// layout.cc -- lay out output file sections for gold

// Copyright (C) 2006-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cerrno>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <fstream>
#include <utility>
#include <fcntl.h>
#include <fnmatch.h>
#include <unistd.h>
#include "libiberty.h"
#include "md5.h"
#include "sha1.h"
#ifdef __MINGW32__
#include <windows.h>
#include <rpcdce.h>
#endif
#ifdef HAVE_JANSSON
#include <jansson.h>
#endif

#include "parameters.h"
#include "options.h"
#include "mapfile.h"
#include "script.h"
#include "script-sections.h"
#include "output.h"
#include "symtab.h"
#include "dynobj.h"
#include "ehframe.h"
#include "gdb-index.h"
#include "compressed_output.h"
#include "reduced_debug_output.h"
#include "object.h"
#include "reloc.h"
#include "descriptors.h"
#include "plugin.h"
#include "incremental.h"
#include "layout.h"

namespace gold
{

// Class Free_list.

// The total number of free lists used.
unsigned int Free_list::num_lists = 0;
// The total number of free list nodes used.
unsigned int Free_list::num_nodes = 0;
// The total number of calls to Free_list::remove.
unsigned int Free_list::num_removes = 0;
// The total number of nodes visited during calls to Free_list::remove.
unsigned int Free_list::num_remove_visits = 0;
// The total number of calls to Free_list::allocate.
unsigned int Free_list::num_allocates = 0;
// The total number of nodes visited during calls to Free_list::allocate.
unsigned int Free_list::num_allocate_visits = 0;

// Initialize the free list.  Creates a single free list node that
// describes the entire region of length LEN.  If EXTEND is true,
// allocate() is allowed to extend the region beyond its initial
// length.

void
Free_list::init(off_t len, bool extend)
{
 this->list_.push_front(Free_list_node(0, len));
 this->last_remove_ = this->list_.begin();
 this->extend_ = extend;
 this->length_ = len;
 ++Free_list::num_lists;
 ++Free_list::num_nodes;
}

// Remove a chunk from the free list.  Because we start with a single
// node that covers the entire section, and remove chunks from it one
// at a time, we do not need to coalesce chunks or handle cases that
// span more than one free node.  We expect to remove chunks from the
// free list in order, and we expect to have only a few chunks of free
// space left (corresponding to files that have changed since the last
// incremental link), so a simple linear list should provide sufficient
// performance.

void
Free_list::remove(off_t start, off_t end)
{
 if (start == end)
   return;
 gold_assert(start < end);

 ++Free_list::num_removes;

 Iterator p = this->last_remove_;
 if (p->start_ > start)
   p = this->list_.begin();

 for (; p != this->list_.end(); ++p)
   {
     ++Free_list::num_remove_visits;
     // Find a node that wholly contains the indicated region.
     if (p->start_ <= start && p->end_ >= end)
       {
         // Case 1: the indicated region spans the whole node.
         // Add some fuzz to avoid creating tiny free chunks.
         if (p->start_ + 3 >= start && p->end_ <= end + 3)
           p = this->list_.erase(p);
         // Case 2: remove a chunk from the start of the node.
         else if (p->start_ + 3 >= start)
           p->start_ = end;
         // Case 3: remove a chunk from the end of the node.
         else if (p->end_ <= end + 3)
           p->end_ = start;
         // Case 4: remove a chunk from the middle, and split
         // the node into two.
         else
           {
             Free_list_node newnode(p->start_, start);
             p->start_ = end;
             this->list_.insert(p, newnode);
             ++Free_list::num_nodes;
           }
         this->last_remove_ = p;
         return;
       }
   }

 // Did not find a node containing the given chunk.  This could happen
 // because a small chunk was already removed due to the fuzz.
 gold_debug(DEBUG_INCREMENTAL,
            "Free_list::remove(%d,%d) not found",
            static_cast<int>(start), static_cast<int>(end));
}

// Allocate a chunk of size LEN from the free list.  Returns -1ULL
// if a sufficiently large chunk of free space is not found.
// We use a simple first-fit algorithm.

off_t
Free_list::allocate(off_t len, uint64_t align, off_t minoff)
{
 gold_debug(DEBUG_INCREMENTAL,
            "Free_list::allocate(%08lx, %d, %08lx)",
            static_cast<long>(len), static_cast<int>(align),
            static_cast<long>(minoff));
 if (len == 0)
   return align_address(minoff, align);

 ++Free_list::num_allocates;

 // We usually want to drop free chunks smaller than 4 bytes.
 // If we need to guarantee a minimum hole size, though, we need
 // to keep track of all free chunks.
 const int fuzz = this->min_hole_ > 0 ? 0 : 3;

 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
   {
     ++Free_list::num_allocate_visits;
     off_t start = p->start_ > minoff ? p->start_ : minoff;
     start = align_address(start, align);
     off_t end = start + len;
     if (end > p->end_ && p->end_ == this->length_ && this->extend_)
       {
         this->length_ = end;
         p->end_ = end;
       }
     if (end == p->end_ || (end <= p->end_ - this->min_hole_))
       {
         if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
           this->list_.erase(p);
         else if (p->start_ + fuzz >= start)
           p->start_ = end;
         else if (p->end_ <= end + fuzz)
           p->end_ = start;
         else
           {
             Free_list_node newnode(p->start_, start);
             p->start_ = end;
             this->list_.insert(p, newnode);
             ++Free_list::num_nodes;
           }
         return start;
       }
   }
 if (this->extend_)
   {
     off_t start = align_address(this->length_, align);
     this->length_ = start + len;
     return start;
   }
 return -1;
}

// Dump the free list (for debugging).
void
Free_list::dump()
{
 gold_info("Free list:\n     start      end   length\n");
 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
   gold_info("  %08lx %08lx %08lx", static_cast<long>(p->start_),
             static_cast<long>(p->end_),
             static_cast<long>(p->end_ - p->start_));
}

// Print the statistics for the free lists.
void
Free_list::print_stats()
{
 fprintf(stderr, _("%s: total free lists: %u\n"),
         program_name, Free_list::num_lists);
 fprintf(stderr, _("%s: total free list nodes: %u\n"),
         program_name, Free_list::num_nodes);
 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
         program_name, Free_list::num_removes);
 fprintf(stderr, _("%s: nodes visited: %u\n"),
         program_name, Free_list::num_remove_visits);
 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
         program_name, Free_list::num_allocates);
 fprintf(stderr, _("%s: nodes visited: %u\n"),
         program_name, Free_list::num_allocate_visits);
}

// A Hash_task computes the MD5 checksum of an array of char.

class Hash_task : public Task
{
public:
 Hash_task(Output_file* of,
           size_t offset,
           size_t size,
           unsigned char* dst,
           Task_token* final_blocker)
   : of_(of), offset_(offset), size_(size), dst_(dst),
     final_blocker_(final_blocker)
 { }

 void
 run(Workqueue*)
 {
   const unsigned char* iv =
       this->of_->get_input_view(this->offset_, this->size_);
   md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
   this->of_->free_input_view(this->offset_, this->size_, iv);
 }

 Task_token*
 is_runnable()
 { return NULL; }

 // Unblock FINAL_BLOCKER_ when done.
 void
 locks(Task_locker* tl)
 { tl->add(this, this->final_blocker_); }

 std::string
 get_name() const
 { return "Hash_task"; }

private:
 Output_file* of_;
 const size_t offset_;
 const size_t size_;
 unsigned char* const dst_;
 Task_token* const final_blocker_;
};

// Layout::Relaxation_debug_check methods.

// Check that sections and special data are in reset states.
// We do not save states for Output_sections and special Output_data.
// So we check that they have not assigned any addresses or offsets.
// clean_up_after_relaxation simply resets their addresses and offsets.
void
Layout::Relaxation_debug_check::check_output_data_for_reset_values(
   const Layout::Section_list& sections,
   const Layout::Data_list& special_outputs,
   const Layout::Data_list& relax_outputs)
{
 for(Layout::Section_list::const_iterator p = sections.begin();
     p != sections.end();
     ++p)
   gold_assert((*p)->address_and_file_offset_have_reset_values());

 for(Layout::Data_list::const_iterator p = special_outputs.begin();
     p != special_outputs.end();
     ++p)
   gold_assert((*p)->address_and_file_offset_have_reset_values());

 gold_assert(relax_outputs.empty());
}

// Save information of SECTIONS for checking later.

void
Layout::Relaxation_debug_check::read_sections(
   const Layout::Section_list& sections)
{
 for(Layout::Section_list::const_iterator p = sections.begin();
     p != sections.end();
     ++p)
   {
     Output_section* os = *p;
     Section_info info;
     info.output_section = os;
     info.address = os->is_address_valid() ? os->address() : 0;
     info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
     info.offset = os->is_offset_valid()? os->offset() : -1 ;
     this->section_infos_.push_back(info);
   }
}

// Verify SECTIONS using previously recorded information.

void
Layout::Relaxation_debug_check::verify_sections(
   const Layout::Section_list& sections)
{
 size_t i = 0;
 for(Layout::Section_list::const_iterator p = sections.begin();
     p != sections.end();
     ++p, ++i)
   {
     Output_section* os = *p;
     uint64_t address = os->is_address_valid() ? os->address() : 0;
     off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
     off_t offset = os->is_offset_valid()? os->offset() : -1 ;

     if (i >= this->section_infos_.size())
       {
         gold_fatal("Section_info of %s missing.\n", os->name());
       }
     const Section_info& info = this->section_infos_[i];
     if (os != info.output_section)
       gold_fatal("Section order changed.  Expecting %s but see %s\n",
                  info.output_section->name(), os->name());
     if (address != info.address
         || data_size != info.data_size
         || offset != info.offset)
       gold_fatal("Section %s changed.\n", os->name());
   }
}

// Layout_task_runner methods.

// Lay out the sections.  This is called after all the input objects
// have been read.

void
Layout_task_runner::run(Workqueue* workqueue, const Task* task)
{
 // See if any of the input definitions violate the One Definition Rule.
 // TODO: if this is too slow, do this as a task, rather than inline.
 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());

 Layout* layout = this->layout_;
 off_t file_size = layout->finalize(this->input_objects_,
                                    this->symtab_,
                                    this->target_,
                                    task);

 // Now we know the final size of the output file and we know where
 // each piece of information goes.

 if (this->mapfile_ != NULL)
   {
     this->mapfile_->print_discarded_sections(this->input_objects_);
     layout->print_to_mapfile(this->mapfile_);
   }

 Output_file* of;
 if (layout->incremental_base() == NULL)
   {
     of = new Output_file(parameters->options().output_file_name());
     if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
       of->set_is_temporary();
     of->open(file_size);
   }
 else
   {
     of = layout->incremental_base()->output_file();

     // Apply the incremental relocations for symbols whose values
     // have changed.  We do this before we resize the file and start
     // writing anything else to it, so that we can read the old
     // incremental information from the file before (possibly)
     // overwriting it.
     if (parameters->incremental_update())
       layout->incremental_base()->apply_incremental_relocs(this->symtab_,
                                                            this->layout_,
                                                            of);

     of->resize(file_size);
   }

 // Queue up the final set of tasks.
 gold::queue_final_tasks(this->options_, this->input_objects_,
                         this->symtab_, layout, workqueue, of);
}

// Layout methods.

