// layout.h -- lay out output file sections for gold  -*- C++ -*-

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_LAYOUT_H
#define GOLD_LAYOUT_H

#include <cstring>
#include <list>
#include <map>
#include <string>
#include <utility>
#include <vector>

#include "script.h"
#include "workqueue.h"
#include "object.h"
#include "dynobj.h"
#include "stringpool.h"

namespace gold
{

class General_options;
class Incremental_inputs;
class Incremental_binary;
class Input_objects;
class Mapfile;
class Symbol_table;
class Output_section_data;
class Output_section;
class Output_section_headers;
class Output_segment_headers;
class Output_file_header;
class Output_segment;
class Output_data;
class Output_data_reloc_generic;
class Output_data_dynamic;
class Output_symtab_xindex;
class Output_reduced_debug_abbrev_section;
class Output_reduced_debug_info_section;
class Eh_frame;
class Gdb_index;
class Target;
struct Timespec;

// Return TRUE if SECNAME is the name of a compressed debug section.
extern bool
is_compressed_debug_section(const char* secname);

// Return the name of the corresponding uncompressed debug section.
extern std::string
corresponding_uncompressed_section_name(std::string secname);

// Maintain a list of free space within a section, segment, or file.
// Used for incremental update links.

class Free_list
{
public:
 struct Free_list_node
 {
   Free_list_node(off_t start, off_t end)
     : start_(start), end_(end)
   { }
   off_t start_;
   off_t end_;
 };
 typedef std::list<Free_list_node>::const_iterator Const_iterator;

 Free_list()
   : list_(), last_remove_(list_.begin()), extend_(false), length_(0),
     min_hole_(0)
 { }

 // Initialize the free list for a section of length LEN.
 // If EXTEND is true, free space may be allocated past the end.
 void
 init(off_t len, bool extend);

 // Set the minimum hole size that is allowed when allocating
 // from the free list.
 void
 set_min_hole_size(off_t min_hole)
 { this->min_hole_ = min_hole; }

 // Remove a chunk from the free list.
 void
 remove(off_t start, off_t end);

 // Allocate a chunk of space from the free list of length LEN,
 // with alignment ALIGN, and minimum offset MINOFF.
 off_t
 allocate(off_t len, uint64_t align, off_t minoff);

 // Return an iterator for the beginning of the free list.
 Const_iterator
 begin() const
 { return this->list_.begin(); }

 // Return an iterator for the end of the free list.
 Const_iterator
 end() const
 { return this->list_.end(); }

 // Dump the free list (for debugging).
 void
 dump();

 // Print usage statistics.
 static void
 print_stats();

private:
 typedef std::list<Free_list_node>::iterator Iterator;

 // The free list.
 std::list<Free_list_node> list_;

 // The last node visited during a remove operation.
 Iterator last_remove_;

 // Whether we can extend past the original length.
 bool extend_;

 // The total length of the section, segment, or file.
 off_t length_;

 // The minimum hole size allowed.  When allocating from the free list,
 // we must not leave a hole smaller than this.
 off_t min_hole_;

 // Statistics:
 // The total number of free lists used.
 static unsigned int num_lists;
 // The total number of free list nodes used.
 static unsigned int num_nodes;
 // The total number of calls to Free_list::remove.
 static unsigned int num_removes;
 // The total number of nodes visited during calls to Free_list::remove.
 static unsigned int num_remove_visits;
 // The total number of calls to Free_list::allocate.
 static unsigned int num_allocates;
 // The total number of nodes visited during calls to Free_list::allocate.
 static unsigned int num_allocate_visits;
};

// This task function handles mapping the input sections to output
// sections and laying them out in memory.

class Layout_task_runner : public Task_function_runner
{
public:
 // OPTIONS is the command line options, INPUT_OBJECTS is the list of
 // input objects, SYMTAB is the symbol table, LAYOUT is the layout
 // object.
 Layout_task_runner(const General_options& options,
                    const Input_objects* input_objects,
                    Symbol_table* symtab,
                    Target* target,
                    Layout* layout,
                    Mapfile* mapfile)
   : options_(options), input_objects_(input_objects), symtab_(symtab),
     target_(target), layout_(layout), mapfile_(mapfile)
 { }

 // Run the operation.
 void
 run(Workqueue*, const Task*);

private:
 Layout_task_runner(const Layout_task_runner&);
 Layout_task_runner& operator=(const Layout_task_runner&);

 const General_options& options_;
 const Input_objects* input_objects_;
 Symbol_table* symtab_;
 Target* target_;
 Layout* layout_;
 Mapfile* mapfile_;
};

// This class holds information about the comdat group or
// .gnu.linkonce section that will be kept for a given signature.

class Kept_section
{
private:
 // For a comdat group, we build a mapping from the name of each
 // section in the group to the section index and the size in object.
 // When we discard a group in some other object file, we use this
 // map to figure out which kept section the discarded section is
 // associated with.  We then use that mapping when processing relocs
 // against discarded sections.
 struct Comdat_section_info
 {
   // The section index.
   unsigned int shndx;
   // The section size.
   uint64_t size;

   Comdat_section_info(unsigned int a_shndx, uint64_t a_size)
     : shndx(a_shndx), size(a_size)
   { }
 };

 // Most comdat groups have only one or two sections, so we use a
 // std::map rather than an Unordered_map to optimize for that case
 // without paying too heavily for groups with more sections.
 typedef std::map<std::string, Comdat_section_info> Comdat_group;

public:
 Kept_section()
   : object_(NULL), shndx_(0), is_comdat_(false), is_group_name_(false)
 { this->u_.linkonce_size = 0; }

 // We need to support copies for the signature map in the Layout
 // object, but we should never copy an object after it has been
 // marked as a comdat section.
 Kept_section(const Kept_section& k)
   : object_(k.object_), shndx_(k.shndx_), is_comdat_(false),
     is_group_name_(k.is_group_name_)
 {
   gold_assert(!k.is_comdat_);
   this->u_.linkonce_size = 0;
 }

 ~Kept_section()
 {
   if (this->is_comdat_)
     delete this->u_.group_sections;
 }

 // The object where this section lives.
 Relobj*
 object() const
 { return this->object_; }

