// merge.h -- handle section merging for gold  -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_MERGE_H
#define GOLD_MERGE_H

#include <climits>
#include <map>
#include <vector>

#include "stringpool.h"
#include "output.h"

namespace gold
{

// For each object with merge sections, we store an Object_merge_map.
// This is used to map locations in input sections to a merged output
// section.  The output section itself is not recorded here--it can be
// found in the output_sections_ field of the Object.

class Object_merge_map
{
public:
 Object_merge_map()
   : section_merge_maps_()
 { }

 ~Object_merge_map();

 // Add a mapping for MERGE_MAP, for the bytes from OFFSET to OFFSET
 // + LENGTH in the input section SHNDX to OUTPUT_OFFSET in the
 // output section.  An OUTPUT_OFFSET of -1 means that the bytes are
 // discarded.  OUTPUT_OFFSET is relative to the start of the merged
 // data in the output section.
 void
 add_mapping(const Output_section_data*, unsigned int shndx,
             section_offset_type offset, section_size_type length,
             section_offset_type output_offset);

 // Get the output offset for an input address.  MERGE_MAP is the map
 // we are looking for, or NULL if we don't care.  The input address
 // is at offset OFFSET in section SHNDX.  This sets *OUTPUT_OFFSET
 // to the offset in the output section; this will be -1 if the bytes
 // are not being copied to the output.  This returns true if the
 // mapping is known, false otherwise.  *OUTPUT_OFFSET is relative to
 // the start of the merged data in the output section.
 bool
 get_output_offset(unsigned int shndx,
                   section_offset_type offset,
                   section_offset_type* output_offset);

 const Output_section_data*
 find_merge_section(unsigned int shndx) const;

 // Initialize an mapping from input offsets to output addresses for
 // section SHNDX.  STARTING_ADDRESS is the output address of the
 // merged section.
 template<int size>
 void
 initialize_input_to_output_map(
     unsigned int shndx,
     typename elfcpp::Elf_types<size>::Elf_Addr starting_address,
     Unordered_map<section_offset_type,
                   typename elfcpp::Elf_types<size>::Elf_Addr>*);

 // Map input section offsets to a length and an output section
 // offset.  An output section offset of -1 means that this part of
 // the input section is being discarded.
 struct Input_merge_entry
 {
   // The offset in the input section.
   section_offset_type input_offset;
   // The length.
   section_size_type length;
   // The offset in the output section.
   section_offset_type output_offset;
 };

 // A list of entries for a particular input section.
 struct Input_merge_map
 {
   void add_mapping(section_offset_type input_offset, section_size_type length,
                    section_offset_type output_offset);

   typedef std::vector<Input_merge_entry> Entries;

   // We store these with the Relobj, and we look them up by input
   // section.  It is possible to have two different merge maps
   // associated with a single output section.  For example, this
   // happens routinely with .rodata, when merged string constants
   // and merged fixed size constants are both put into .rodata.  The
   // output offset that we store is not the offset from the start of
   // the output section; it is the offset from the start of the
   // merged data in the output section.  That means that the caller
   // is going to add the offset of the merged data within the output
   // section, which means that the caller needs to know which set of
   // merged data it found the entry in.  So it's not enough to find
   // this data based on the input section and the output section; we
   // also have to find it based on a set of merged data in the
   // output section.  In order to verify that we are looking at the
   // right data, we store a pointer to the Merge_map here, and we
   // pass in a pointer when looking at the data.  If we are asked to
   // look up information for a different Merge_map, we report that
   // we don't have it, rather than trying a lookup and returning an
   // answer which will receive the wrong offset.
   const Output_section_data* output_data;
   // The list of mappings.
   Entries entries;
   // Whether the ENTRIES field is sorted by input_offset.
   bool sorted;

   Input_merge_map()
     : output_data(NULL), entries(), sorted(true)
   { }
 };

 // Get or make the Input_merge_map to use for the section SHNDX
 // with MERGE_MAP.
 Input_merge_map*
 get_or_make_input_merge_map(const Output_section_data* merge_map,
                             unsigned int shndx);

 private:
 // A less-than comparison routine for Input_merge_entry.
 struct Input_merge_compare
 {
   bool
   operator()(const Input_merge_entry& i1, const Input_merge_entry& i2) const
   { return i1.input_offset < i2.input_offset; }
 };

 // Map input section indices to merge maps.
 typedef std::vector<std::pair<unsigned int, Input_merge_map*> >
     Section_merge_maps;

 // Return a pointer to the Input_merge_map to use for the input
 // section SHNDX, or NULL.
 const Input_merge_map*
 get_input_merge_map(unsigned int shndx) const;