Layout::Layout(int number_of_input_files, Script_options* script_options)
 : number_of_input_files_(number_of_input_files),
   script_options_(script_options),
   namepool_(),
   sympool_(),
   dynpool_(),
   signatures_(),
   section_name_map_(),
   segment_list_(),
   section_list_(),
   unattached_section_list_(),
   special_output_list_(),
   relax_output_list_(),
   section_headers_(NULL),
   tls_segment_(NULL),
   relro_segment_(NULL),
   interp_segment_(NULL),
   increase_relro_(0),
   symtab_section_(NULL),
   symtab_xindex_(NULL),
   dynsym_section_(NULL),
   dynsym_xindex_(NULL),
   dynamic_section_(NULL),
   dynamic_symbol_(NULL),
   dynamic_data_(NULL),
   eh_frame_section_(NULL),
   eh_frame_data_(NULL),
   added_eh_frame_data_(false),
   eh_frame_hdr_section_(NULL),
   gdb_index_data_(NULL),
   build_id_note_(NULL),
   debug_abbrev_(NULL),
   debug_info_(NULL),
   group_signatures_(),
   output_file_size_(-1),
   have_added_input_section_(false),
   sections_are_attached_(false),
   input_requires_executable_stack_(false),
   input_with_gnu_stack_note_(false),
   input_without_gnu_stack_note_(false),
   has_static_tls_(false),
   any_postprocessing_sections_(false),
   resized_signatures_(false),
   have_stabstr_section_(false),
   section_ordering_specified_(false),
   unique_segment_for_sections_specified_(false),
   incremental_inputs_(NULL),
   record_output_section_data_from_script_(false),
   lto_slim_object_(false),
   script_output_section_data_list_(),
   segment_states_(NULL),
   relaxation_debug_check_(NULL),
   section_order_map_(),
   section_segment_map_(),
   input_section_position_(),
   input_section_glob_(),
   incremental_base_(NULL),
   free_list_(),
   gnu_properties_()
{
 // Make space for more than enough segments for a typical file.
 // This is just for efficiency--it's OK if we wind up needing more.
 this->segment_list_.reserve(12);

 // We expect two unattached Output_data objects: the file header and
 // the segment headers.
 this->special_output_list_.reserve(2);

 // Initialize structure needed for an incremental build.
 if (parameters->incremental())
   this->incremental_inputs_ = new Incremental_inputs;

 // The section name pool is worth optimizing in all cases, because
 // it is small, but there are often overlaps due to .rel sections.
 this->namepool_.set_optimize();
}

// For incremental links, record the base file to be modified.

void
Layout::set_incremental_base(Incremental_binary* base)
{
 this->incremental_base_ = base;
 this->free_list_.init(base->output_file()->filesize(), true);
}

// Hash a key we use to look up an output section mapping.

size_t
Layout::Hash_key::operator()(const Layout::Key& k) const
{
return k.first + k.second.first + k.second.second;
}

// These are the debug sections that are actually used by gdb.
// Currently, we've checked versions of gdb up to and including 7.4.
// We only check the part of the name that follows ".debug_" or
// ".zdebug_".

static const char* gdb_sections[] =
{
 "abbrev",
 "addr",         // Fission extension
 // "aranges",   // not used by gdb as of 7.4
 "frame",
 "gdb_scripts",
 "info",
 "types",
 "line",
 "loc",
 "macinfo",
 "macro",
 // "pubnames",  // not used by gdb as of 7.4
 // "pubtypes",  // not used by gdb as of 7.4
 // "gnu_pubnames",  // Fission extension
 // "gnu_pubtypes",  // Fission extension
 "ranges",
 "str",
 "str_offsets",
};

// This is the minimum set of sections needed for line numbers.

static const char* lines_only_debug_sections[] =
{
 "abbrev",
 // "addr",      // Fission extension
 // "aranges",   // not used by gdb as of 7.4
 // "frame",
 // "gdb_scripts",
 "info",
 // "types",
 "line",
 // "loc",
 // "macinfo",
 // "macro",
 // "pubnames",  // not used by gdb as of 7.4
 // "pubtypes",  // not used by gdb as of 7.4
 // "gnu_pubnames",  // Fission extension
 // "gnu_pubtypes",  // Fission extension
 // "ranges",
 "str",
 "str_offsets",  // Fission extension
};

// These sections are the DWARF fast-lookup tables, and are not needed
// when building a .gdb_index section.

static const char* gdb_fast_lookup_sections[] =
{
 "aranges",
 "pubnames",
 "gnu_pubnames",
 "pubtypes",
 "gnu_pubtypes",
};

// Returns whether the given debug section is in the list of
// debug-sections-used-by-some-version-of-gdb.  SUFFIX is the
// portion of the name following ".debug_" or ".zdebug_".

static inline bool
is_gdb_debug_section(const char* suffix)
{
 // We can do this faster: binary search or a hashtable.  But why bother?
 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
   if (strcmp(suffix, gdb_sections[i]) == 0)
     return true;
 return false;
}

// Returns whether the given section is needed for lines-only debugging.

static inline bool
is_lines_only_debug_section(const char* suffix)
{
 // We can do this faster: binary search or a hashtable.  But why bother?
 for (size_t i = 0;
      i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
      ++i)
   if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
     return true;
 return false;
}

// Returns whether the given section is a fast-lookup section that
// will not be needed when building a .gdb_index section.

static inline bool
is_gdb_fast_lookup_section(const char* suffix)
{
 // We can do this faster: binary search or a hashtable.  But why bother?
 for (size_t i = 0;
      i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
      ++i)
   if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
     return true;
 return false;
}

// Sometimes we compress sections.  This is typically done for
// sections that are not part of normal program execution (such as
// .debug_* sections), and where the readers of these sections know
// how to deal with compressed sections.  This routine doesn't say for
// certain whether we'll compress -- it depends on commandline options
// as well -- just whether this section is a candidate for compression.
// (The Output_compressed_section class decides whether to compress
// a given section, and picks the name of the compressed section.)

static bool
is_compressible_debug_section(const char* secname)
{
 return (is_prefix_of(".debug", secname));
}

// We may see compressed debug sections in input files.  Return TRUE
// if this is the name of a compressed debug section.

bool
is_compressed_debug_section(const char* secname)
{
 return (is_prefix_of(".zdebug", secname));
}

std::string
corresponding_uncompressed_section_name(std::string secname)
{
 gold_assert(secname[0] == '.' && secname[1] == 'z');
 std::string ret(".");
 ret.append(secname, 2, std::string::npos);
 return ret;
}

// Whether to include this section in the link.

template<int size, bool big_endian>
bool
Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
                       const elfcpp::Shdr<size, big_endian>& shdr)
{
 if (!parameters->options().relocatable()
     && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
   return false;

 elfcpp::Elf_Word sh_type = shdr.get_sh_type();

 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
     || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
   return parameters->target().should_include_section(sh_type);

 switch (sh_type)
   {
   case elfcpp::SHT_NULL:
   case elfcpp::SHT_SYMTAB:
   case elfcpp::SHT_DYNSYM:
   case elfcpp::SHT_HASH:
   case elfcpp::SHT_DYNAMIC:
   case elfcpp::SHT_SYMTAB_SHNDX:
     return false;

   case elfcpp::SHT_STRTAB:
     // Discard the sections which have special meanings in the ELF
     // ABI.  Keep others (e.g., .stabstr).  We could also do this by
     // checking the sh_link fields of the appropriate sections.
     return (strcmp(name, ".dynstr") != 0
             && strcmp(name, ".strtab") != 0
             && strcmp(name, ".shstrtab") != 0);

   case elfcpp::SHT_RELA:
   case elfcpp::SHT_REL:
   case elfcpp::SHT_GROUP:
     // If we are emitting relocations these should be handled
     // elsewhere.
     gold_assert(!parameters->options().relocatable());
     return false;

   case elfcpp::SHT_PROGBITS:
     if (parameters->options().strip_debug()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         if (is_debug_info_section(name))
           return false;
       }
     if (parameters->options().strip_debug_non_line()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         // Debugging sections can only be recognized by name.
         if (is_prefix_of(".debug_", name)
             && !is_lines_only_debug_section(name + 7))
           return false;
         if (is_prefix_of(".zdebug_", name)
             && !is_lines_only_debug_section(name + 8))
           return false;
       }
     if (parameters->options().strip_debug_gdb()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         // Debugging sections can only be recognized by name.
         if (is_prefix_of(".debug_", name)
             && !is_gdb_debug_section(name + 7))
           return false;
         if (is_prefix_of(".zdebug_", name)
             && !is_gdb_debug_section(name + 8))
           return false;
       }
     if (parameters->options().gdb_index()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         // When building .gdb_index, we can strip .debug_pubnames,
         // .debug_pubtypes, and .debug_aranges sections.
         if (is_prefix_of(".debug_", name)
             && is_gdb_fast_lookup_section(name + 7))
           return false;
         if (is_prefix_of(".zdebug_", name)
             && is_gdb_fast_lookup_section(name + 8))
           return false;
       }
     if (parameters->options().strip_lto_sections()
         && !parameters->options().relocatable()
         && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
       {
         // Ignore LTO sections containing intermediate code.
         if (is_prefix_of(".gnu.lto_", name))
           return false;
       }
     // The GNU linker strips .gnu_debuglink sections, so we do too.
     // This is a feature used to keep debugging information in
     // separate files.
     if (strcmp(name, ".gnu_debuglink") == 0)
       return false;
     return true;

   default:
     return true;
   }
}

// Return an output section named NAME, or NULL if there is none.

Output_section*
Layout::find_output_section(const char* name) const
{
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   if (strcmp((*p)->name(), name) == 0)
     return *p;
 return NULL;
}

// Return an output segment of type TYPE, with segment flags SET set
// and segment flags CLEAR clear.  Return NULL if there is none.

Output_segment*
Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
                           elfcpp::Elf_Word clear) const
{
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   if (static_cast<elfcpp::PT>((*p)->type()) == type
       && ((*p)->flags() & set) == set
       && ((*p)->flags() & clear) == 0)
     return *p;
 return NULL;
}

// When we put a .ctors or .dtors section with more than one word into
// a .init_array or .fini_array section, we need to reverse the words
// in the .ctors/.dtors section.  This is because .init_array executes
// constructors front to back, where .ctors executes them back to
// front, and vice-versa for .fini_array/.dtors.  Although we do want
// to remap .ctors/.dtors into .init_array/.fini_array because it can
// be more efficient, we don't want to change the order in which
// constructors/destructors are run.  This set just keeps track of
// these sections which need to be reversed.  It is only changed by
// Layout::layout.  It should be a private member of Layout, but that
// would require layout.h to #include object.h to get the definition
// of Section_id.
static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;

// Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
// .init_array/.fini_array section.

bool
Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
{
 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
         != ctors_sections_in_init_array.end());
}

// Return the output section to use for section NAME with type TYPE
// and section flags FLAGS.  NAME must be canonicalized in the string
// pool, and NAME_KEY is the key.  ORDER is where this should appear
// in the output sections.  IS_RELRO is true for a relro section.

Output_section*
Layout::get_output_section(const char* name, Stringpool::Key name_key,
                          elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
                          Output_section_order order, bool is_relro)
{
 elfcpp::Elf_Word lookup_type = type;

 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
 // PREINIT_ARRAY like PROGBITS.  This ensures that we combine
 // .init_array, .fini_array, and .preinit_array sections by name
 // whatever their type in the input file.  We do this because the
 // types are not always right in the input files.
 if (lookup_type == elfcpp::SHT_INIT_ARRAY
     || lookup_type == elfcpp::SHT_FINI_ARRAY
     || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
   lookup_type = elfcpp::SHT_PROGBITS;

 elfcpp::Elf_Xword lookup_flags = flags;

 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
 // read-write with read-only sections.  Some other ELF linkers do
 // not do this.  FIXME: Perhaps there should be an option
 // controlling this.
 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);

 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
 const std::pair<Key, Output_section*> v(key, NULL);
 std::pair<Section_name_map::iterator, bool> ins(
   this->section_name_map_.insert(v));

 if (!ins.second)
   return ins.first->second;
 else
   {
     // This is the first time we've seen this name/type/flags
     // combination.  For compatibility with the GNU linker, we
     // combine sections with contents and zero flags with sections
     // with non-zero flags.  This is a workaround for cases where
     // assembler code forgets to set section flags.  FIXME: Perhaps
     // there should be an option to control this.
     Output_section* os = NULL;

     if (lookup_type == elfcpp::SHT_PROGBITS)
       {
         if (flags == 0)
           {
             Output_section* same_name = this->find_output_section(name);
             if (same_name != NULL
                 && (same_name->type() == elfcpp::SHT_PROGBITS
                     || same_name->type() == elfcpp::SHT_INIT_ARRAY
                     || same_name->type() == elfcpp::SHT_FINI_ARRAY
                     || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
                 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
               os = same_name;
           }
         else if ((flags & elfcpp::SHF_TLS) == 0)
           {
             elfcpp::Elf_Xword zero_flags = 0;
             const Key zero_key(name_key, std::make_pair(lookup_type,
                                                         zero_flags));
             Section_name_map::iterator p =
                 this->section_name_map_.find(zero_key);
             if (p != this->section_name_map_.end())
               os = p->second;
           }
       }

     if (os == NULL)
       os = this->make_output_section(name, type, flags, order, is_relro);

     ins.first->second = os;
     return os;
   }
}

// Returns TRUE iff NAME (an input section from RELOBJ) will
// be mapped to an output section that should be KEPT.

bool
Layout::keep_input_section(const Relobj* relobj, const char* name)
{
 if (! this->script_options_->saw_sections_clause())
   return false;

 Script_sections* ss = this->script_options_->script_sections();
 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
 Output_section** output_section_slot;
 Script_sections::Section_type script_section_type;
 bool keep;

 name = ss->output_section_name(file_name, name, &output_section_slot,
                                &script_section_type, &keep, true);
 return name != NULL && keep;
}

// Clear the input section flags that should not be copied to the
// output section.

elfcpp::Elf_Xword
Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
{
 // Some flags in the input section should not be automatically
 // copied to the output section.
 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
                           | elfcpp::SHF_GROUP
                           | elfcpp::SHF_COMPRESSED
                           | elfcpp::SHF_MERGE
                           | elfcpp::SHF_STRINGS);

 // We only clear the SHF_LINK_ORDER flag in for
 // a non-relocatable link.
 if (!parameters->options().relocatable())
   input_section_flags &= ~elfcpp::SHF_LINK_ORDER;

 return input_section_flags;
}

// Pick the output section to use for section NAME, in input file
// RELOBJ, with type TYPE and flags FLAGS.  RELOBJ may be NULL for a
// linker created section.  IS_INPUT_SECTION is true if we are
// choosing an output section for an input section found in a input
// file.  ORDER is where this section should appear in the output
// sections.  IS_RELRO is true for a relro section.  This will return
// NULL if the input section should be discarded.  MATCH_INPUT_SPEC
// is true if the section name should be matched against input specs
// in a linker script.