 // Set the object.
 void
 set_object(Relobj* object)
 {
   gold_assert(this->object_ == NULL);
   this->object_ = object;
 }

 // The section index.
 unsigned int
 shndx() const
 { return this->shndx_; }

 // Set the section index.
 void
 set_shndx(unsigned int shndx)
 {
   gold_assert(this->shndx_ == 0);
   this->shndx_ = shndx;
 }

 // Whether this is a comdat group.
 bool
 is_comdat() const
 { return this->is_comdat_; }

 // Set that this is a comdat group.
 void
 set_is_comdat()
 {
   gold_assert(!this->is_comdat_);
   this->is_comdat_ = true;
   this->u_.group_sections = new Comdat_group();
 }

 // Whether this is associated with the name of a group or section
 // rather than the symbol name derived from a linkonce section.
 bool
 is_group_name() const
 { return this->is_group_name_; }

 // Note that this represents a comdat group rather than a single
 // linkonce section.
 void
 set_is_group_name()
 { this->is_group_name_ = true; }

 // Add a section to the group list.
 void
 add_comdat_section(const std::string& name, unsigned int shndx,
                    uint64_t size)
 {
   gold_assert(this->is_comdat_);
   Comdat_section_info sinfo(shndx, size);
   this->u_.group_sections->insert(std::make_pair(name, sinfo));
 }

 // Look for a section name in the group list, and return whether it
 // was found.  If found, returns the section index and size.
 bool
 find_comdat_section(const std::string& name, unsigned int* pshndx,
                     uint64_t* psize) const
 {
   gold_assert(this->is_comdat_);
   Comdat_group::const_iterator p = this->u_.group_sections->find(name);
   if (p == this->u_.group_sections->end())
     return false;
   *pshndx = p->second.shndx;
   *psize = p->second.size;
   return true;
 }

 // If there is only one section in the group list, return true, and
 // return the section index and size.
 bool
 find_single_comdat_section(unsigned int* pshndx, uint64_t* psize) const
 {
   gold_assert(this->is_comdat_);
   if (this->u_.group_sections->size() != 1)
     return false;
   Comdat_group::const_iterator p = this->u_.group_sections->begin();
   *pshndx = p->second.shndx;
   *psize = p->second.size;
   return true;
 }

 // Return the size of a linkonce section.
 uint64_t
 linkonce_size() const
 {
   gold_assert(!this->is_comdat_);
   return this->u_.linkonce_size;
 }

 // Set the size of a linkonce section.
 void
 set_linkonce_size(uint64_t size)
 {
   gold_assert(!this->is_comdat_);
   this->u_.linkonce_size = size;
 }

private:
 // No assignment.
 Kept_section& operator=(const Kept_section&);

 // The object containing the comdat group or .gnu.linkonce section.
 Relobj* object_;
 // Index of the group section for comdats and the section itself for
 // .gnu.linkonce.
 unsigned int shndx_;
 // True if this is for a comdat group rather than a .gnu.linkonce
 // section.
 bool is_comdat_;
 // The Kept_sections are values of a mapping, that maps names to
 // them.  This field is true if this struct is associated with the
 // name of a comdat or .gnu.linkonce, false if it is associated with
 // the name of a symbol obtained from the .gnu.linkonce.* name
 // through some heuristics.
 bool is_group_name_;
 union
 {
   // If the is_comdat_ field is true, this holds a map from names of
   // the sections in the group to section indexes in object_ and to
   // section sizes.
   Comdat_group* group_sections;
   // If the is_comdat_ field is false, this holds the size of the
   // single section.
   uint64_t linkonce_size;
 } u_;
};

// The ordering for output sections.  This controls how output
// sections are ordered within a PT_LOAD output segment.

enum Output_section_order
{
 // Unspecified.  Used for non-load segments.  Also used for the file
 // and segment headers.
 ORDER_INVALID,

 // The PT_INTERP section should come first, so that the dynamic
 // linker can pick it up quickly.
 ORDER_INTERP,

 // The .note.gnu.property section comes next so that the PT_NOTE
 // segment is on the first page of the executable and it won't be
 // placed between other note sections with different alignments.
 ORDER_PROPERTY_NOTE,

 // Loadable read-only note sections come after the .note.gnu.property
 // section.
 ORDER_RO_NOTE,

 // Put read-only sections used by the dynamic linker early in the
 // executable to minimize paging.
 ORDER_DYNAMIC_LINKER,

 // Put reloc sections used by the dynamic linker after other
 // sections used by the dynamic linker; otherwise, objcopy and strip
 // get confused.
 ORDER_DYNAMIC_RELOCS,

 // Put the PLT reloc section after the other dynamic relocs;
 // otherwise, prelink gets confused.
 ORDER_DYNAMIC_PLT_RELOCS,

 // The .init section.
 ORDER_INIT,

 // The PLT.
 ORDER_PLT,

 // The hot text sections, prefixed by .text.hot.
 ORDER_TEXT_HOT,

 // The regular text sections.
 ORDER_TEXT,

 // The startup text sections, prefixed by .text.startup.
 ORDER_TEXT_STARTUP,

 // The startup text sections, prefixed by .text.startup.
 ORDER_TEXT_EXIT,

 // The unlikely text sections, prefixed by .text.unlikely.
 ORDER_TEXT_UNLIKELY,

 // The .fini section.
 ORDER_FINI,

 // The read-only sections.
 ORDER_READONLY,

 // The exception frame sections.
 ORDER_EHFRAME,

 // The TLS sections come first in the data section.
 ORDER_TLS_DATA,
 ORDER_TLS_BSS,

 // Local RELRO (read-only after relocation) sections come before
 // non-local RELRO sections.  This data will be fully resolved by
 // the prelinker.
 ORDER_RELRO_LOCAL,

 // Non-local RELRO sections are grouped together after local RELRO
 // sections.  All RELRO sections must be adjacent so that they can
 // all be put into a PT_GNU_RELRO segment.
 ORDER_RELRO,

 // We permit marking exactly one output section as the last RELRO
 // section.  We do this so that the read-only GOT can be adjacent to
 // the writable GOT.
 ORDER_RELRO_LAST,

 // Similarly, we permit marking exactly one output section as the
 // first non-RELRO section.
 ORDER_NON_RELRO_FIRST,

 // The regular data sections come after the RELRO sections.
 ORDER_DATA,

 // Large data sections normally go in large data segments.
 ORDER_LARGE_DATA,

 // Group writable notes so that we can have a single PT_NOTE
 // segment.
 ORDER_RW_NOTE,

 // The small data sections must be at the end of the data sections,
 // so that they can be adjacent to the small BSS sections.
 ORDER_SMALL_DATA,

 // The BSS sections start here.