 Input_merge_map *
 get_input_merge_map(unsigned int shndx) {
   return const_cast<Input_merge_map *>(static_cast<const Object_merge_map *>(
                                            this)->get_input_merge_map(shndx));
 }

 Section_merge_maps section_merge_maps_;
};

// A general class for SHF_MERGE data, to hold functions shared by
// fixed-size constant data and string data.

class Output_merge_base : public Output_section_data
{
public:
 Output_merge_base(uint64_t entsize, uint64_t addralign)
   : Output_section_data(addralign), entsize_(entsize),
     keeps_input_sections_(false), first_relobj_(NULL), first_shndx_(-1),
     input_sections_()
 { }

 // Return the entry size.
 uint64_t
 entsize() const
 { return this->entsize_; }

 // Whether this is a merge string section.  This is only true of
 // Output_merge_string.
 bool
 is_string()
 { return this->do_is_string(); }

 // Whether this keeps input sections.
 bool
 keeps_input_sections() const
 { return this->keeps_input_sections_; }

 // Set the keeps-input-sections flag.  This is virtual so that sub-classes
 // can perform additional checks.
 void
 set_keeps_input_sections()
 { this->do_set_keeps_input_sections(); }

 // Return the object of the first merged input section.  This used
 // for script processing.  This is NULL if merge section is empty.
 Relobj*
 first_relobj() const
 { return this->first_relobj_; }

 // Return the section index of the first merged input section.  This
 // is used for script processing.  This is valid only if merge section
 // is not valid.
 unsigned int
 first_shndx() const
 {
   gold_assert(this->first_relobj_ != NULL);
   return this->first_shndx_;
 }

 // Set of merged input sections.
 typedef Unordered_set<Section_id, Section_id_hash> Input_sections;

 // Beginning of merged input sections.
 Input_sections::const_iterator
 input_sections_begin() const
 {
   gold_assert(this->keeps_input_sections_);
   return this->input_sections_.begin();
 }

 // Beginning of merged input sections.
 Input_sections::const_iterator
 input_sections_end() const
 {
   gold_assert(this->keeps_input_sections_);
   return this->input_sections_.end();
 }

protected:
 // Return the output offset for an input offset.
 bool
 do_output_offset(const Relobj* object, unsigned int shndx,
                  section_offset_type offset,
                  section_offset_type* poutput) const;

 // This may be overridden by the child class.
 virtual bool
 do_is_string()
 { return false; }

 // This may be overridden by the child class.
 virtual void
 do_set_keeps_input_sections()
 { this->keeps_input_sections_ = true; }

 // Record the merged input section for script processing.
 void
 record_input_section(Relobj* relobj, unsigned int shndx);

private:
 // The entry size.  For fixed-size constants, this is the size of
 // the constants.  For strings, this is the size of a character.
 uint64_t entsize_;
 // Whether we keep input sections.
 bool keeps_input_sections_;
 // Object of the first merged input section.  We use this for script
 // processing.
 Relobj* first_relobj_;
 // Section index of the first merged input section.
 unsigned int first_shndx_;
 // Input sections.  We only keep them is keeps_input_sections_ is true.
 Input_sections input_sections_;
};

// Handle SHF_MERGE sections with fixed-size constant data.

class Output_merge_data : public Output_merge_base
{
public:
 Output_merge_data(uint64_t entsize, uint64_t addralign)
   : Output_merge_base(entsize, addralign), p_(NULL), len_(0), alc_(0),
     input_count_(0),
     hashtable_(128, Merge_data_hash(this), Merge_data_eq(this))
 { }

protected:
 // Add an input section.
 bool
 do_add_input_section(Relobj* object, unsigned int shndx);

 // Set the final data size.
 void
 set_final_data_size();

 // Write the data to the file.
 void
 do_write(Output_file*);

 // Write the data to a buffer.
 void
 do_write_to_buffer(unsigned char*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** merge constants")); }

 // Print merge stats to stderr.
 void
 do_print_merge_stats(const char* section_name);

 // Set keeps-input-sections flag.
 void
 do_set_keeps_input_sections()
 {
   gold_assert(this->input_count_ == 0);
   Output_merge_base::do_set_keeps_input_sections();
 }

private:
 // We build a hash table of the fixed-size constants.  Each constant
 // is stored as a pointer into the section data we are accumulating.