Output_section*
Layout::choose_output_section(const Relobj* relobj, const char* name,
                             elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
                             bool is_input_section, Output_section_order order,
                             bool is_relro, bool is_reloc,
                             bool match_input_spec)
{
 // We should not see any input sections after we have attached
 // sections to segments.
 gold_assert(!is_input_section || !this->sections_are_attached_);

 flags = this->get_output_section_flags(flags);

 if (this->script_options_->saw_sections_clause() && !is_reloc)
   {
     // We are using a SECTIONS clause, so the output section is
     // chosen based only on the name.

     Script_sections* ss = this->script_options_->script_sections();
     const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
     Output_section** output_section_slot;
     Script_sections::Section_type script_section_type;
     const char* orig_name = name;
     bool keep;
     name = ss->output_section_name(file_name, name, &output_section_slot,
                                    &script_section_type, &keep,
                                    match_input_spec);

     if (name == NULL)
       {
         gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
                                    "because it is not allowed by the "
                                    "SECTIONS clause of the linker script"),
                    orig_name);
         // The SECTIONS clause says to discard this input section.
         return NULL;
       }

     // We can only handle script section types ST_NONE and ST_NOLOAD.
     switch (script_section_type)
       {
       case Script_sections::ST_NONE:
         break;
       case Script_sections::ST_NOLOAD:
         flags &= elfcpp::SHF_ALLOC;
         break;
       default:
         gold_unreachable();
       }

     // If this is an orphan section--one not mentioned in the linker
     // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
     // default processing below.

     if (output_section_slot != NULL)
       {
         if (*output_section_slot != NULL)
           {
             (*output_section_slot)->update_flags_for_input_section(flags);
             return *output_section_slot;
           }

         // We don't put sections found in the linker script into
         // SECTION_NAME_MAP_.  That keeps us from getting confused
         // if an orphan section is mapped to a section with the same
         // name as one in the linker script.

         name = this->namepool_.add(name, false, NULL);

         Output_section* os = this->make_output_section(name, type, flags,
                                                        order, is_relro);

         os->set_found_in_sections_clause();

         // Special handling for NOLOAD sections.
         if (script_section_type == Script_sections::ST_NOLOAD)
           {
             os->set_is_noload();

             // The constructor of Output_section sets addresses of non-ALLOC
             // sections to 0 by default.  We don't want that for NOLOAD
             // sections even if they have no SHF_ALLOC flag.
             if ((os->flags() & elfcpp::SHF_ALLOC) == 0
                 && os->is_address_valid())
               {
                 gold_assert(os->address() == 0
                             && !os->is_offset_valid()
                             && !os->is_data_size_valid());
                 os->reset_address_and_file_offset();
               }
           }

         *output_section_slot = os;
         return os;
       }
   }

 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.

 size_t len = strlen(name);
 std::string uncompressed_name;

 // Compressed debug sections should be mapped to the corresponding
 // uncompressed section.
 if (is_compressed_debug_section(name))
   {
     uncompressed_name =
         corresponding_uncompressed_section_name(std::string(name, len));
     name = uncompressed_name.c_str();
     len = uncompressed_name.length();
   }

 // Turn NAME from the name of the input section into the name of the
 // output section.
 if (is_input_section
     && !this->script_options_->saw_sections_clause()
     && !parameters->options().relocatable())
   {
     const char *orig_name = name;
     name = parameters->target().output_section_name(relobj, name, &len);
     if (name == NULL)
       name = Layout::output_section_name(relobj, orig_name, &len);
   }

 Stringpool::Key name_key;
 name = this->namepool_.add_with_length(name, len, true, &name_key);

 // Find or make the output section.  The output section is selected
 // based on the section name, type, and flags.
 return this->get_output_section(name, name_key, type, flags, order, is_relro);
}

// For incremental links, record the initial fixed layout of a section
// from the base file, and return a pointer to the Output_section.

template<int size, bool big_endian>
Output_section*
Layout::init_fixed_output_section(const char* name,
                                 elfcpp::Shdr<size, big_endian>& shdr)
{
 unsigned int sh_type = shdr.get_sh_type();

 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
 // PRE_INIT_ARRAY, and NOTE sections.
 // All others will be created from scratch and reallocated.
 if (!can_incremental_update(sh_type))
   return NULL;

 // If we're generating a .gdb_index section, we need to regenerate
 // it from scratch.
 if (parameters->options().gdb_index()
     && sh_type == elfcpp::SHT_PROGBITS
     && strcmp(name, ".gdb_index") == 0)
   return NULL;

 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags =
     this->get_output_section_flags(shdr.get_sh_flags());
 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
     shdr.get_sh_addralign();

 // Make the output section.
 Stringpool::Key name_key;
 name = this->namepool_.add(name, true, &name_key);
 Output_section* os = this->get_output_section(name, name_key, sh_type,
                                               sh_flags, ORDER_INVALID, false);
 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
 if (sh_type != elfcpp::SHT_NOBITS)
   this->free_list_.remove(sh_offset, sh_offset + sh_size);
 return os;
}

// Return the index by which an input section should be ordered.  This
// is used to sort some .text sections, for compatibility with GNU ld.

int
Layout::special_ordering_of_input_section(const char* name)
{
 // The GNU linker has some special handling for some sections that
 // wind up in the .text section.  Sections that start with these
 // prefixes must appear first, and must appear in the order listed
 // here.
 static const char* const text_section_sort[] =
 {
   ".text.unlikely",
   ".text.exit",
   ".text.startup",
   ".text.hot",
   ".text.sorted"
 };

 for (size_t i = 0;
      i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
      i++)
   if (is_prefix_of(text_section_sort[i], name))
     return i;

 return -1;
}

// Return the output section to use for input section SHNDX, with name
// NAME, with header HEADER, from object OBJECT.  RELOC_SHNDX is the
// index of a relocation section which applies to this section, or 0
// if none, or -1U if more than one.  RELOC_TYPE is the type of the
// relocation section if there is one.  Set *OFF to the offset of this
// input section without the output section.  Return NULL if the
// section should be discarded.  Set *OFF to -1 if the section
// contents should not be written directly to the output file, but
// will instead receive special handling.

template<int size, bool big_endian>
Output_section*
Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
              const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
              unsigned int sh_type, unsigned int reloc_shndx,
              unsigned int, off_t* off)
{
 *off = 0;

 if (!this->include_section(object, name, shdr))
   return NULL;

 // In a relocatable link a grouped section must not be combined with
 // any other sections.
 Output_section* os;
 if (parameters->options().relocatable()
     && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
   {
     // Some flags in the input section should not be automatically
     // copied to the output section.
     elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags()
                                   & ~ elfcpp::SHF_COMPRESSED);
     name = this->namepool_.add(name, true, NULL);
     os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID,
                                    false);
   }
 else
   {
     // Get the section flags and mask out any flags that do not
     // take part in section matching.
     elfcpp::Elf_Xword sh_flags
         = (this->get_output_section_flags(shdr.get_sh_flags())
            & ~object->osabi().ignored_sh_flags());

     // All ".text.unlikely.*" sections can be moved to a unique
     // segment with --text-unlikely-segment option.
     bool text_unlikely_segment
         = (parameters->options().text_unlikely_segment()
            && is_prefix_of(".text.unlikely",
                            object->section_name(shndx).c_str()));
     if (text_unlikely_segment)
       {
         Stringpool::Key name_key;
         const char* os_name = this->namepool_.add(".text.unlikely", true,
                                                   &name_key);
         os = this->get_output_section(os_name, name_key, sh_type, sh_flags,
                                       ORDER_INVALID, false);
         // Map this output section to a unique segment.  This is done to
         // separate "text" that is not likely to be executed from "text"
         // that is likely executed.
         os->set_is_unique_segment();
       }
     else
       {
         // Plugins can choose to place one or more subsets of sections in
         // unique segments and this is done by mapping these section subsets
         // to unique output sections.  Check if this section needs to be
         // remapped to a unique output section.
         Section_segment_map::iterator it
           = this->section_segment_map_.find(Const_section_id(object, shndx));
         if (it == this->section_segment_map_.end())
           {
             os = this->choose_output_section(object, name, sh_type,
                                              sh_flags, true, ORDER_INVALID,
                                              false, false, true);
           }
         else
           {
             // We know the name of the output section, directly call
             // get_output_section here by-passing choose_output_section.
             const char* os_name = it->second->name;
             Stringpool::Key name_key;
             os_name = this->namepool_.add(os_name, true, &name_key);
             os = this->get_output_section(os_name, name_key, sh_type,
                                           sh_flags, ORDER_INVALID, false);
             if (!os->is_unique_segment())
               {
                 os->set_is_unique_segment();
                 os->set_extra_segment_flags(it->second->flags);
                 os->set_segment_alignment(it->second->align);
               }
           }
         }
     if (os == NULL)
       return NULL;
   }

 // By default the GNU linker sorts input sections whose names match
 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*.  The
 // sections are sorted by name.  This is used to implement
 // constructor priority ordering.  We are compatible.  When we put
 // .ctor sections in .init_array and .dtor sections in .fini_array,
 // we must also sort plain .ctor and .dtor sections.
 if (!this->script_options_->saw_sections_clause()
     && !parameters->options().relocatable()
     && (is_prefix_of(".ctors.", name)
         || is_prefix_of(".dtors.", name)
         || is_prefix_of(".init_array.", name)
         || is_prefix_of(".fini_array.", name)
         || (parameters->options().ctors_in_init_array()
             && (strcmp(name, ".ctors") == 0
                 || strcmp(name, ".dtors") == 0))))
   os->set_must_sort_attached_input_sections();

 // By default the GNU linker sorts some special text sections ahead
 // of others.  We are compatible.
 if (parameters->options().text_reorder()
     && !this->script_options_->saw_sections_clause()
     && !this->is_section_ordering_specified()
     && !parameters->options().relocatable()
     && Layout::special_ordering_of_input_section(name) >= 0)
   os->set_must_sort_attached_input_sections();

 // If this is a .ctors or .ctors.* section being mapped to a
 // .init_array section, or a .dtors or .dtors.* section being mapped
 // to a .fini_array section, we will need to reverse the words if
 // there is more than one.  Record this section for later.  See
 // ctors_sections_in_init_array above.
 if (!this->script_options_->saw_sections_clause()
     && !parameters->options().relocatable()
     && shdr.get_sh_size() > size / 8
     && (((strcmp(name, ".ctors") == 0
           || is_prefix_of(".ctors.", name))
          && strcmp(os->name(), ".init_array") == 0)
         || ((strcmp(name, ".dtors") == 0
              || is_prefix_of(".dtors.", name))
             && strcmp(os->name(), ".fini_array") == 0)))
   ctors_sections_in_init_array.insert(Section_id(object, shndx));

 // FIXME: Handle SHF_LINK_ORDER somewhere.

 elfcpp::Elf_Xword orig_flags = os->flags();

 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
                              this->script_options_->saw_sections_clause());

 // If the flags changed, we may have to change the order.
 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
   {
     orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
     elfcpp::Elf_Xword new_flags =
       os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
     if (orig_flags != new_flags)
       os->set_order(this->default_section_order(os, false));
   }

 this->have_added_input_section_ = true;

 return os;
}

// Maps section SECN to SEGMENT s.
void
Layout::insert_section_segment_map(Const_section_id secn,
                                  Unique_segment_info *s)
{
 gold_assert(this->unique_segment_for_sections_specified_);
 this->section_segment_map_[secn] = s;
}

// Handle a relocation section when doing a relocatable link.

template<int size, bool big_endian>
Output_section*
Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
                    unsigned int,
                    const elfcpp::Shdr<size, big_endian>& shdr,
                    Output_section* data_section,
                    Relocatable_relocs* rr)
{
 gold_assert(parameters->options().relocatable()
             || parameters->options().emit_relocs());

 int sh_type = shdr.get_sh_type();

 std::string name;
 if (sh_type == elfcpp::SHT_REL)
   name = ".rel";
 else if (sh_type == elfcpp::SHT_RELA)
   name = ".rela";
 else
   gold_unreachable();
 name += data_section->name();

 // If the output data section already has a reloc section, use that;
 // otherwise, make a new one.
 Output_section* os = data_section->reloc_section();
 if (os == NULL)
   {
     const char* n = this->namepool_.add(name.c_str(), true, NULL);
     os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
                                    ORDER_INVALID, false);
     os->set_should_link_to_symtab();
     os->set_info_section(data_section);
     data_section->set_reloc_section(os);
   }

 Output_section_data* posd;
 if (sh_type == elfcpp::SHT_REL)
   {
     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
     posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
                                          size,
                                          big_endian>(rr);
   }
 else if (sh_type == elfcpp::SHT_RELA)
   {
     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
     posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
                                          size,
                                          big_endian>(rr);
   }
 else
   gold_unreachable();

 os->add_output_section_data(posd);
 rr->set_output_data(posd);

 return os;
}

// Handle a group section when doing a relocatable link.