 // The small BSS sections must be at the start of the BSS sections,
 // so that they can be adjacent to the small data sections.
 ORDER_SMALL_BSS,

 // The regular BSS sections.
 ORDER_BSS,

 // The large BSS sections come after the other BSS sections.
 ORDER_LARGE_BSS,

 // Maximum value.
 ORDER_MAX
};

// This class handles the details of laying out input sections.

class Layout
{
public:
 Layout(int number_of_input_files, Script_options*);

 ~Layout()
 {
   delete this->relaxation_debug_check_;
   delete this->segment_states_;
 }

 // For incremental links, record the base file to be modified.
 void
 set_incremental_base(Incremental_binary* base);

 Incremental_binary*
 incremental_base()
 { return this->incremental_base_; }

 // For incremental links, record the initial fixed layout of a section
 // from the base file, and return a pointer to the Output_section.
 template<int size, bool big_endian>
 Output_section*
 init_fixed_output_section(const char*, elfcpp::Shdr<size, big_endian>&);

 // Given an input section SHNDX, named NAME, with data in SHDR, from
 // the object file OBJECT, return the output section where this
 // input section should go.  RELOC_SHNDX is the index of a
 // relocation section which applies to this section, or 0 if none,
 // or -1U if more than one.  RELOC_TYPE is the type of the
 // relocation section if there is one.  Set *OFFSET to the offset
 // within the output section.
 template<int size, bool big_endian>
 Output_section*
 layout(Sized_relobj_file<size, big_endian> *object, unsigned int shndx,
        const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
        unsigned int sh_type, unsigned int reloc_shndx,
        unsigned int reloc_type, off_t* offset);

 std::map<Section_id, unsigned int>*
 get_section_order_map()
 { return &this->section_order_map_; }

 // Struct to store segment info when mapping some input sections to
 // unique segments using linker plugins.  Mapping an input section to
 // a unique segment is done by first placing such input sections in
 // unique output sections and then mapping the output section to a
 // unique segment.  NAME is the name of the output section.  FLAGS
 // and ALIGN are the extra flags and alignment of the segment.
 struct Unique_segment_info
 {
   // Identifier for the segment.  ELF segments don't have names.  This
   // is used as the name of the output section mapped to the segment.
   const char* name;
   // Additional segment flags.
   uint64_t flags;
   // Segment alignment.
   uint64_t align;
 };

 // Mapping from input section to segment.
 typedef std::map<Const_section_id, Unique_segment_info*>
 Section_segment_map;

 // Maps section SECN to SEGMENT s.
 void
 insert_section_segment_map(Const_section_id secn, Unique_segment_info *s);

 // Some input sections require special ordering, for compatibility
 // with GNU ld.  Given the name of an input section, return -1 if it
 // does not require special ordering.  Otherwise, return the index
 // by which it should be ordered compared to other input sections
 // that require special ordering.
 static int
 special_ordering_of_input_section(const char* name);

 bool
 is_section_ordering_specified()
 { return this->section_ordering_specified_; }

 void
 set_section_ordering_specified()
 { this->section_ordering_specified_ = true; }

 bool
 is_unique_segment_for_sections_specified() const
 { return this->unique_segment_for_sections_specified_; }

 void
 set_unique_segment_for_sections_specified()
 { this->unique_segment_for_sections_specified_ = true; }

 bool
 is_lto_slim_object () const
 { return this->lto_slim_object_; }

 void
 set_lto_slim_object ()
 { this->lto_slim_object_ = true; }

 // For incremental updates, allocate a block of memory from the
 // free list.  Find a block starting at or after MINOFF.
 off_t
 allocate(off_t len, uint64_t align, off_t minoff)
 { return this->free_list_.allocate(len, align, minoff); }

 unsigned int
 find_section_order_index(const std::string&);

 // Read the sequence of input sections from the file specified with
 // linker option --section-ordering-file.
 void
 read_layout_from_file();

 // Layout an input reloc section when doing a relocatable link.  The
 // section is RELOC_SHNDX in OBJECT, with data in SHDR.
 // DATA_SECTION is the reloc section to which it refers.  RR is the
 // relocatable information.
 template<int size, bool big_endian>
 Output_section*
 layout_reloc(Sized_relobj_file<size, big_endian>* object,
              unsigned int reloc_shndx,
              const elfcpp::Shdr<size, big_endian>& shdr,
              Output_section* data_section,
              Relocatable_relocs* rr);

 // Layout a group section when doing a relocatable link.
 template<int size, bool big_endian>
 void
 layout_group(Symbol_table* symtab,
              Sized_relobj_file<size, big_endian>* object,
              unsigned int group_shndx,
              const char* group_section_name,
              const char* signature,
              const elfcpp::Shdr<size, big_endian>& shdr,
              elfcpp::Elf_Word flags,
              std::vector<unsigned int>* shndxes);

 // Like layout, only for exception frame sections.  OBJECT is an
 // object file.  SYMBOLS is the contents of the symbol table
 // section, with size SYMBOLS_SIZE.  SYMBOL_NAMES is the contents of
 // the symbol name section, with size SYMBOL_NAMES_SIZE.  SHNDX is a
 // .eh_frame section in OBJECT.  SHDR is the section header.
 // RELOC_SHNDX is the index of a relocation section which applies to
 // this section, or 0 if none, or -1U if more than one.  RELOC_TYPE
 // is the type of the relocation section if there is one.  This
 // returns the output section, and sets *OFFSET to the offset.
 template<int size, bool big_endian>
 Output_section*
 layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
                 const unsigned char* symbols,
                 off_t symbols_size,
                 const unsigned char* symbol_names,
                 off_t symbol_names_size,
                 unsigned int shndx,
                 const elfcpp::Shdr<size, big_endian>& shdr,
                 unsigned int reloc_shndx, unsigned int reloc_type,
                 off_t* offset);