 // A key in the hash table.  This is an offset in the section
 // contents we are building.
 typedef section_offset_type Merge_data_key;

 // Compute the hash code.  To do this we need a pointer back to the
 // object holding the data.
 class Merge_data_hash
 {
  public:
   Merge_data_hash(const Output_merge_data* pomd)
     : pomd_(pomd)
   { }

   size_t
   operator()(Merge_data_key) const;

  private:
   const Output_merge_data* pomd_;
 };

 friend class Merge_data_hash;

 // Compare two entries in the hash table for equality.  To do this
 // we need a pointer back to the object holding the data.  Note that
 // we now have a pointer to the object stored in two places in the
 // hash table.  Fixing this would require specializing the hash
 // table, which would be hard to do portably.
 class Merge_data_eq
 {
  public:
   Merge_data_eq(const Output_merge_data* pomd)
     : pomd_(pomd)
   { }

   bool
   operator()(Merge_data_key k1, Merge_data_key k2) const;

  private:
   const Output_merge_data* pomd_;
 };

 friend class Merge_data_eq;

 // The type of the hash table.
 typedef Unordered_set<Merge_data_key, Merge_data_hash, Merge_data_eq>
   Merge_data_hashtable;

 // Given a hash table key, which is just an offset into the section
 // data, return a pointer to the corresponding constant.
 const unsigned char*
 constant(Merge_data_key k) const
 {
   gold_assert(k >= 0 && k < static_cast<section_offset_type>(this->len_));
   return this->p_ + k;
 }

 // Add a constant to the output.
 void
 add_constant(const unsigned char*);

 // The accumulated data.
 unsigned char* p_;
 // The length of the accumulated data.
 section_size_type len_;
 // The size of the allocated buffer.
 section_size_type alc_;
 // The number of entries seen in input files.
 size_t input_count_;
 // The hash table.
 Merge_data_hashtable hashtable_;
};

// Handle SHF_MERGE sections with string data.  This is a template
// based on the type of the characters in the string.

template<typename Char_type>
class Output_merge_string : public Output_merge_base
{
public:
 Output_merge_string(uint64_t addralign)
   : Output_merge_base(sizeof(Char_type), addralign), stringpool_(addralign),
     merged_strings_lists_(), input_count_(0), input_size_(0)
 {
   this->stringpool_.set_no_zero_null();
 }

protected:
 // Add an input section.
 bool
 do_add_input_section(Relobj* object, unsigned int shndx);

 // Do all the final processing after the input sections are read in.
 // Returns the final data size.
 section_size_type
 finalize_merged_data();

 // Set the final data size.
 void
 set_final_data_size();

 // Write the data to the file.
 void
 do_write(Output_file*);

 // Write the data to a buffer.
 void
 do_write_to_buffer(unsigned char*);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** merge strings")); }

 // Print merge stats to stderr.
 void
 do_print_merge_stats(const char* section_name);

 // Writes the stringpool to a buffer.
 void
 stringpool_to_buffer(unsigned char* buffer, section_size_type buffer_size)
 { this->stringpool_.write_to_buffer(buffer, buffer_size); }

 // Clears all the data in the stringpool, to save on memory.
 void
 clear_stringpool()
 { this->stringpool_.clear(); }

 // Whether this is a merge string section.
 virtual bool
 do_is_string()
 { return true; }

 // Set keeps-input-sections flag.
 void
 do_set_keeps_input_sections()
 {
   gold_assert(this->input_count_ == 0);
   Output_merge_base::do_set_keeps_input_sections();
 }

private:
 // The name of the string type, for stats.
 const char*
 string_name();

 // As we see input sections, we build a mapping from object, section
 // index and offset to strings.
 struct Merged_string
 {
   // The offset in the input section.
   section_offset_type offset;
   // The key in the Stringpool.
   Stringpool::Key stringpool_key;

   Merged_string(section_offset_type offseta, Stringpool::Key stringpool_keya)
     : offset(offseta), stringpool_key(stringpool_keya)
   { }
 };

 typedef std::vector<Merged_string> Merged_strings;

 struct Merged_strings_list
 {
   // The input object where the strings were found.
   Relobj* object;
   // The input section in the input object.
   unsigned int shndx;
   // The list of merged strings.
   Merged_strings merged_strings;

   Merged_strings_list(Relobj* objecta, unsigned int shndxa)
     : object(objecta), shndx(shndxa), merged_strings()
   { }
 };

 typedef std::vector<Merged_strings_list*> Merged_strings_lists;

 // As we see the strings, we add them to a Stringpool.
 Stringpool_template<Char_type> stringpool_;
 // Map from a location in an input object to an entry in the
 // Stringpool.
 Merged_strings_lists merged_strings_lists_;
 // The number of entries seen in input files.
 size_t input_count_;
 // The total size of input sections.
 size_t input_size_;
};

} // End namespace gold.

#endif // !defined(GOLD_MERGE_H)