template<int size, bool big_endian>
void
Layout::layout_group(Symbol_table* symtab,
                    Sized_relobj_file<size, big_endian>* object,
                    unsigned int,
                    const char* group_section_name,
                    const char* signature,
                    const elfcpp::Shdr<size, big_endian>& shdr,
                    elfcpp::Elf_Word flags,
                    std::vector<unsigned int>* shndxes)
{
 gold_assert(parameters->options().relocatable());
 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
 group_section_name = this->namepool_.add(group_section_name, true, NULL);
 Output_section* os = this->make_output_section(group_section_name,
                                                elfcpp::SHT_GROUP,
                                                shdr.get_sh_flags(),
                                                ORDER_INVALID, false);

 // We need to find a symbol with the signature in the symbol table.
 // If we don't find one now, we need to look again later.
 Symbol* sym = symtab->lookup(signature, NULL);
 if (sym != NULL)
   os->set_info_symndx(sym);
 else
   {
     // Reserve some space to minimize reallocations.
     if (this->group_signatures_.empty())
       this->group_signatures_.reserve(this->number_of_input_files_ * 16);

     // We will wind up using a symbol whose name is the signature.
     // So just put the signature in the symbol name pool to save it.
     signature = symtab->canonicalize_name(signature);
     this->group_signatures_.push_back(Group_signature(os, signature));
   }

 os->set_should_link_to_symtab();
 os->set_entsize(4);

 section_size_type entry_count =
   convert_to_section_size_type(shdr.get_sh_size() / 4);
 Output_section_data* posd =
   new Output_data_group<size, big_endian>(object, entry_count, flags,
                                           shndxes);
 os->add_output_section_data(posd);
}

// Special GNU handling of sections name .eh_frame.  They will
// normally hold exception frame data as defined by the C++ ABI
// (http://codesourcery.com/cxx-abi/).

template<int size, bool big_endian>
Output_section*
Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
                       const unsigned char* symbols,
                       off_t symbols_size,
                       const unsigned char* symbol_names,
                       off_t symbol_names_size,
                       unsigned int shndx,
                       const elfcpp::Shdr<size, big_endian>& shdr,
                       unsigned int reloc_shndx, unsigned int reloc_type,
                       off_t* off)
{
 const unsigned int unwind_section_type =
     parameters->target().unwind_section_type();

 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
             || shdr.get_sh_type() == unwind_section_type);
 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);

 Output_section* os = this->make_eh_frame_section(object);
 if (os == NULL)
   return NULL;

 gold_assert(this->eh_frame_section_ == os);

 elfcpp::Elf_Xword orig_flags = os->flags();

 Eh_frame::Eh_frame_section_disposition disp =
     Eh_frame::EH_UNRECOGNIZED_SECTION;
 if (!parameters->incremental())
   {
     disp = this->eh_frame_data_->add_ehframe_input_section(object,
                                                            symbols,
                                                            symbols_size,
                                                            symbol_names,
                                                            symbol_names_size,
                                                            shndx,
                                                            reloc_shndx,
                                                            reloc_type);
   }

 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
   {
     os->update_flags_for_input_section(shdr.get_sh_flags());

     // A writable .eh_frame section is a RELRO section.
     if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
         != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
       {
         os->set_is_relro();
         os->set_order(ORDER_RELRO);
       }

     *off = -1;
     return os;
   }

 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
   {
     // We found the end marker section, so now we can add the set of
     // optimized sections to the output section.  We need to postpone
     // adding this until we've found a section we can optimize so that
     // the .eh_frame section in crtbeginT.o winds up at the start of
     // the output section.
     os->add_output_section_data(this->eh_frame_data_);
     this->added_eh_frame_data_ = true;
    }

 // We couldn't handle this .eh_frame section for some reason.
 // Add it as a normal section.
 bool saw_sections_clause = this->script_options_->saw_sections_clause();
 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
                              reloc_shndx, saw_sections_clause);
 this->have_added_input_section_ = true;

 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
     != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
   os->set_order(this->default_section_order(os, false));

 return os;
}

void
Layout::finalize_eh_frame_section()
{
 // If we never found an end marker section, we need to add the
 // optimized eh sections to the output section now.
 if (!parameters->incremental()
     && this->eh_frame_section_ != NULL
     && !this->added_eh_frame_data_)
   {
     this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
     this->added_eh_frame_data_ = true;
   }
}

// Create and return the magic .eh_frame section.  Create
// .eh_frame_hdr also if appropriate.  OBJECT is the object with the
// input .eh_frame section; it may be NULL.

Output_section*
Layout::make_eh_frame_section(const Relobj* object)
{
 const unsigned int unwind_section_type =
     parameters->target().unwind_section_type();

 Output_section* os = this->choose_output_section(object, ".eh_frame",
                                                  unwind_section_type,
                                                  elfcpp::SHF_ALLOC, false,
                                                  ORDER_EHFRAME, false, false,
                                                  false);
 if (os == NULL)
   return NULL;

 if (this->eh_frame_section_ == NULL)
   {
     this->eh_frame_section_ = os;
     this->eh_frame_data_ = new Eh_frame();

     // For incremental linking, we do not optimize .eh_frame sections
     // or create a .eh_frame_hdr section.
     if (parameters->options().eh_frame_hdr() && !parameters->incremental())
       {
         Output_section* hdr_os =
           this->choose_output_section(NULL, ".eh_frame_hdr",
                                       unwind_section_type,
                                       elfcpp::SHF_ALLOC, false,
                                       ORDER_EHFRAME, false, false,
                                       false);

         if (hdr_os != NULL)
           {
             Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
                                                       this->eh_frame_data_);
             hdr_os->add_output_section_data(hdr_posd);

             hdr_os->set_after_input_sections();

             if (!this->script_options_->saw_phdrs_clause())
               {
                 Output_segment* hdr_oseg;
                 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
                                                      elfcpp::PF_R);
                 hdr_oseg->add_output_section_to_nonload(hdr_os,
                                                         elfcpp::PF_R);
               }

             this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
           }
       }
   }

 return os;
}

// Add an exception frame for a PLT.  This is called from target code.

void
Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
                            size_t cie_length, const unsigned char* fde_data,
                            size_t fde_length)
{
 if (parameters->incremental())
   {
     // FIXME: Maybe this could work some day....
     return;
   }
 Output_section* os = this->make_eh_frame_section(NULL);
 if (os == NULL)
   return;
 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
                                           fde_data, fde_length);
 if (!this->added_eh_frame_data_)
   {
     os->add_output_section_data(this->eh_frame_data_);
     this->added_eh_frame_data_ = true;
   }
}

// Remove all post-map .eh_frame information for a PLT.

void
Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
                               size_t cie_length)
{
 if (parameters->incremental())
   {
     // FIXME: Maybe this could work some day....
     return;
   }
 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
}

// Scan a .debug_info or .debug_types section, and add summary
// information to the .gdb_index section.

template<int size, bool big_endian>
void
Layout::add_to_gdb_index(bool is_type_unit,
                        Sized_relobj<size, big_endian>* object,
                        const unsigned char* symbols,
                        off_t symbols_size,
                        unsigned int shndx,
                        unsigned int reloc_shndx,
                        unsigned int reloc_type)
{
 if (this->gdb_index_data_ == NULL)
   {
     Output_section* os = this->choose_output_section(NULL, ".gdb_index",
                                                      elfcpp::SHT_PROGBITS, 0,
                                                      false, ORDER_INVALID,
                                                      false, false, false);
     if (os == NULL)
       return;

     this->gdb_index_data_ = new Gdb_index(os);
     os->add_output_section_data(this->gdb_index_data_);
     os->set_after_input_sections();
   }

 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
                                        symbols_size, shndx, reloc_shndx,
                                        reloc_type);
}

// Add POSD to an output section using NAME, TYPE, and FLAGS.  Return
// the output section.

Output_section*
Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
                               elfcpp::Elf_Xword flags,
                               Output_section_data* posd,
                               Output_section_order order, bool is_relro)
{
 Output_section* os = this->choose_output_section(NULL, name, type, flags,
                                                  false, order, is_relro,
                                                  false, false);
 if (os != NULL)
   os->add_output_section_data(posd);
 return os;
}

// Map section flags to segment flags.

elfcpp::Elf_Word
Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
{
 elfcpp::Elf_Word ret = elfcpp::PF_R;
 if ((flags & elfcpp::SHF_WRITE) != 0)
   ret |= elfcpp::PF_W;
 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
   ret |= elfcpp::PF_X;
 return ret;
}

// Make a new Output_section, and attach it to segments as
// appropriate.  ORDER is the order in which this section should
// appear in the output segment.  IS_RELRO is true if this is a relro
// (read-only after relocations) section.

Output_section*
Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
                           elfcpp::Elf_Xword flags,
                           Output_section_order order, bool is_relro)
{
 Output_section* os;
 if ((flags & elfcpp::SHF_ALLOC) == 0
     && strcmp(parameters->options().compress_debug_sections(), "none") != 0
     && is_compressible_debug_section(name))
   os = new Output_compressed_section(&parameters->options(), name, type,
                                      flags);
 else if ((flags & elfcpp::SHF_ALLOC) == 0
          && parameters->options().strip_debug_non_line()
          && strcmp(".debug_abbrev", name) == 0)
   {
     os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
         name, type, flags);
     if (this->debug_info_)
       this->debug_info_->set_abbreviations(this->debug_abbrev_);
   }
 else if ((flags & elfcpp::SHF_ALLOC) == 0
          && parameters->options().strip_debug_non_line()
          && strcmp(".debug_info", name) == 0)
   {
     os = this->debug_info_ = new Output_reduced_debug_info_section(
         name, type, flags);
     if (this->debug_abbrev_)
       this->debug_info_->set_abbreviations(this->debug_abbrev_);
   }
 else
   {
     // Sometimes .init_array*, .preinit_array* and .fini_array* do
     // not have correct section types.  Force them here.
     if (type == elfcpp::SHT_PROGBITS)
       {
         if (is_prefix_of(".init_array", name))
           type = elfcpp::SHT_INIT_ARRAY;
         else if (is_prefix_of(".preinit_array", name))
           type = elfcpp::SHT_PREINIT_ARRAY;
         else if (is_prefix_of(".fini_array", name))
           type = elfcpp::SHT_FINI_ARRAY;
       }

     // FIXME: const_cast is ugly.
     Target* target = const_cast<Target*>(&parameters->target());
     os = target->make_output_section(name, type, flags);
   }

 // With -z relro, we have to recognize the special sections by name.
 // There is no other way.
 bool is_relro_local = false;
 if (!this->script_options_->saw_sections_clause()
     && parameters->options().relro()
     && (flags & elfcpp::SHF_ALLOC) != 0
     && (flags & elfcpp::SHF_WRITE) != 0)
   {
     if (type == elfcpp::SHT_PROGBITS)
       {
         if ((flags & elfcpp::SHF_TLS) != 0)
           is_relro = true;
         else if (strcmp(name, ".data.rel.ro") == 0)
           is_relro = true;
         else if (strcmp(name, ".data.rel.ro.local") == 0)
           {
             is_relro = true;
             is_relro_local = true;
           }
         else if (strcmp(name, ".ctors") == 0
                  || strcmp(name, ".dtors") == 0
                  || strcmp(name, ".jcr") == 0)
           is_relro = true;
       }
     else if (type == elfcpp::SHT_INIT_ARRAY
              || type == elfcpp::SHT_FINI_ARRAY
              || type == elfcpp::SHT_PREINIT_ARRAY)
       is_relro = true;
   }

 if (is_relro)
   os->set_is_relro();

 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
   order = this->default_section_order(os, is_relro_local);

 os->set_order(order);

 parameters->target().new_output_section(os);

 this->section_list_.push_back(os);

 // The GNU linker by default sorts some sections by priority, so we
 // do the same.  We need to know that this might happen before we
 // attach any input sections.
 if (!this->script_options_->saw_sections_clause()
     && !parameters->options().relocatable()
     && (strcmp(name, ".init_array") == 0
         || strcmp(name, ".fini_array") == 0
         || (!parameters->options().ctors_in_init_array()
             && (strcmp(name, ".ctors") == 0
                 || strcmp(name, ".dtors") == 0))))
   os->set_may_sort_attached_input_sections();

 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
 // sections before other .text sections.  We are compatible.  We
 // need to know that this might happen before we attach any input
 // sections.
 if (parameters->options().text_reorder()
     && !this->script_options_->saw_sections_clause()
     && !this->is_section_ordering_specified()
     && !parameters->options().relocatable()
     && strcmp(name, ".text") == 0)
   os->set_may_sort_attached_input_sections();

 // GNU linker sorts section by name with --sort-section=name.
 if (strcmp(parameters->options().sort_section(), "name") == 0)
     os->set_must_sort_attached_input_sections();

 // Check for .stab*str sections, as .stab* sections need to link to
 // them.
 if (type == elfcpp::SHT_STRTAB
     && !this->have_stabstr_section_
     && strncmp(name, ".stab", 5) == 0
     && strcmp(name + strlen(name) - 3, "str") == 0)
   this->have_stabstr_section_ = true;

 // During a full incremental link, we add patch space to most
 // PROGBITS and NOBITS sections.  Flag those that may be
 // arbitrarily padded.
 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
     && order != ORDER_INTERP
     && order != ORDER_INIT
     && order != ORDER_PLT
     && order != ORDER_FINI
     && order != ORDER_RELRO_LAST
     && order != ORDER_NON_RELRO_FIRST
     && strcmp(name, ".eh_frame") != 0
     && strcmp(name, ".ctors") != 0
     && strcmp(name, ".dtors") != 0
     && strcmp(name, ".jcr") != 0)
   {
     os->set_is_patch_space_allowed();

     // Certain sections require "holes" to be filled with
     // specific fill patterns.  These fill patterns may have
     // a minimum size, so we must prevent allocations from the
     // free list that leave a hole smaller than the minimum.
     if (strcmp(name, ".debug_info") == 0)
       os->set_free_space_fill(new Output_fill_debug_info(false));
     else if (strcmp(name, ".debug_types") == 0)
       os->set_free_space_fill(new Output_fill_debug_info(true));
     else if (strcmp(name, ".debug_line") == 0)
       os->set_free_space_fill(new Output_fill_debug_line());
   }

 // If we have already attached the sections to segments, then we
 // need to attach this one now.  This happens for sections created
 // directly by the linker.
 if (this->sections_are_attached_)
   this->attach_section_to_segment(&parameters->target(), os);

 return os;
}

// Return the default order in which a section should be placed in an
// output segment.  This function captures a lot of the ideas in
// ld/scripttempl/elf.sc in the GNU linker.  Note that the order of a
// linker created section is normally set when the section is created;
// this function is used for input sections.