 // After processing all input files, we call this to make sure that
 // the optimized .eh_frame sections have been added to the output
 // section.
 void
 finalize_eh_frame_section();

 // Add .eh_frame information for a PLT.  The FDE must start with a
 // 4-byte PC-relative reference to the start of the PLT, followed by
 // a 4-byte size of PLT.
 void
 add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
                      size_t cie_length, const unsigned char* fde_data,
                      size_t fde_length);

 // Remove all post-map .eh_frame information for a PLT.
 void
 remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
                         size_t cie_length);

 // Scan a .debug_info or .debug_types section, and add summary
 // information to the .gdb_index section.
 template<int size, bool big_endian>
 void
 add_to_gdb_index(bool is_type_unit,
                  Sized_relobj<size, big_endian>* object,
                  const unsigned char* symbols,
                  off_t symbols_size,
                  unsigned int shndx,
                  unsigned int reloc_shndx,
                  unsigned int reloc_type);

 // Handle a GNU stack note.  This is called once per input object
 // file.  SEEN_GNU_STACK is true if the object file has a
 // .note.GNU-stack section.  GNU_STACK_FLAGS is the section flags
 // from that section if there was one.
 void
 layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
                  const Object*);

 // Layout a .note.gnu.property section.
 void
 layout_gnu_property(unsigned int note_type,
                     unsigned int pr_type,
                     size_t pr_datasz,
                     const unsigned char* pr_data,
                     const Object* object);

 // Merge per-object properties with program properties.
 void
 merge_gnu_properties(const Object* object);

 // Add a target-specific property for the output .note.gnu.property section.
 void
 add_gnu_property(unsigned int note_type,
                  unsigned int pr_type,
                  size_t pr_datasz,
                  const unsigned char* pr_data);

 // Add an Output_section_data to the layout.  This is used for
 // special sections like the GOT section.  ORDER is where the
 // section should wind up in the output segment.  IS_RELRO is true
 // for relro sections.
 Output_section*
 add_output_section_data(const char* name, elfcpp::Elf_Word type,
                         elfcpp::Elf_Xword flags,
                         Output_section_data*, Output_section_order order,
                         bool is_relro);

 // Increase the size of the relro segment by this much.
 void
 increase_relro(unsigned int s)
 { this->increase_relro_ += s; }

 // Create dynamic sections if necessary.
 void
 create_initial_dynamic_sections(Symbol_table*);

 // Define __start and __stop symbols for output sections.
 void
 define_section_symbols(Symbol_table*);

 // Create automatic note sections.
 void
 create_notes();

 // Create sections for linker scripts.
 void
 create_script_sections()
 { this->script_options_->create_script_sections(this); }

 // Define symbols from any linker script.
 void
 define_script_symbols(Symbol_table* symtab)
 { this->script_options_->add_symbols_to_table(symtab); }

 // Define symbols for group signatures.
 void
 define_group_signatures(Symbol_table*);

 // Return the Stringpool used for symbol names.
 const Stringpool*
 sympool() const
 { return &this->sympool_; }

 // Return the Stringpool used for dynamic symbol names and dynamic
 // tags.
 const Stringpool*
 dynpool() const
 { return &this->dynpool_; }

 // Return the .dynamic output section.  This is only valid after the
 // layout has been finalized.
 Output_section*
 dynamic_section() const
 { return this->dynamic_section_; }

 // Return the symtab_xindex section used to hold large section
 // indexes for the normal symbol table.
 Output_symtab_xindex*
 symtab_xindex() const
 { return this->symtab_xindex_; }

 // Return the dynsym_xindex section used to hold large section
 // indexes for the dynamic symbol table.
 Output_symtab_xindex*
 dynsym_xindex() const
 { return this->dynsym_xindex_; }

 // Return whether a section is a .gnu.linkonce section, given the
 // section name.
 static inline bool
 is_linkonce(const char* name)
 { return strncmp(name, ".gnu.linkonce", sizeof(".gnu.linkonce") - 1) == 0; }

 // Whether we have added an input section.
 bool
 have_added_input_section() const
 { return this->have_added_input_section_; }

 // Return true if a section is a debugging section.
 static inline bool
 is_debug_info_section(const char* name)
 {
   // Debugging sections can only be recognized by name.
   return (strncmp(name, ".debug", sizeof(".debug") - 1) == 0
           || strncmp(name, ".zdebug", sizeof(".zdebug") - 1) == 0
           || strncmp(name, ".gnu.linkonce.wi.",
                      sizeof(".gnu.linkonce.wi.") - 1) == 0
           || strncmp(name, ".line", sizeof(".line") - 1) == 0
           || strncmp(name, ".stab", sizeof(".stab") - 1) == 0
           || strncmp(name, ".pdr", sizeof(".pdr") - 1) == 0);
 }

 // Return true if RELOBJ is an input file whose base name matches
 // FILE_NAME.  The base name must have an extension of ".o", and
 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
 static bool
 match_file_name(const Relobj* relobj, const char* file_name);

 // Return whether section SHNDX in RELOBJ is a .ctors/.dtors section
 // with more than one word being mapped to a .init_array/.fini_array
 // section.
 bool
 is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const;

 // Check if a comdat group or .gnu.linkonce section with the given
 // NAME is selected for the link.  If there is already a section,
 // *KEPT_SECTION is set to point to the signature and the function
 // returns false.  Otherwise, OBJECT, SHNDX,IS_COMDAT, and
 // IS_GROUP_NAME are recorded for this NAME in the layout object,
 // *KEPT_SECTION is set to the internal copy and the function return
 // false.
 bool
 find_or_add_kept_section(const std::string& name, Relobj* object,
                          unsigned int shndx, bool is_comdat,
                          bool is_group_name, Kept_section** kept_section);

 // Finalize the layout after all the input sections have been added.
 off_t
 finalize(const Input_objects*, Symbol_table*, Target*, const Task*);

 // Return whether any sections require postprocessing.
 bool
 any_postprocessing_sections() const
 { return this->any_postprocessing_sections_; }

 // Return the size of the output file.
 off_t
 output_file_size() const
 { return this->output_file_size_; }

 // Return the TLS segment.  This will return NULL if there isn't
 // one.
 Output_segment*
 tls_segment() const
 { return this->tls_segment_; }

