_ei_osabi(),
                                ehdr.get_ei_abiversion());
 if (target == NULL)
   gold_fatal(_("%s: unsupported ELF machine number %d"),
              name.c_str(), ehdr.get_e_machine());

 if (!parameters->target_valid())
   set_parameters_target(target);
 else if (target != &parameters->target())
   {
     if (punconfigured != NULL)
       *punconfigured = true;
     else
       gold_error(_("%s: incompatible target"), name.c_str());
     return NULL;
   }

 return target->make_elf_object<size, big_endian>(name, input_file, offset,
                                                  ehdr);
}

} // End anonymous namespace.

namespace gold
{

// Return whether INPUT_FILE is an ELF object.

bool
is_elf_object(Input_file* input_file, off_t offset,
             const unsigned char** start, int* read_size)
{
 off_t filesize = input_file->file().filesize();
 int want = elfcpp::Elf_recognizer::max_header_size;
 if (filesize - offset < want)
   want = filesize - offset;

 const unsigned char* p = input_file->file().get_view(offset, 0, want,
                                                      true, false);
 *start = p;
 *read_size = want;

 return elfcpp::Elf_recognizer::is_elf_file(p, want);
}

// Read an ELF file and return the appropriate instance of Object.

Object*
make_elf_object(const std::string& name, Input_file* input_file, off_t offset,
               const unsigned char* p, section_offset_type bytes,
               bool* punconfigured)
{
 if (punconfigured != NULL)
   *punconfigured = false;

 std::string error;
 bool big_endian = false;
 int size = 0;
 if (!elfcpp::Elf_recognizer::is_valid_header(p, bytes, &size,
                                              &big_endian, &error))
   {
     gold_error(_("%s: %s"), name.c_str(), error.c_str());
     return NULL;
   }

 if (size == 32)
   {
     if (big_endian)
       {
#ifdef HAVE_TARGET_32_BIG
         elfcpp::Ehdr<32, true> ehdr(p);
         return make_elf_sized_object<32, true>(name, input_file,
                                                offset, ehdr, punconfigured);
#else
         if (punconfigured != NULL)
           *punconfigured = true;
         else
           gold_error(_("%s: not configured to support "
                        "32-bit big-endian object"),
                      name.c_str());
         return NULL;
#endif
       }
     else
       {
#ifdef HAVE_TARGET_32_LITTLE
         elfcpp::Ehdr<32, false> ehdr(p);
         return make_elf_sized_object<32, false>(name, input_file,
                                                 offset, ehdr, punconfigured);
#else
         if (punconfigured != NULL)
           *punconfigured = true;
         else
           gold_error(_("%s: not configured to support "
                        "32-bit little-endian object"),
                      name.c_str());
         return NULL;
#endif
       }
   }
 else if (size == 64)
   {
     if (big_endian)
       {
#ifdef HAVE_TARGET_64_BIG
         elfcpp::Ehdr<64, true> ehdr(p);
         return make_elf_sized_object<64, true>(name, input_file,
                                                offset, ehdr, punconfigured);
#else
         if (punconfigured != NULL)
           *punconfigured = true;
         else
           gold_error(_("%s: not configured to support "
                        "64-bit big-endian object"),
                      name.c_str());
         return NULL;
#endif
       }
     else
       {
#ifdef HAVE_TARGET_64_LITTLE
         elfcpp::Ehdr<64, false> ehdr(p);
         return make_elf_sized_object<64, false>(name, input_file,
                                                 offset, ehdr, punconfigured);
#else
         if (punconfigured != NULL)
           *punconfigured = true;
         else
           gold_error(_("%s: not configured to support "
                        "64-bit little-endian object"),
                      name.c_str());
         return NULL;
#endif
       }
   }
 else
   gold_unreachable();
}

// Instantiate the templates we need.

#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
template
void
Relobj::initialize_input_to_output_map<64>(unsigned int shndx,
     elfcpp::Elf_types<64>::Elf_Addr starting_address,
     Unordered_map<section_offset_type,
     elfcpp::Elf_types<64>::Elf_Addr>* output_addresses) const;
#endif

#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
template
void
Relobj::initialize_input_to_output_map<32>(unsigned int shndx,
     elfcpp::Elf_types<32>::Elf_Addr starting_address,
     Unordered_map<section_offset_type,
     elfcpp::Elf_types<32>::Elf_Addr>* output_addresses) const;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Object::read_section_data<32, false>(elfcpp::Elf_file<32, false, Object>*,
                                    Read_symbols_data*);
template
const unsigned char*
Object::find_shdr<32,false>(const unsigned char*, const char*, const char*,
                           section_size_type, const unsigned char*) const;
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Object::read_section_data<32, true>(elfcpp::Elf_file<32, true, Object>*,
                                   Read_symbols_data*);
template
const unsigned char*
Object::find_shdr<32,true>(const unsigned char*, const char*, const char*,
                          section_size_type, const unsigned char*) const;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Object::read_section_data<64, false>(elfcpp::Elf_file<64, false, Object>*,
                                    Read_symbols_data*);
template
const unsigned char*
Object::find_shdr<64,false>(const unsigned char*, const char*, const char*,
                           section_size_type, const unsigned char*) const;
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Object::read_section_data<64, true>(elfcpp::Elf_file<64, true, Object>*,
                                   Read_symbols_data*);
template
const unsigned char*
Object::find_shdr<64,true>(const unsigned char*, const char*, const char*,
                          section_size_type, const unsigned char*) const;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
class Sized_relobj<32, false>;

template
class Sized_relobj_file<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
class Sized_relobj<32, true>;

template
class Sized_relobj_file<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
class Sized_relobj<64, false>;

template
class Sized_relobj_file<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
class Sized_relobj<64, true>;

template
class Sized_relobj_file<64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
struct Relocate_info<32, false>;
#endif

#ifdef HAVE_TARGET_32_BIG
template
struct Relocate_info<32, true>;
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
struct Relocate_info<64, false>;
#endif

#ifdef HAVE_TARGET_64_BIG
template
struct Relocate_info<64, true>;
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Xindex::initialize_symtab_xindex<32, false>(Object*, unsigned int);

template
void
Xindex::read_symtab_xindex<32, false>(Object*, unsigned int,
                                     const unsigned char*);
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Xindex::initialize_symtab_xindex<32, true>(Object*, unsigned int);

template
void
Xindex::read_symtab_xindex<32, true>(Object*, unsigned int,
                                    const unsigned char*);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Xindex::initialize_symtab_xindex<64, false>(Object*, unsigned int);

template
void
Xindex::read_symtab_xindex<64, false>(Object*, unsigned int,
                                     const unsigned char*);
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Xindex::initialize_symtab_xindex<64, true>(Object*, unsigned int);

template
void
Xindex::read_symtab_xindex<64, true>(Object*, unsigned int,
                                    const unsigned char*);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Compressed_section_map*
build_compressed_section_map<32, false>(const unsigned char*, unsigned int,
                                       const char*, section_size_type,
                                       Object*, bool);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Compressed_section_map*
build_compressed_section_map<32, true>(const unsigned char*, unsigned int,
                                       const char*, section_size_type,
                                       Object*, bool);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Compressed_section_map*
build_compressed_section_map<64, false>(const unsigned char*, unsigned int,
                                       const char*, section_size_type,
                                       Object*, bool);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Compressed_section_map*
build_compressed_section_map<64, true>(const unsigned char*, unsigned int,
                                       const char*, section_size_type,
                                       Object*, bool);
#endif

} // End namespace gold.