Output_section_order
Layout::default_section_order(Output_section* os, bool is_relro_local)
{
 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
 bool is_bss = false;

 switch (os->type())
   {
   default:
   case elfcpp::SHT_PROGBITS:
     break;
   case elfcpp::SHT_NOBITS:
     is_bss = true;
     break;
   case elfcpp::SHT_RELA:
   case elfcpp::SHT_REL:
     if (!is_write)
       return ORDER_DYNAMIC_RELOCS;
     break;
   case elfcpp::SHT_HASH:
   case elfcpp::SHT_DYNAMIC:
   case elfcpp::SHT_SHLIB:
   case elfcpp::SHT_DYNSYM:
   case elfcpp::SHT_GNU_HASH:
   case elfcpp::SHT_GNU_verdef:
   case elfcpp::SHT_GNU_verneed:
   case elfcpp::SHT_GNU_versym:
     if (!is_write)
       return ORDER_DYNAMIC_LINKER;
     break;
   case elfcpp::SHT_NOTE:
     return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
   }

 if ((os->flags() & elfcpp::SHF_TLS) != 0)
   return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;

 if (!is_bss && !is_write)
   {
     if (is_execinstr)
       {
         if (strcmp(os->name(), ".init") == 0)
           return ORDER_INIT;
         else if (strcmp(os->name(), ".fini") == 0)
           return ORDER_FINI;
         else if (parameters->options().keep_text_section_prefix())
           {
             // -z,keep-text-section-prefix introduces additional
             // output sections.
             if (strcmp(os->name(), ".text.hot") == 0)
               return ORDER_TEXT_HOT;
             else if (strcmp(os->name(), ".text.startup") == 0)
               return ORDER_TEXT_STARTUP;
             else if (strcmp(os->name(), ".text.exit") == 0)
               return ORDER_TEXT_EXIT;
             else if (strcmp(os->name(), ".text.unlikely") == 0)
               return ORDER_TEXT_UNLIKELY;
           }
       }
     return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
   }

 if (os->is_relro())
   return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;

 if (os->is_small_section())
   return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
 if (os->is_large_section())
   return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;

 return is_bss ? ORDER_BSS : ORDER_DATA;
}

// Attach output sections to segments.  This is called after we have
// seen all the input sections.

void
Layout::attach_sections_to_segments(const Target* target)
{
 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   this->attach_section_to_segment(target, *p);

 this->sections_are_attached_ = true;
}

// Attach an output section to a segment.

void
Layout::attach_section_to_segment(const Target* target, Output_section* os)
{
 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
   this->unattached_section_list_.push_back(os);
 else
   this->attach_allocated_section_to_segment(target, os);
}

// Attach an allocated output section to a segment.

void
Layout::attach_allocated_section_to_segment(const Target* target,
                                           Output_section* os)
{
 elfcpp::Elf_Xword flags = os->flags();
 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);

 if (parameters->options().relocatable())
   return;

 // If we have a SECTIONS clause, we can't handle the attachment to
 // segments until after we've seen all the sections.
 if (this->script_options_->saw_sections_clause())
   return;

 gold_assert(!this->script_options_->saw_phdrs_clause());

 // This output section goes into a PT_LOAD segment.

 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);

 // If this output section's segment has extra flags that need to be set,
 // coming from a linker plugin, do that.
 seg_flags |= os->extra_segment_flags();

 // Check for --section-start.
 uint64_t addr;
 bool is_address_set = parameters->options().section_start(os->name(), &addr);

 // In general the only thing we really care about for PT_LOAD
 // segments is whether or not they are writable or executable,
 // so that is how we search for them.
 // Large data sections also go into their own PT_LOAD segment.
 // People who need segments sorted on some other basis will
 // have to use a linker script.

 Segment_list::const_iterator p;
 if (!os->is_unique_segment())
   {
     for (p = this->segment_list_.begin();
          p != this->segment_list_.end();
          ++p)
       {
         if ((*p)->type() != elfcpp::PT_LOAD)
           continue;
         if ((*p)->is_unique_segment())
           continue;
         if (!parameters->options().omagic()
             && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
           continue;
         if ((target->isolate_execinstr() || parameters->options().rosegment())
             && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
           continue;
         // If -Tbss was specified, we need to separate the data and BSS
         // segments.
         if (parameters->options().user_set_Tbss())
           {
             if ((os->type() == elfcpp::SHT_NOBITS)
                 == (*p)->has_any_data_sections())
               continue;
           }
         if (os->is_large_data_section() && !(*p)->is_large_data_segment())
           continue;

         if (is_address_set)
           {
             if ((*p)->are_addresses_set())
               continue;

             (*p)->add_initial_output_data(os);
             (*p)->update_flags_for_output_section(seg_flags);
             (*p)->set_addresses(addr, addr);
             break;
           }

         (*p)->add_output_section_to_load(this, os, seg_flags);
         break;
       }
   }

 if (p == this->segment_list_.end()
     || os->is_unique_segment())
   {
     Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
                                                      seg_flags);
     if (os->is_large_data_section())
       oseg->set_is_large_data_segment();
     oseg->add_output_section_to_load(this, os, seg_flags);
     if (is_address_set)
       oseg->set_addresses(addr, addr);
     // Check if segment should be marked unique.  For segments marked
     // unique by linker plugins, set the new alignment if specified.
     if (os->is_unique_segment())
       {
         oseg->set_is_unique_segment();
         if (os->segment_alignment() != 0)
           oseg->set_minimum_p_align(os->segment_alignment());
       }
   }

 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
 // segment.
 if (os->type() == elfcpp::SHT_NOTE)
   {
     uint64_t os_align = os->addralign();

     // See if we already have an equivalent PT_NOTE segment.
     for (p = this->segment_list_.begin();
          p != segment_list_.end();
          ++p)
       {
         if ((*p)->type() == elfcpp::PT_NOTE
             && (*p)->align() == os_align
             && (((*p)->flags() & elfcpp::PF_W)
                 == (seg_flags & elfcpp::PF_W)))
           {
             (*p)->add_output_section_to_nonload(os, seg_flags);
             break;
           }
       }

     if (p == this->segment_list_.end())
       {
         Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
                                                          seg_flags);
         oseg->add_output_section_to_nonload(os, seg_flags);
         oseg->set_align(os_align);
       }
   }

 // If we see a loadable SHF_TLS section, we create a PT_TLS
 // segment.  There can only be one such segment.
 if ((flags & elfcpp::SHF_TLS) != 0)
   {
     if (this->tls_segment_ == NULL)
       this->make_output_segment(elfcpp::PT_TLS, seg_flags);
     this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
   }

 // If -z relro is in effect, and we see a relro section, we create a
 // PT_GNU_RELRO segment.  There can only be one such segment.
 if (os->is_relro() && parameters->options().relro())
   {
     gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
     if (this->relro_segment_ == NULL)
       this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
     this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
   }

 // If we see a section named .interp, put it into a PT_INTERP
 // segment.  This seems broken to me, but this is what GNU ld does,
 // and glibc expects it.
 if (strcmp(os->name(), ".interp") == 0
     && !this->script_options_->saw_phdrs_clause())
   {
     if (this->interp_segment_ == NULL)
       this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
     else
       gold_warning(_("multiple '.interp' sections in input files "
                      "may cause confusing PT_INTERP segment"));
     this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
   }
}

// Make an output section for a script.

Output_section*
Layout::make_output_section_for_script(
   const char* name,
   Script_sections::Section_type section_type)
{
 name = this->namepool_.add(name, false, NULL);
 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
 if (section_type == Script_sections::ST_NOLOAD)
   sh_flags = 0;
 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
                                                sh_flags, ORDER_INVALID,
                                                false);
 os->set_found_in_sections_clause();
 if (section_type == Script_sections::ST_NOLOAD)
   os->set_is_noload();
 return os;
}

// Return the number of segments we expect to see.

size_t
Layout::expected_segment_count() const
{
 size_t ret = this->segment_list_.size();

 // If we didn't see a SECTIONS clause in a linker script, we should
 // already have the complete list of segments.  Otherwise we ask the
 // SECTIONS clause how many segments it expects, and add in the ones
 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)

 if (!this->script_options_->saw_sections_clause())
   return ret;
 else
   {
     const Script_sections* ss = this->script_options_->script_sections();
     return ret + ss->expected_segment_count(this);
   }
}

// Handle the .note.GNU-stack section at layout time.  SEEN_GNU_STACK
// is whether we saw a .note.GNU-stack section in the object file.
// GNU_STACK_FLAGS is the section flags.  The flags give the
// protection required for stack memory.  We record this in an
// executable as a PT_GNU_STACK segment.  If an object file does not
// have a .note.GNU-stack segment, we must assume that it is an old
// object.  On some targets that will force an executable stack.

void
Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
                        const Object* obj)
{
 if (!seen_gnu_stack)
   {
     this->input_without_gnu_stack_note_ = true;
     if (parameters->options().warn_execstack()
         && parameters->target().is_default_stack_executable())
       gold_warning(_("%s: missing .note.GNU-stack section"
                      " implies executable stack"),
                    obj->name().c_str());
   }
 else
   {
     this->input_with_gnu_stack_note_ = true;
     if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
       {
         this->input_requires_executable_stack_ = true;
         if (parameters->options().warn_execstack())
           gold_warning(_("%s: requires executable stack"),
                        obj->name().c_str());
       }
   }
}

// Read a value with given size and endianness.

static inline uint64_t
read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
                const Object* object)
{
 uint64_t val = 0;
 if (size == 4)
   {
     if (is_big_endian)
       val = elfcpp::Swap<32, true>::readval(buf);
     else
       val = elfcpp::Swap<32, false>::readval(buf);
   }
 else if (size == 8)
   {
     if (is_big_endian)
       val = elfcpp::Swap<64, true>::readval(buf);
     else
       val = elfcpp::Swap<64, false>::readval(buf);
   }
 else
   {
     gold_warning(_("%s: in .note.gnu.property section, "
                    "pr_datasz must be 4 or 8"),
                  object->name().c_str());
   }
 return val;
}

// Write a value with given size and endianness.

static inline void
write_sized_value(uint64_t value, size_t size, unsigned char* buf,
                 bool is_big_endian)
{
 if (size == 4)
   {
     if (is_big_endian)
       elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
     else
       elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
   }
 else if (size == 8)
   {
     if (is_big_endian)
       elfcpp::Swap<64, true>::writeval(buf, value);
     else
       elfcpp::Swap<64, false>::writeval(buf, value);
   }
 else
   {
     // We will have already complained about this.
   }
}

// Handle the .note.gnu.property section at layout time.

void
Layout::layout_gnu_property(unsigned int note_type,
                           unsigned int pr_type,
                           size_t pr_datasz,
                           const unsigned char* pr_data,
                           const Object* object)
{
 // We currently support only the one note type.
 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);