 // Return the normal symbol table.
 Output_section*
 symtab_section() const
 {
   gold_assert(this->symtab_section_ != NULL);
   return this->symtab_section_;
 }

 // Return the file offset of the normal symbol table.
 off_t
 symtab_section_offset() const;

 // Return the section index of the normal symbol tabl.e
 unsigned int
 symtab_section_shndx() const;

 // Return the dynamic symbol table.
 Output_section*
 dynsym_section() const
 {
   gold_assert(this->dynsym_section_ != NULL);
   return this->dynsym_section_;
 }

 // Return the dynamic tags.
 Output_data_dynamic*
 dynamic_data() const
 { return this->dynamic_data_; }

 // Write out the output sections.
 void
 write_output_sections(Output_file* of) const;

 // Write out data not associated with an input file or the symbol
 // table.
 void
 write_data(const Symbol_table*, Output_file*) const;

 // Write out output sections which can not be written until all the
 // input sections are complete.
 void
 write_sections_after_input_sections(Output_file* of);

 // Return an output section named NAME, or NULL if there is none.
 Output_section*
 find_output_section(const char* name) const;

 // Return an output segment of type TYPE, with segment flags SET set
 // and segment flags CLEAR clear.  Return NULL if there is none.
 Output_segment*
 find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
                     elfcpp::Elf_Word clear) const;

 // Return the number of segments we expect to produce.
 size_t
 expected_segment_count() const;

 // Set a flag to indicate that an object file uses the static TLS model.
 void
 set_has_static_tls()
 { this->has_static_tls_ = true; }

 // Return true if any object file uses the static TLS model.
 bool
 has_static_tls() const
 { return this->has_static_tls_; }

 // Return the options which may be set by a linker script.
 Script_options*
 script_options()
 { return this->script_options_; }

 const Script_options*
 script_options() const
 { return this->script_options_; }

 // Return the object managing inputs in incremental build. NULL in
 // non-incremental builds.
 Incremental_inputs*
 incremental_inputs() const
 { return this->incremental_inputs_; }

 // For the target-specific code to add dynamic tags which are common
 // to most targets.
 void
 add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
                         const Output_data* plt_rel,
                         const Output_data_reloc_generic* dyn_rel,
                         bool add_debug, bool dynrel_includes_plt,
                         bool custom_relcount);

 // Add a target-specific dynamic tag with constant value.
 void
 add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val);

 // Compute and write out the build ID if needed.
 void
 write_build_id(Output_file*, unsigned char*, size_t) const;

 // Rewrite output file in binary format.
 void
 write_binary(Output_file* in) const;

 // Print output sections to the map file.
 void
 print_to_mapfile(Mapfile*) const;

 // Dump statistical information to stderr.
 void
 print_stats() const;

 // A list of segments.

 typedef std::vector<Output_segment*> Segment_list;

 // A list of sections.

 typedef std::vector<Output_section*> Section_list;

 // The list of information to write out which is not attached to
 // either a section or a segment.
 typedef std::vector<Output_data*> Data_list;

 // Store the allocated sections into the section list.  This is used
 // by the linker script code.
 void
 get_allocated_sections(Section_list*) const;

 // Store the executable sections into the section list.
 void
 get_executable_sections(Section_list*) const;

 // Make a section for a linker script to hold data.
 Output_section*
 make_output_section_for_script(const char* name,
                                Script_sections::Section_type section_type);

 // Make a segment.  This is used by the linker script code.
 Output_segment*
 make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags);

 // Return the number of segments.
 size_t
 segment_count() const
 { return this->segment_list_.size(); }

 // Map from section flags to segment flags.
 static elfcpp::Elf_Word
 section_flags_to_segment(elfcpp::Elf_Xword flags);

 // Attach sections to segments.
 void
 attach_sections_to_segments(const Target*);

 // For relaxation clean up, we need to know output section data created
 // from a linker script.
 void
 new_output_section_data_from_script(Output_section_data* posd)
 {
   if (this->record_output_section_data_from_script_)
     this->script_output_section_data_list_.push_back(posd);
 }

 // Return section list.
 const Section_list&
 section_list() const
 { return this->section_list_; }

 // Returns TRUE iff NAME (an input section from RELOBJ) will
 // be mapped to an output section that should be KEPT.
 bool
 keep_input_section(const Relobj*, const char*);

 // Add a special output object that will be recreated afresh
 // if there is another relaxation iteration.
 void
 add_relax_output(Output_data* data)
 { this->relax_output_list_.push_back(data); }

 // Clear out (and free) everything added by add_relax_output.
 void
 reset_relax_output();

private:
 Layout(const Layout&);
 Layout& operator=(const Layout&);

 // Mapping from input section names to output section names.
 struct Section_name_mapping
 {
   const char* from;
   int fromlen;
   const char* to;
   int tolen;
 };
 static const Section_name_mapping section_name_mapping[];
 static const int section_name_mapping_count;
 static const Section_name_mapping text_section_name_mapping[];
 static const int text_section_name_mapping_count;

 // Find section name NAME in map and return the mapped name if found
 // with the length set in PLEN.
 static const char* match_section_name(const Section_name_mapping* map,
                                       const int count, const char* name,
                                       size_t* plen);

 // During a relocatable link, a list of group sections and
 // signatures.
 struct Group_signature
 {
   // The group section.
   Output_section* section;
   // The signature.
   const char* signature;

   Group_signature()
     : section(NULL), signature(NULL)
   { }

   Group_signature(Output_section* sectiona, const char* signaturea)
     : section(sectiona), signature(signaturea)
   { }
 };
 typedef std::vector<Group_signature> Group_signatures;

 // Create a note section, filling in the header.
 Output_section*
 create_note(const char* name, int note_type, const char* section_name,
             size_t descsz, bool allocate, size_t* trailing_padding);

 // Create a note section for gnu program properties.
 void
 create_gnu_properties_note();

 // Create a note section for gold version.
 void
 create_gold_note();

 // Record whether the stack must be executable, and a user-supplied size.
 void
 create_stack_segment();

 // Create a build ID note if needed.
 void
 create_build_id();

 // Create a package metadata note if needed.
 void
 create_package_metadata();

 // Link .stab and .stabstr sections.
 void
 link_stabs_sections();