 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
     && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
   {
     // Target-dependent property value; call the target to record.
     const int size = parameters->target().get_size();
     const bool is_big_endian = parameters->target().is_big_endian();
     if (size == 32)
       {
         if (is_big_endian)
           {
#ifdef HAVE_TARGET_32_BIG
             parameters->sized_target<32, true>()->
                 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
                                     object);
#else
             gold_unreachable();
#endif
           }
         else
           {
#ifdef HAVE_TARGET_32_LITTLE
             parameters->sized_target<32, false>()->
                 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
                                     object);
#else
             gold_unreachable();
#endif
           }
       }
     else if (size == 64)
       {
         if (is_big_endian)
           {
#ifdef HAVE_TARGET_64_BIG
             parameters->sized_target<64, true>()->
                 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
                                     object);
#else
             gold_unreachable();
#endif
           }
         else
           {
#ifdef HAVE_TARGET_64_LITTLE
             parameters->sized_target<64, false>()->
                 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
                                     object);
#else
             gold_unreachable();
#endif
           }
       }
     else
       gold_unreachable();
     return;
   }

 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
 if (pprop == this->gnu_properties_.end())
   {
     Gnu_property prop;
     prop.pr_datasz = pr_datasz;
     prop.pr_data = new unsigned char[pr_datasz];
     memcpy(prop.pr_data, pr_data, pr_datasz);
     this->gnu_properties_[pr_type] = prop;
   }
 else
   {
     const bool is_big_endian = parameters->target().is_big_endian();
     switch (pr_type)
       {
       case elfcpp::GNU_PROPERTY_STACK_SIZE:
         // Record the maximum value seen.
         {
           uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
                                            pprop->second.pr_data,
                                            is_big_endian, object);
           uint64_t val2 = read_sized_value(pr_datasz, pr_data,
                                            is_big_endian, object);
           if (val2 > val1)
             write_sized_value(val2, pprop->second.pr_datasz,
                               pprop->second.pr_data, is_big_endian);
         }
         break;
       case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
         // No data to merge.
         break;
       default:
         gold_warning(_("%s: unknown program property type %d "
                        "in .note.gnu.property section"),
                      object->name().c_str(), pr_type);
       }
   }
}

// Merge per-object properties with program properties.
// This lets the target identify objects that are missing certain
// properties, in cases where properties must be ANDed together.

void
Layout::merge_gnu_properties(const Object* object)
{
 const int size = parameters->target().get_size();
 const bool is_big_endian = parameters->target().is_big_endian();
 if (size == 32)
   {
     if (is_big_endian)
       {
#ifdef HAVE_TARGET_32_BIG
         parameters->sized_target<32, true>()->merge_gnu_properties(object);
#else
         gold_unreachable();
#endif
       }
     else
       {
#ifdef HAVE_TARGET_32_LITTLE
         parameters->sized_target<32, false>()->merge_gnu_properties(object);
#else
         gold_unreachable();
#endif
       }
   }
 else if (size == 64)
   {
     if (is_big_endian)
       {
#ifdef HAVE_TARGET_64_BIG
         parameters->sized_target<64, true>()->merge_gnu_properties(object);
#else
         gold_unreachable();
#endif
       }
     else
       {
#ifdef HAVE_TARGET_64_LITTLE
         parameters->sized_target<64, false>()->merge_gnu_properties(object);
#else
         gold_unreachable();
#endif
       }
   }
 else
   gold_unreachable();
}

// Add a target-specific property for the output .note.gnu.property section.

void
Layout::add_gnu_property(unsigned int note_type,
                        unsigned int pr_type,
                        size_t pr_datasz,
                        const unsigned char* pr_data)
{
 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);

 Gnu_property prop;
 prop.pr_datasz = pr_datasz;
 prop.pr_data = new unsigned char[pr_datasz];
 memcpy(prop.pr_data, pr_data, pr_datasz);
 this->gnu_properties_[pr_type] = prop;
}

// Create automatic note sections.

void
Layout::create_notes()
{
 this->create_gnu_properties_note();
 this->create_gold_note();
 this->create_stack_segment();
 this->create_build_id();
 this->create_package_metadata();
}

// Create the dynamic sections which are needed before we read the
// relocs.

void
Layout::create_initial_dynamic_sections(Symbol_table* symtab)
{
 if (parameters->doing_static_link())
   return;

 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
                                                      elfcpp::SHT_DYNAMIC,
                                                      (elfcpp::SHF_ALLOC
                                                       | elfcpp::SHF_WRITE),
                                                      false, ORDER_RELRO,
                                                      true, false, false);

 // A linker script may discard .dynamic, so check for NULL.
 if (this->dynamic_section_ != NULL)
   {
     this->dynamic_symbol_ =
       symtab->define_in_output_data("_DYNAMIC", NULL,
                                     Symbol_table::PREDEFINED,
                                     this->dynamic_section_, 0, 0,
                                     elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
                                     elfcpp::STV_HIDDEN, 0, false, false);

     this->dynamic_data_ =  new Output_data_dynamic(&this->dynpool_);

     this->dynamic_section_->add_output_section_data(this->dynamic_data_);
   }
}

// For each output section whose name can be represented as C symbol,
// define __start and __stop symbols for the section.  This is a GNU
// extension.

void
Layout::define_section_symbols(Symbol_table* symtab)
{
 const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum();
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     const char* const name = (*p)->name();
     if (is_cident(name))
       {
         const std::string name_string(name);
         const std::string start_name(cident_section_start_prefix
                                      + name_string);
         const std::string stop_name(cident_section_stop_prefix
                                     + name_string);

         symtab->define_in_output_data(start_name.c_str(),
                                       NULL, // version
                                       Symbol_table::PREDEFINED,
                                       *p,
                                       0, // value
                                       0, // symsize
                                       elfcpp::STT_NOTYPE,
                                       elfcpp::STB_GLOBAL,
                                       visibility,
                                       0, // nonvis
                                       false, // offset_is_from_end
                                       true); // only_if_ref

         symtab->define_in_output_data(stop_name.c_str(),
                                       NULL, // version
                                       Symbol_table::PREDEFINED,
                                       *p,
                                       0, // value
                                       0, // symsize
                                       elfcpp::STT_NOTYPE,
                                       elfcpp::STB_GLOBAL,
                                       visibility,
                                       0, // nonvis
                                       true, // offset_is_from_end
                                       true); // only_if_ref
       }
   }
}

// Define symbols for group signatures.

void
Layout::define_group_signatures(Symbol_table* symtab)
{
 for (Group_signatures::iterator p = this->group_signatures_.begin();
      p != this->group_signatures_.end();
      ++p)
   {
     Symbol* sym = symtab->lookup(p->signature, NULL);
     if (sym != NULL)
       p->section->set_info_symndx(sym);
     else
       {
         // Force the name of the group section to the group
         // signature, and use the group's section symbol as the
         // signature symbol.
         if (strcmp(p->section->name(), p->signature) != 0)
           {
             const char* name = this->namepool_.add(p->signature,
                                                    true, NULL);
             p->section->set_name(name);
           }
         p->section->set_needs_symtab_index();
         p->section->set_info_section_symndx(p->section);
       }
   }

 this->group_signatures_.clear();
}

// Find the first read-only PT_LOAD segment, creating one if
// necessary.

Output_segment*
Layout::find_first_load_seg(const Target* target)
{
 Output_segment* best = NULL;
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     if ((*p)->type() == elfcpp::PT_LOAD
         && ((*p)->flags() & elfcpp::PF_R) != 0
         && (parameters->options().omagic()
             || ((*p)->flags() & elfcpp::PF_W) == 0)
         && (!target->isolate_execinstr()
             || ((*p)->flags() & elfcpp::PF_X) == 0))
       {
         if (best == NULL || this->segment_precedes(*p, best))
           best = *p;
       }
   }
 if (best != NULL)
   return best;

 gold_assert(!this->script_options_->saw_phdrs_clause());

 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
                                                      elfcpp::PF_R);
 return load_seg;
}

// Save states of all current output segments.  Store saved states
// in SEGMENT_STATES.

void
Layout::save_segments(Segment_states* segment_states)
{
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     Output_segment* segment = *p;
     // Shallow copy.
     Output_segment* copy = new Output_segment(*segment);
     (*segment_states)[segment] = copy;
   }
}

// Restore states of output segments and delete any segment not found in
// SEGMENT_STATES.

void
Layout::restore_segments(const Segment_states* segment_states)
{
 // Go through the segment list and remove any segment added in the
 // relaxation loop.
 this->tls_segment_ = NULL;
 this->relro_segment_ = NULL;
 Segment_list::iterator list_iter = this->segment_list_.begin();
 while (list_iter != this->segment_list_.end())
   {
     Output_segment* segment = *list_iter;
     Segment_states::const_iterator states_iter =
         segment_states->find(segment);
     if (states_iter != segment_states->end())
       {
         const Output_segment* copy = states_iter->second;
         // Shallow copy to restore states.
         *segment = *copy;

         // Also fix up TLS and RELRO segment pointers as appropriate.
         if (segment->type() == elfcpp::PT_TLS)
           this->tls_segment_ = segment;
         else if (segment->type() == elfcpp::PT_GNU_RELRO)
           this->relro_segment_ = segment;

         ++list_iter;
       }
     else
       {
         list_iter = this->segment_list_.erase(list_iter);
         // This is a segment created during section layout.  It should be
         // safe to remove it since we should have removed all pointers to it.
         delete segment;
       }
   }
}

// Clean up after relaxation so that sections can be laid out again.

void
Layout::clean_up_after_relaxation()
{
 // Restore the segments to point state just prior to the relaxation loop.
 Script_sections* script_section = this->script_options_->script_sections();
 script_section->release_segments();
 this->restore_segments(this->segment_states_);

 // Reset section addresses and file offsets
 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     (*p)->restore_states();

     // If an input section changes size because of relaxation,
     // we need to adjust the section offsets of all input sections.
     // after such a section.
     if ((*p)->section_offsets_need_adjustment())
       (*p)->adjust_section_offsets();

     (*p)->reset_address_and_file_offset();
   }

 // Reset special output object address and file offsets.
 for (Data_list::iterator p = this->special_output_list_.begin();
      p != this->special_output_list_.end();
      ++p)
   (*p)->reset_address_and_file_offset();

 // A linker script may have created some output section data objects.
 // They are useless now.
 for (Output_section_data_list::const_iterator p =
        this->script_output_section_data_list_.begin();
      p != this->script_output_section_data_list_.end();
      ++p)
   delete *p;
 this->script_output_section_data_list_.clear();

 // Special-case fill output objects are recreated each time through
 // the relaxation loop.
 this->reset_relax_output();
}

void
Layout::reset_relax_output()
{
 for (Data_list::const_iterator p = this->relax_output_list_.begin();
      p != this->relax_output_list_.end();
      ++p)
   delete *p;
 this->relax_output_list_.clear();
}

// Prepare for relaxation.

void
Layout::prepare_for_relaxation()
{
 // Create an relaxation debug check if in debugging mode.
 if (is_debugging_enabled(DEBUG_RELAXATION))
   this->relaxation_debug_check_ = new Relaxation_debug_check();

 // Save segment states.
 this->segment_states_ = new Segment_states();
 this->save_segments(this->segment_states_);

 for(Section_list::const_iterator p = this->section_list_.begin();
     p != this->section_list_.end();
     ++p)
   (*p)->save_states();

 if (is_debugging_enabled(DEBUG_RELAXATION))
   this->relaxation_debug_check_->check_output_data_for_reset_values(
       this->section_list_, this->special_output_list_,
       this->relax_output_list_);

 // Also enable recording of output section data from scripts.
 this->record_output_section_data_from_script_ = true;
}

// If the user set the address of the text segment, that may not be
// compatible with putting the segment headers and file headers into
// that segment.  For isolate_execinstr() targets, it's the rodata
// segment rather than text where we might put the headers.
static inline bool
load_seg_unusable_for_headers(const Target* target)
{
 const General_options& options = parameters->options();
 if (target->isolate_execinstr())
   return (options.user_set_Trodata_segment()
           && options.Trodata_segment() % target->abi_pagesize() != 0);
 else
   return (options.user_set_Ttext()
           && options.Ttext() % target->abi_pagesize() != 0);
}

// Relaxation loop body:  If target has no relaxation, this runs only once
// Otherwise, the target relaxation hook is called at the end of
// each iteration.  If the hook returns true, it means re-layout of
// section is required.
//
// The number of segments created by a linking script without a PHDRS
// clause may be affected by section sizes and alignments.  There is
// a remote chance that relaxation causes different number of PT_LOAD
// segments are created and sections are attached to different segments.
// Therefore, we always throw away all segments created during section
// layout.  In order to be able to restart the section layout, we keep
// a copy of the segment list right before the relaxation loop and use
// that to restore the segments.
//
// PASS is the current relaxation pass number.
// SYMTAB is a symbol table.
// PLOAD_SEG is the address of a pointer for the load segment.
// PHDR_SEG is a pointer to the PHDR segment.
// SEGMENT_HEADERS points to the output segment header.
// FILE_HEADER points to the output file header.
// PSHNDX is the address to store the output section index.

off_t inline
Layout::relaxation_loop_body(
   int pass,
   Target* target,
   Symbol_table* symtab,
   Output_segment** pload_seg,
   Output_segment* phdr_seg,
   Output_segment_headers* segment_headers,
   Output_file_header* file_header,
   unsigned int* pshndx)
{
 // If this is not the first iteration, we need to clean up after
 // relaxation so that we can lay out the sections again.
 if (pass != 0)
   this->clean_up_after_relaxation();