 // Create .gnu_incremental_inputs and .gnu_incremental_strtab sections needed
 // for the next run of incremental linking to check what has changed.
 void
 create_incremental_info_sections(Symbol_table*);

 // Find the first read-only PT_LOAD segment, creating one if
 // necessary.
 Output_segment*
 find_first_load_seg(const Target*);

 // Count the local symbols in the regular symbol table and the dynamic
 // symbol table, and build the respective string pools.
 void
 count_local_symbols(const Task*, const Input_objects*);

 // Create the output sections for the symbol table.
 void
 create_symtab_sections(const Input_objects*, Symbol_table*,
                        unsigned int, off_t*, unsigned int);

 // Create the .shstrtab section.
 Output_section*
 create_shstrtab();

 // Create the section header table.
 void
 create_shdrs(const Output_section* shstrtab_section, off_t*);

 // Create the dynamic symbol table.
 void
 create_dynamic_symtab(const Input_objects*, Symbol_table*,
                       Output_section** pdynstr,
                       unsigned int* plocal_dynamic_count,
                       unsigned int* pforced_local_dynamic_count,
                       std::vector<Symbol*>* pdynamic_symbols,
                       Versions* versions);

 // Assign offsets to each local portion of the dynamic symbol table.
 void
 assign_local_dynsym_offsets(const Input_objects*);

 // Finish the .dynamic section and PT_DYNAMIC segment.
 void
 finish_dynamic_section(const Input_objects*, const Symbol_table*);

 // Set the size of the _DYNAMIC symbol.
 void
 set_dynamic_symbol_size(const Symbol_table*);

 // Create the .interp section and PT_INTERP segment.
 void
 create_interp(const Target* target);

 // Create the version sections.
 void
 create_version_sections(const Versions*,
                         const Symbol_table*,
                         unsigned int local_symcount,
                         const std::vector<Symbol*>& dynamic_symbols,
                         const Output_section* dynstr);

 template<int size, bool big_endian>
 void
 sized_create_version_sections(const Versions* versions,
                               const Symbol_table*,
                               unsigned int local_symcount,
                               const std::vector<Symbol*>& dynamic_symbols,
                               const Output_section* dynstr);

 // Return whether to include this section in the link.
 template<int size, bool big_endian>
 bool
 include_section(Sized_relobj_file<size, big_endian>* object, const char* name,
                 const elfcpp::Shdr<size, big_endian>&);

 // Return the output section name to use given an input section
 // name.  Set *PLEN to the length of the name.  *PLEN must be
 // initialized to the length of NAME.
 static const char*
 output_section_name(const Relobj*, const char* name, size_t* plen);

 // Return the number of allocated output sections.
 size_t
 allocated_output_section_count() const;

 // Return the output section for NAME, TYPE and FLAGS.
 Output_section*
 get_output_section(const char* name, Stringpool::Key name_key,
                    elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
                    Output_section_order order, bool is_relro);

 // Clear the input section flags that should not be copied to the
 // output section.
 elfcpp::Elf_Xword
 get_output_section_flags (elfcpp::Elf_Xword input_section_flags);

 // Choose the output section for NAME in RELOBJ.
 Output_section*
 choose_output_section(const Relobj* relobj, const char* name,
                       elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
                       bool is_input_section, Output_section_order order,
                       bool is_relro, bool is_reloc, bool match_input_spec);

 // Create a new Output_section.
 Output_section*
 make_output_section(const char* name, elfcpp::Elf_Word type,
                     elfcpp::Elf_Xword flags, Output_section_order order,
                     bool is_relro);

 // Attach a section to a segment.
 void
 attach_section_to_segment(const Target*, Output_section*);

 // Get section order.
 Output_section_order
 default_section_order(Output_section*, bool is_relro_local);

 // Attach an allocated section to a segment.
 void
 attach_allocated_section_to_segment(const Target*, Output_section*);

 // Make the .eh_frame section.
 Output_section*
 make_eh_frame_section(const Relobj*);

 // Set the final file offsets of all the segments.
 off_t
 set_segment_offsets(const Target*, Output_segment*, unsigned int* pshndx);

 // Set the file offsets of the sections when doing a relocatable
 // link.
 off_t
 set_relocatable_section_offsets(Output_data*, unsigned int* pshndx);

 // Set the final file offsets of all the sections not associated
 // with a segment.  We set section offsets in three passes: the
 // first handles all allocated sections, the second sections that
 // require postprocessing, and the last the late-bound STRTAB
 // sections (probably only shstrtab, which is the one we care about
 // because it holds section names).
 enum Section_offset_pass
 {
   BEFORE_INPUT_SECTIONS_PASS,
   POSTPROCESSING_SECTIONS_PASS,
   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
 };
 off_t
 set_section_offsets(off_t, Section_offset_pass pass);

 // Set the final section indexes of all the sections not associated
 // with a segment.  Returns the next unused index.
 unsigned int
 set_section_indexes(unsigned int pshndx);

 // Set the section addresses when using a script.
 Output_segment*
 set_section_addresses_from_script(Symbol_table*);

 // Find appropriate places or orphan sections in a script.
 void
 place_orphan_sections_in_script();

 // Return whether SEG1 comes before SEG2 in the output file.
 bool
 segment_precedes(const Output_segment* seg1, const Output_segment* seg2);

 // Use to save and restore segments during relaxation.
 typedef Unordered_map<const Output_segment*, const Output_segment*>
   Segment_states;

 // Save states of current output segments.
 void
 save_segments(Segment_states*);

 // Restore output segment states.
 void
 restore_segments(const Segment_states*);

 // Clean up after relaxation so that it is possible to lay out the
 // sections and segments again.
 void
 clean_up_after_relaxation();

 // Doing preparation work for relaxation.  This is factored out to make
 // Layout::finalized a bit smaller and easier to read.
 void
 prepare_for_relaxation();

 // Main body of the relaxation loop, which lays out the section.
 off_t
 relaxation_loop_body(int, Target*, Symbol_table*, Output_segment**,
                      Output_segment*, Output_segment_headers*,
                      Output_file_header*, unsigned int*);

 // A mapping used for kept comdats/.gnu.linkonce group signatures.
 typedef Unordered_map<std::string, Kept_section> Signatures;

 // Mapping from input section name/type/flags to output section.  We
 // use canonicalized strings here.

 typedef std::pair<Stringpool::Key,
                   std::pair<elfcpp::Elf_Word, elfcpp::Elf_Xword> > Key;

 struct Hash_key
 {
   size_t
   operator()(const Key& k) const;
 };

 typedef Unordered_map<Key, Output_section*, Hash_key> Section_name_map;

 // A comparison class for segments.

 class Compare_segments
 {
  public:
   Compare_segments(Layout* layout)
     : layout_(layout)
   { }

   bool
   operator()(const Output_segment* seg1, const Output_segment* seg2)
   { return this->layout_->segment_precedes(seg1, seg2); }

  private:
   Layout* layout_;
 };

 typedef std::vector<Output_section_data*> Output_section_data_list;

 // Debug checker class.
 class Relaxation_debug_check
 {
  public:
   Relaxation_debug_check()
     : section_infos_()
   { }

   // Check that sections and special data are in reset states.
   void
   check_output_data_for_reset_values(const Layout::Section_list&,
                                      const Layout::Data_list& special_outputs,
                                      const Layout::Data_list& relax_outputs);

   // Record information of a section list.
   void
   read_sections(const Layout::Section_list&);

   // Verify a section list with recorded information.
   void
   verify_sections(const Layout::Section_list&);

  private:
   // Information we care about a section.
   struct Section_info
   {
     // Output section described by this.
     Output_section* output_section;
     // Load address.
     uint64_t address;
     // Data size.
     off_t data_size;
     // File offset.
     off_t offset;
   };

   // Section information.
   std::vector<Section_info> section_infos_;
 };

 // Program properties from .note.gnu.property sections.
 struct Gnu_property
 {
   size_t pr_datasz;
   unsigned char* pr_data;
 };
 typedef std::map<unsigned int, Gnu_property> Gnu_properties;

 // The number of input files, for sizing tables.
 int number_of_input_files_;
 // Information set by scripts or by command line options.
 Script_options* script_options_;
 // The output section names.
 Stringpool namepool_;
 // The output symbol names.
 Stringpool sympool_;
 // The dynamic strings, if needed.
 Stringpool dynpool_;
 // The list of group sections and linkonce sections which we have seen.
 Signatures signatures_;
 // The mapping from input section name/type/flags to output sections.
 Section_name_map section_name_map_;
 // The list of output segments.
 Segment_list segment_list_;
 // The list of output sections.
 Section_list section_list_;
 // The list of output sections which are not attached to any output
 // segment.
 Section_list unattached_section_list_;
 // The list of unattached Output_data objects which require special
 // handling because they are not Output_sections.
 Data_list special_output_list_;
 // Like special_output_list_, but cleared and recreated on each
 // iteration of relaxation.
 Data_list relax_output_list_;
 // The section headers.
 Output_section_headers* section_headers_;
 // A pointer to the PT_TLS segment if there is one.
 Output_segment* tls_segment_;
 // A pointer to the PT_GNU_RELRO segment if there is one.
 Output_segment* relro_segment_;
 // A pointer to the PT_INTERP segment if there is one.
 Output_segment* interp_segment_;
 // A backend may increase the size of the PT_GNU_RELRO segment if
 // there is one.  This is the amount to increase it by.
 unsigned int increase_relro_;
 // The SHT_SYMTAB output section.
 Output_section* symtab_section_;
 // The SHT_SYMTAB_SHNDX for the regular symbol table if there is one.
 Output_symtab_xindex* symtab_xindex_;
 // The SHT_DYNSYM output section if there is one.
 Output_section* dynsym_section_;
 // The SHT_SYMTAB_SHNDX for the dynamic symbol table if there is one.
 Output_symtab_xindex* dynsym_xindex_;
 // The SHT_DYNAMIC output section if there is one.
 Output_section* dynamic_section_;
 // The _DYNAMIC symbol if there is one.
 Symbol* dynamic_symbol_;
 // The dynamic data which goes into dynamic_section_.
 Output_data_dynamic* dynamic_data_;
 // The exception frame output section if there is one.
 Output_section* eh_frame_section_;
 // The exception frame data for eh_frame_section_.
 Eh_frame* eh_frame_data_;
 // Whether we have added eh_frame_data_ to the .eh_frame section.
 bool added_eh_frame_data_;
 // The exception frame header output section if there is one.
 Output_section* eh_frame_hdr_section_;
 // The data for the .gdb_index section.
 Gdb_index* gdb_index_data_;
 // The space for the build ID checksum if there is one.
 Output_section_data* build_id_note_;
 // The space for the package metadata JSON if there is one.
 Output_section_data* package_metadata_note_;
 // The output section containing dwarf abbreviations
 Output_reduced_debug_abbrev_section* debug_abbrev_;
 // The output section containing the dwarf debug info tree
 Output_reduced_debug_info_section* debug_info_;
 // A list of group sections and their signatures.
 Group_signatures group_signatures_;
 // The size of the output file.
 off_t output_file_size_;
 // Whether we have added an input section to an output section.
 bool have_added_input_section_;
 // Whether we have attached the sections to the segments.
 bool sections_are_attached_;
 // Whether we have seen an object file marked to require an
 // executable stack.
 bool input_requires_executable_stack_;
 // Whether we have seen at least one object file with an executable
 // stack marker.
 bool input_with_gnu_stack_note_;
 // Whether we have seen at least one object file without an
 // executable stack marker.
 bool input_without_gnu_stack_note_;
 // Whether we have seen an object file that uses the static TLS model.
 bool has_static_tls_;
 // Whether any sections require postprocessing.
 bool any_postprocessing_sections_;
 // Whether we have resized the signatures_ hash table.
 bool resized_signatures_;
 // Whether we have created a .stab*str output section.
 bool have_stabstr_section_;
 // True if the input sections in the output sections should be sorted
 // as specified in a section ordering file.
 bool section_ordering_specified_;
 // True if some input sections need to be mapped to a unique segment,
 // after being mapped to a unique Output_section.
 bool unique_segment_for_sections_specified_;
 // In incremental build, holds information check the inputs and build the
 // .gnu_incremental_inputs section.
 Incremental_inputs* incremental_inputs_;
 // Whether we record output section data created in script
 bool record_output_section_data_from_script_;
 // Set if this is a slim LTO object not loaded with a compiler plugin
 bool lto_slim_object_;
 // List of output data that needs to be removed at relaxation clean up.
 Output_section_data_list script_output_section_data_list_;
 // Structure to save segment states before entering the relaxation loop.
 Segment_states* segment_states_;
 // A relaxation debug checker.  We only create one when in debugging mode.
 Relaxation_debug_check* relaxation_debug_check_;
 // Plugins specify section_ordering using this map.  This is set in
 // update_section_order in plugin.cc
 std::map<Section_id, unsigned int> section_order_map_;
 // This maps an input section to a unique segment. This is done by first
 // placing such input sections in unique output sections and then mapping
 // the output section to a unique segment.  Unique_segment_info stores
 // any additional flags and alignment of the new segment.
 Section_segment_map section_segment_map_;
 // Hash a pattern to its position in the section ordering file.
 Unordered_map<std::string, unsigned int> input_section_position_;
 // Vector of glob only patterns in the section_ordering file.
 std::vector<std::string> input_section_glob_;
 // For incremental links, the base file to be modified.
 Incremental_binary* incremental_base_;
 // For incremental links, a list of free space within the file.
 Free_list free_list_;
 // Program properties.
 Gnu_properties gnu_properties_;
};