 // If there is a SECTIONS clause, put all the input sections into
 // the required order.
 Output_segment* load_seg;
 if (this->script_options_->saw_sections_clause())
   load_seg = this->set_section_addresses_from_script(symtab);
 else if (parameters->options().relocatable())
   load_seg = NULL;
 else
   load_seg = this->find_first_load_seg(target);

 if (parameters->options().oformat_enum()
     != General_options::OBJECT_FORMAT_ELF)
   load_seg = NULL;

 if (load_seg_unusable_for_headers(target))
   {
     load_seg = NULL;
     phdr_seg = NULL;
   }

 gold_assert(phdr_seg == NULL
             || load_seg != NULL
             || this->script_options_->saw_sections_clause());

 // If the address of the load segment we found has been set by
 // --section-start rather than by a script, then adjust the VMA and
 // LMA downward if possible to include the file and section headers.
 uint64_t header_gap = 0;
 if (load_seg != NULL
     && load_seg->are_addresses_set()
     && !this->script_options_->saw_sections_clause()
     && !parameters->options().relocatable())
   {
     file_header->finalize_data_size();
     segment_headers->finalize_data_size();
     size_t sizeof_headers = (file_header->data_size()
                              + segment_headers->data_size());
     const uint64_t abi_pagesize = target->abi_pagesize();
     uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
     hdr_paddr &= ~(abi_pagesize - 1);
     uint64_t subtract = load_seg->paddr() - hdr_paddr;
     if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
       load_seg = NULL;
     else
       {
         load_seg->set_addresses(load_seg->vaddr() - subtract,
                                 load_seg->paddr() - subtract);
         header_gap = subtract - sizeof_headers;
       }
   }

 // Lay out the segment headers.
 if (!parameters->options().relocatable())
   {
     gold_assert(segment_headers != NULL);
     if (header_gap != 0 && load_seg != NULL)
       {
         Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
         load_seg->add_initial_output_data(z);
       }
     if (load_seg != NULL)
       load_seg->add_initial_output_data(segment_headers);
     if (phdr_seg != NULL)
       phdr_seg->add_initial_output_data(segment_headers);
   }

 // Lay out the file header.
 if (load_seg != NULL)
   load_seg->add_initial_output_data(file_header);

 if (this->script_options_->saw_phdrs_clause()
     && !parameters->options().relocatable())
   {
     // Support use of FILEHDRS and PHDRS attachments in a PHDRS
     // clause in a linker script.
     Script_sections* ss = this->script_options_->script_sections();
     ss->put_headers_in_phdrs(file_header, segment_headers);
   }

 // We set the output section indexes in set_segment_offsets and
 // set_section_indexes.
 *pshndx = 1;

 // Set the file offsets of all the segments, and all the sections
 // they contain.
 off_t off;
 if (!parameters->options().relocatable())
   off = this->set_segment_offsets(target, load_seg, pshndx);
 else
   off = this->set_relocatable_section_offsets(file_header, pshndx);

  // Verify that the dummy relaxation does not change anything.
 if (is_debugging_enabled(DEBUG_RELAXATION))
   {
     if (pass == 0)
       this->relaxation_debug_check_->read_sections(this->section_list_);
     else
       this->relaxation_debug_check_->verify_sections(this->section_list_);
   }

 *pload_seg = load_seg;
 return off;
}

// Search the list of patterns and find the position of the given section
// name in the output section.  If the section name matches a glob
// pattern and a non-glob name, then the non-glob position takes
// precedence.  Return 0 if no match is found.

unsigned int
Layout::find_section_order_index(const std::string& section_name)
{
 Unordered_map<std::string, unsigned int>::iterator map_it;
 map_it = this->input_section_position_.find(section_name);
 if (map_it != this->input_section_position_.end())
   return map_it->second;

 // Absolute match failed.  Linear search the glob patterns.
 std::vector<std::string>::iterator it;
 for (it = this->input_section_glob_.begin();
      it != this->input_section_glob_.end();
      ++it)
   {
      if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
        {
          map_it = this->input_section_position_.find(*it);
          gold_assert(map_it != this->input_section_position_.end());
          return map_it->second;
        }
   }
 return 0;
}

// Read the sequence of input sections from the file specified with
// option --section-ordering-file.

void
Layout::read_layout_from_file()
{
 const char* filename = parameters->options().section_ordering_file();
 std::ifstream in;
 std::string line;

 in.open(filename);
 if (!in)
   gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
              filename, strerror(errno));

 File_read::record_file_read(filename);

 std::getline(in, line);   // this chops off the trailing \n, if any
 unsigned int position = 1;
 this->set_section_ordering_specified();

 while (in)
   {
     if (!line.empty() && line[line.length() - 1] == '\r')   // Windows
       line.resize(line.length() - 1);
     // Ignore comments, beginning with '#'
     if (line[0] == '#')
       {
         std::getline(in, line);
         continue;
       }
     this->input_section_position_[line] = position;
     // Store all glob patterns in a vector.
     if (is_wildcard_string(line.c_str()))
       this->input_section_glob_.push_back(line);
     position++;
     std::getline(in, line);
   }
}

// Finalize the layout.  When this is called, we have created all the
// output sections and all the output segments which are based on
// input sections.  We have several things to do, and we have to do
// them in the right order, so that we get the right results correctly
// and efficiently.

// 1) Finalize the list of output segments and create the segment
// table header.

// 2) Finalize the dynamic symbol table and associated sections.

// 3) Determine the final file offset of all the output segments.

// 4) Determine the final file offset of all the SHF_ALLOC output
// sections.

// 5) Create the symbol table sections and the section name table
// section.

// 6) Finalize the symbol table: set symbol values to their final
// value and make a final determination of which symbols are going
// into the output symbol table.

// 7) Create the section table header.

// 8) Determine the final file offset of all the output sections which
// are not SHF_ALLOC, including the section table header.

// 9) Finalize the ELF file header.

// This function returns the size of the output file.

off_t
Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
                Target* target, const Task* task)
{
 unsigned int local_dynamic_count = 0;
 unsigned int forced_local_dynamic_count = 0;

 target->finalize_sections(this, input_objects, symtab);

 this->count_local_symbols(task, input_objects);

 this->link_stabs_sections();

 Output_segment* phdr_seg = NULL;
 if (!parameters->options().relocatable() && !parameters->doing_static_link())
   {
     // There was a dynamic object in the link.  We need to create
     // some information for the dynamic linker.

     // Create the PT_PHDR segment which will hold the program
     // headers.
     if (!this->script_options_->saw_phdrs_clause())
       phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);

     // Create the dynamic symbol table, including the hash table.
     Output_section* dynstr;
     std::vector<Symbol*> dynamic_symbols;
     Versions versions(*this->script_options()->version_script_info(),
                       &this->dynpool_);
     this->create_dynamic_symtab(input_objects, symtab, &dynstr,
                                 &local_dynamic_count,
                                 &forced_local_dynamic_count,
                                 &dynamic_symbols,
                                 &versions);

     // Create the .interp section to hold the name of the
     // interpreter, and put it in a PT_INTERP segment.  Don't do it
     // if we saw a .interp section in an input file.
     if ((!parameters->options().shared()
          || parameters->options().dynamic_linker() != NULL)
         && this->interp_segment_ == NULL)
       this->create_interp(target);

     // Finish the .dynamic section to hold the dynamic data, and put
     // it in a PT_DYNAMIC segment.
     this->finish_dynamic_section(input_objects, symtab);

     // We should have added everything we need to the dynamic string
     // table.
     this->dynpool_.set_string_offsets();

     // Create the version sections.  We can't do this until the
     // dynamic string table is complete.
     this->create_version_sections(&versions, symtab,
                                   (local_dynamic_count
                                    + forced_local_dynamic_count),
                                   dynamic_symbols, dynstr);

     // Set the size of the _DYNAMIC symbol.  We can't do this until
     // after we call create_version_sections.
     this->set_dynamic_symbol_size(symtab);
   }

 // Create segment headers.
 Output_segment_headers* segment_headers =
   (parameters->options().relocatable()
    ? NULL
    : new Output_segment_headers(this->segment_list_));

 // Lay out the file header.
 Output_file_header* file_header = new Output_file_header(target, symtab,
                                                          segment_headers);

 this->special_output_list_.push_back(file_header);
 if (segment_headers != NULL)
   this->special_output_list_.push_back(segment_headers);

 // Find approriate places for orphan output sections if we are using
 // a linker script.
 if (this->script_options_->saw_sections_clause())
   this->place_orphan_sections_in_script();

 Output_segment* load_seg;
 off_t off;
 unsigned int shndx;
 int pass = 0;

 // Take a snapshot of the section layout as needed.
 if (target->may_relax())
   this->prepare_for_relaxation();

 // Run the relaxation loop to lay out sections.
 do
   {
     off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
                                      phdr_seg, segment_headers, file_header,
                                      &shndx);
     pass++;
   }
 while (target->may_relax()
        && target->relax(pass, input_objects, symtab, this, task));

 // If there is a load segment that contains the file and program headers,
 // provide a symbol __ehdr_start pointing there.
 // A program can use this to examine itself robustly.
 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
 if (ehdr_start != NULL && ehdr_start->is_predefined())
   {
     if (load_seg != NULL)
       ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
     else
       ehdr_start->set_undefined();
   }

 // Set the file offsets of all the non-data sections we've seen so
 // far which don't have to wait for the input sections.  We need
 // this in order to finalize local symbols in non-allocated
 // sections.
 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);

 // Set the section indexes of all unallocated sections seen so far,
 // in case any of them are somehow referenced by a symbol.
 shndx = this->set_section_indexes(shndx);

 // Create the symbol table sections.
 this->create_symtab_sections(input_objects, symtab, shndx, &off,
                              local_dynamic_count);
 if (!parameters->doing_static_link())
   this->assign_local_dynsym_offsets(input_objects);

 // Process any symbol assignments from a linker script.  This must
 // be called after the symbol table has been finalized.
 this->script_options_->finalize_symbols(symtab, this);

 // Create the incremental inputs sections.
 if (this->incremental_inputs_)
   {
     this->incremental_inputs_->finalize();
     this->create_incremental_info_sections(symtab);
   }

 // Create the .shstrtab section.
 Output_section* shstrtab_section = this->create_shstrtab();

 // Set the file offsets of the rest of the non-data sections which
 // don't have to wait for the input sections.
 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);

 // Now that all sections have been created, set the section indexes
 // for any sections which haven't been done yet.
 shndx = this->set_section_indexes(shndx);

 // Create the section table header.
 this->create_shdrs(shstrtab_section, &off);

 // If there are no sections which require postprocessing, we can
 // handle the section names now, and avoid a resize later.
 if (!this->any_postprocessing_sections_)
   {
     off = this->set_section_offsets(off,
                                     POSTPROCESSING_SECTIONS_PASS);
     off =
         this->set_section_offsets(off,
                                   STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
   }

 file_header->set_section_info(this->section_headers_, shstrtab_section);

 // Now we know exactly where everything goes in the output file
 // (except for non-allocated sections which require postprocessing).
 Output_data::layout_complete();

 this->output_file_size_ = off;

 return off;
}

// Create a note header following the format defined in the ELF ABI.
// NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
// of the section to create, DESCSZ is the size of the descriptor.
// ALLOCATE is true if the section should be allocated in memory.
// This returns the new note section.  It sets *TRAILING_PADDING to
// the number of trailing zero bytes required.