// This task handles writing out data in output sections which is not
// part of an input section, or which requires special handling.  When
// this is done, it unblocks both output_sections_blocker and
// final_blocker.

class Write_sections_task : public Task
{
public:
 Write_sections_task(const Layout* layout, Output_file* of,
                     Task_token* output_sections_blocker,
                     Task_token* input_sections_blocker,
                     Task_token* final_blocker)
   : layout_(layout), of_(of),
     output_sections_blocker_(output_sections_blocker),
     input_sections_blocker_(input_sections_blocker),
     final_blocker_(final_blocker)
 { }

 // The standard Task methods.

 Task_token*
 is_runnable();

 void
 locks(Task_locker*);

 void
 run(Workqueue*);

 std::string
 get_name() const
 { return "Write_sections_task"; }

private:
 class Write_sections_locker;

 const Layout* layout_;
 Output_file* of_;
 Task_token* output_sections_blocker_;
 Task_token* input_sections_blocker_;
 Task_token* final_blocker_;
};

// This task handles writing out data which is not part of a section
// or segment.

class Write_data_task : public Task
{
public:
 Write_data_task(const Layout* layout, const Symbol_table* symtab,
                 Output_file* of, Task_token* final_blocker)
   : layout_(layout), symtab_(symtab), of_(of), final_blocker_(final_blocker)
 { }

 // The standard Task methods.

 Task_token*
 is_runnable();

 void
 locks(Task_locker*);

 void
 run(Workqueue*);

 std::string
 get_name() const
 { return "Write_data_task"; }

private:
 const Layout* layout_;
 const Symbol_table* symtab_;
 Output_file* of_;
 Task_token* final_blocker_;
};

// This task handles writing out the global symbols.

class Write_symbols_task : public Task
{
public:
 Write_symbols_task(const Layout* layout, const Symbol_table* symtab,
                    const Input_objects* /*input_objects*/,
                    const Stringpool* sympool, const Stringpool* dynpool,
                    Output_file* of, Task_token* final_blocker)
   : layout_(layout), symtab_(symtab),
     sympool_(sympool), dynpool_(dynpool), of_(of),
     final_blocker_(final_blocker)
 { }

 // The standard Task methods.

 Task_token*
 is_runnable();

 void
 locks(Task_locker*);

 void
 run(Workqueue*);

 std::string
 get_name() const
 { return "Write_symbols_task"; }

private:
 const Layout* layout_;
 const Symbol_table* symtab_;
 const Stringpool* sympool_;
 const Stringpool* dynpool_;
 Output_file* of_;
 Task_token* final_blocker_;
};

// This task handles writing out data in output sections which can't
// be written out until all the input sections have been handled.
// This is for sections whose contents is based on the contents of
// other output sections.

class Write_after_input_sections_task : public Task
{
public:
 Write_after_input_sections_task(Layout* layout, Output_file* of,
                                 Task_token* input_sections_blocker,
                                 Task_token* final_blocker)
   : layout_(layout), of_(of),
     input_sections_blocker_(input_sections_blocker),
     final_blocker_(final_blocker)
 { }

 // The standard Task methods.

 Task_token*
 is_runnable();

 void
 locks(Task_locker*);

 void
 run(Workqueue*);

 std::string
 get_name() const
 { return "Write_after_input_sections_task"; }

private:
 Layout* layout_;
 Output_file* of_;
 Task_token* input_sections_blocker_;
 Task_token* final_blocker_;
};

// This task function handles computation of the build id.
// When using --build-id=tree, it schedules the tasks that
// compute the hashes for each chunk of the file. This task
// cannot run until we have finalized the size of the output
// file, after the completion of Write_after_input_sections_task.

class Build_id_task_runner : public Task_function_runner
{
public:
 Build_id_task_runner(const General_options* options, const Layout* layout,
                      Output_file* of)
   : options_(options), layout_(layout), of_(of)
 { }

 // Run the operation.
 void
 run(Workqueue*, const Task*);

private:
 const General_options* options_;
 const Layout* layout_;
 Output_file* of_;
};

// This task function handles closing the file.

class Close_task_runner : public Task_function_runner
{
public:
 Close_task_runner(const General_options* options, const Layout* layout,
                   Output_file* of, unsigned char* array_of_hashes,
                   size_t size_of_hashes)
   : options_(options), layout_(layout), of_(of),
     array_of_hashes_(array_of_hashes), size_of_hashes_(size_of_hashes)
 { }

 // Run the operation.
 void
 run(Workqueue*, const Task*);

private:
 const General_options* options_;
 const Layout* layout_;
 Output_file* of_;
 unsigned char* const array_of_hashes_;
 const size_t size_of_hashes_;
};

// A small helper function to align an address.

inline uint64_t
align_address(uint64_t address, uint64_t addralign)
{
 if (addralign != 0)
   address = (address + addralign - 1) &~ (addralign - 1);
 return address;
}

} // End namespace gold.

#endif // !defined(GOLD_LAYOUT_H)