Output_section*
Layout::create_note(const char* name, int note_type,
                   const char* section_name, size_t descsz,
                   bool allocate, size_t* trailing_padding)
{
 // Authorities all agree that the values in a .note field should
 // be aligned on 4-byte boundaries for 32-bit binaries.  However,
 // they differ on what the alignment is for 64-bit binaries.
 // The GABI says unambiguously they take 8-byte alignment:
 //    http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
 // Other documentation says alignment should always be 4 bytes:
 //    http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
 // GNU ld and GNU readelf both support the latter (at least as of
 // version 2.16.91), and glibc always generates the latter for
 // .note.ABI-tag (as of version 1.6), so that's the one we go with
 // here.
#ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION   // This is not defined by default.
 const int size = parameters->target().get_size();
#else
 const int size = 32;
#endif
 // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size.
 const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
                        ? parameters->target().get_size()
                        : size) / 8);

 // The contents of the .note section.
 size_t namesz = strlen(name) + 1;
 size_t aligned_namesz = align_address(namesz, size / 8);
 size_t aligned_descsz = align_address(descsz, size / 8);

 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;

 unsigned char* buffer = new unsigned char[notehdrsz];
 memset(buffer, 0, notehdrsz);

 bool is_big_endian = parameters->target().is_big_endian();

 if (size == 32)
   {
     if (!is_big_endian)
       {
         elfcpp::Swap<32, false>::writeval(buffer, namesz);
         elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
         elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
       }
     else
       {
         elfcpp::Swap<32, true>::writeval(buffer, namesz);
         elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
         elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
       }
   }
 else if (size == 64)
   {
     if (!is_big_endian)
       {
         elfcpp::Swap<64, false>::writeval(buffer, namesz);
         elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
         elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
       }
     else
       {
         elfcpp::Swap<64, true>::writeval(buffer, namesz);
         elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
         elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
       }
   }
 else
   gold_unreachable();

 memcpy(buffer + 3 * (size / 8), name, namesz);

 elfcpp::Elf_Xword flags = 0;
 Output_section_order order = ORDER_INVALID;
 if (allocate)
   {
     flags = elfcpp::SHF_ALLOC;
     order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0
              ?  ORDER_PROPERTY_NOTE : ORDER_RO_NOTE);
   }
 Output_section* os = this->choose_output_section(NULL, section_name,
                                                  elfcpp::SHT_NOTE,
                                                  flags, false, order, false,
                                                  false, true);
 if (os == NULL)
   return NULL;

 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
                                                          addralign,
                                                          "** note header");
 os->add_output_section_data(posd);

 *trailing_padding = aligned_descsz - descsz;

 return os;
}

// Create a .note.gnu.property section to record program properties
// accumulated from the input files.

void
Layout::create_gnu_properties_note()
{
 parameters->target().finalize_gnu_properties(this);

 if (this->gnu_properties_.empty())
   return;

 const unsigned int size = parameters->target().get_size();
 const bool is_big_endian = parameters->target().is_big_endian();

 // Compute the total size of the properties array.
 size_t descsz = 0;
 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
      prop != this->gnu_properties_.end();
      ++prop)
   {
     descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
   }

 // Create the note section.
 size_t trailing_padding;
 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
                                        ".note.gnu.property", descsz,
                                        true, &trailing_padding);
 if (os == NULL)
   return;
 gold_assert(trailing_padding == 0);

 // Allocate and fill the properties array.
 unsigned char* desc = new unsigned char[descsz];
 unsigned char* p = desc;
 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
      prop != this->gnu_properties_.end();
      ++prop)
   {
     size_t datasz = prop->second.pr_datasz;
     size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
     write_sized_value(prop->first, 4, p, is_big_endian);
     write_sized_value(datasz, 4, p + 4, is_big_endian);
     memcpy(p + 8, prop->second.pr_data, datasz);
     if (aligned_datasz > datasz)
       memset(p + 8 + datasz, 0, aligned_datasz - datasz);
     p += 8 + aligned_datasz;
   }
 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
 os->add_output_section_data(posd);
}

// For an executable or shared library, create a note to record the
// version of gold used to create the binary.

void
Layout::create_gold_note()
{
 if (parameters->options().relocatable()
     || parameters->incremental_update())
   return;

 std::string desc = std::string("gold ") + gold::get_version_string();

 Output_section* os;
 Output_section_data* posd;

 if (!parameters->options().enable_linker_version())
   {
     size_t trailing_padding;

     os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
                            ".note.gnu.gold-version", desc.size(),
                            false, &trailing_padding);
     if (os == NULL)
       return;

     posd = new Output_data_const(desc, 4);
     os->add_output_section_data(posd);

     if (trailing_padding > 0)
       {
         posd = new Output_data_zero_fill(trailing_padding, 0);
         os->add_output_section_data(posd);
       }
   }
 else
   {
     os = this->choose_output_section(NULL, ".comment",
                                      elfcpp::SHT_PROGBITS, 0,
                                      false, ORDER_INVALID,
                                      false, false, false);
     if (os == NULL)
       return;

     posd = new Output_data_const(desc, 1);
     os->add_output_section_data(posd);
   }
}

// Record whether the stack should be executable.  This can be set
// from the command line using the -z execstack or -z noexecstack
// options.  Otherwise, if any input file has a .note.GNU-stack
// section with the SHF_EXECINSTR flag set, the stack should be
// executable.  Otherwise, if at least one input file a
// .note.GNU-stack section, and some input file has no .note.GNU-stack
// section, we use the target default for whether the stack should be
// executable.  If -z stack-size was used to set a p_memsz value for
// PT_GNU_STACK, we generate the segment regardless.  Otherwise, we
// don't generate a stack note.  When generating a object file, we
// create a .note.GNU-stack section with the appropriate marking.
// When generating an executable or shared library, we create a
// PT_GNU_STACK segment.

void
Layout::create_stack_segment()
{
 bool is_stack_executable;
 if (parameters->options().is_execstack_set())
   {
     is_stack_executable = parameters->options().is_stack_executable();
     if (!is_stack_executable
         && this->input_requires_executable_stack_
         && parameters->options().warn_execstack())
       gold_warning(_("one or more inputs require executable stack, "
                      "but -z noexecstack was given"));
   }
 else if (!this->input_with_gnu_stack_note_
          && (!parameters->options().user_set_stack_size()
              || parameters->options().relocatable()))
   return;
 else
   {
     if (this->input_requires_executable_stack_)
       is_stack_executable = true;
     else if (this->input_without_gnu_stack_note_)
       is_stack_executable =
         parameters->target().is_default_stack_executable();
     else
       is_stack_executable = false;
   }

 if (parameters->options().relocatable())
   {
     const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
     elfcpp::Elf_Xword flags = 0;
     if (is_stack_executable)
       flags |= elfcpp::SHF_EXECINSTR;
     this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
                               ORDER_INVALID, false);
   }
 else
   {
     if (this->script_options_->saw_phdrs_clause())
       return;
     int flags = elfcpp::PF_R | elfcpp::PF_W;
     if (is_stack_executable)
       flags |= elfcpp::PF_X;
     Output_segment* seg =
       this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
     seg->set_size(parameters->options().stack_size());
     // BFD lets targets override this default alignment, but the only
     // targets that do so are ones that Gold does not support so far.
     seg->set_minimum_p_align(16);
   }
}

// If --build-id was used, set up the build ID note.

void
Layout::create_build_id()
{
 if (!parameters->options().user_set_build_id())
   return;

 const char* style = parameters->options().build_id();
 if (strcmp(style, "none") == 0)
   return;

 // Set DESCSZ to the size of the note descriptor.  When possible,
 // set DESC to the note descriptor contents.
 size_t descsz;
 std::string desc;
 if (strcmp(style, "md5") == 0)
   descsz = 128 / 8;
 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
   descsz = 160 / 8;
 else if (strcmp(style, "uuid") == 0)
   {
#ifndef __MINGW32__
     const size_t uuidsz = 128 / 8;

     char buffer[uuidsz];
     memset(buffer, 0, uuidsz);

     int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
     if (descriptor < 0)
       gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
                  strerror(errno));
     else
       {
         ssize_t got = ::read(descriptor, buffer, uuidsz);
         release_descriptor(descriptor, true);
         if (got < 0)
           gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
         else if (static_cast<size_t>(got) != uuidsz)
           gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
                      uuidsz, got);
       }

     desc.assign(buffer, uuidsz);
     descsz = uuidsz;
#else // __MINGW32__
     UUID uuid;
     typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);

     HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
     if (!rpc_library)
       gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
     else
       {
         UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
             GetProcAddress(rpc_library, "UuidCreate"));
         if (!uuid_create)
           gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
         else if (uuid_create(&uuid) != RPC_S_OK)
           gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
         FreeLibrary(rpc_library);
       }
     desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
     descsz = sizeof(UUID);
#endif // __MINGW32__
   }
 else if (strncmp(style, "0x", 2) == 0)
   {
     hex_init();
     const char* p = style + 2;
     while (*p != '\0')
       {
         if (hex_p(p[0]) && hex_p(p[1]))
           {
             char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
             desc += c;
             p += 2;
           }
         else if (*p == '-' || *p == ':')
           ++p;
         else
           gold_fatal(_("--build-id argument '%s' not a valid hex number"),
                      style);
       }
     descsz = desc.size();
   }
 else
   gold_fatal(_("unrecognized --build-id argument '%s'"), style);

 // Create the note.
 size_t trailing_padding;
 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
                                        ".note.gnu.build-id", descsz, true,
                                        &trailing_padding);
 if (os == NULL)
   return;

 if (!desc.empty())
   {
     // We know the value already, so we fill it in now.
     gold_assert(desc.size() == descsz);

     Output_section_data* posd = new Output_data_const(desc, 4);
     os->add_output_section_data(posd);

     if (trailing_padding != 0)
       {
         posd = new Output_data_zero_fill(trailing_padding, 0);
         os->add_output_section_data(posd);
       }
   }
 else
   {
     // We need to compute a checksum after we have completed the
     // link.
     gold_assert(trailing_padding == 0);
     this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
     os->add_output_section_data(this->build_id_note_);
   }
}

// If --package-metadata was used, set up the package metadata note.
// https://systemd.io/ELF_PACKAGE_METADATA/

void
Layout::create_package_metadata()
{
 if (!parameters->options().user_set_package_metadata())
   return;

 const char* desc = parameters->options().package_metadata();
 if (strcmp(desc, "") == 0)
   return;

#ifdef HAVE_JANSSON
 json_error_t json_error;
 json_t *json = json_loads(desc, 0, &json_error);
 if (json)
   json_decref(json);
 else
   {
     gold_fatal(_("error: --package-metadata=%s does not contain valid "
                  "JSON: %s\n"),
                desc, json_error.text);
   }
#endif

 // Create the note.
 size_t trailing_padding;
 // Ensure the trailing NULL byte is always included, as per specification.
 size_t descsz = strlen(desc) + 1;
 Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA,
                                        ".note.package", descsz, true,
                                        &trailing_padding);
 if (os == NULL)
   return;

 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
 os->add_output_section_data(posd);

 if (trailing_padding != 0)
   {
     posd = new Output_data_zero_fill(trailing_padding, 0);
     os->add_output_section_data(posd);
   }
}

// If we have both .stabXX and .stabXXstr sections, then the sh_link
// field of the former should point to the latter.  I'm not sure who
// started this, but the GNU linker does it, and some tools depend
// upon it.

void
Layout::link_stabs_sections()
{
 if (!this->have_stabstr_section_)
   return;

 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if ((*p)->type() != elfcpp::SHT_STRTAB)
       continue;

     const char* name = (*p)->name();
     if (strncmp(name, ".stab", 5) != 0)
       continue;

     size_t len = strlen(name);
     if (strcmp(name + len - 3, "str") != 0)
       continue;

     std::string stab_name(name, len - 3);
     Output_section* stab_sec;
     stab_sec = this->find_output_section(stab_name.c_str());
     if (stab_sec != NULL)
       stab_sec->set_link_section(*p);
   }
}

// Create .gnu_incremental_inputs and related sections needed
// for the next run of incremental linking to check what has changed.

void
Layout::create_incremental_info_sections(Symbol_table* symtab)
{
 Incremental_inputs* incr = this->incremental_inputs_;

 gold_assert(incr != NULL);

 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
 incr->create_data_sections(symtab);

 // Add the .gnu_incremental_inputs section.
 const char* incremental_inputs_name =
   this->namepool_.add(".gnu_incremental_inputs", false, NULL);
 Output_section* incremental_inputs_os =
   this->make_output_section(incremental_inputs_name,
                             elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
                             ORDER_INVALID, false);
 incremental_inputs_os->add_output_section_data(incr->inputs_section());

 // Add the .gnu_incremental_symtab section.
 const char* incremental_symtab_name =
   this->namepool_.add(".gnu_incremental_symtab", false, NULL);
 Output_section* incremental_symtab_os =
   this->make_output_section(incremental_symtab_name,
                             elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
                             ORDER_INVALID, false);
 incremental_symtab_os->add_output_section_data(incr->symtab_section());
 incremental_symtab_os->set_entsize(4);

 // Add the .gnu_incremental_relocs section.
 const char* incremental_relocs_name =
   this->namepool_.add(".gnu_incremental_relocs", false, NULL);
 Output_section* incremental_relocs_os =
   this->make_output_section(incremental_relocs_name,
                             elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
                             ORDER_INVALID, false);
 incremental_relocs_os->add_output_section_data(incr->relocs_section());
 incremental_relocs_os->set_entsize(incr->relocs_entsize());

 // Add the .gnu_incremental_got_plt section.
 const char* incremental_got_plt_name =
   this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
 Output_section* incremental_got_plt_os =
   this->make_output_section(incremental_got_plt_name,
                             elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
                             ORDER_INVALID, false);
 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());

 // Add the .gnu_incremental_strtab section.
 const char* incremental_strtab_name =
   this->namepool_.add(".gnu_incremental_strtab", false, NULL);
 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
                                                       elfcpp::SHT_STRTAB, 0,
                                                       ORDER_INVALID, false);
 Output_data_strtab* strtab_data =
     new Output_data_strtab(incr->get_stringpool());
 incremental_strtab_os->add_output_section_data(strtab_data);

 incremental_inputs_os->set_after_input_sections();
 incremental_symtab_os->set_after_input_sections();
 incremental_relocs_os->set_after_input_sections();
 incremental_got_plt_os->set_after_input_sections();

 incremental_inputs_os->set_link_section(incremental_strtab_os);
 incremental_symtab_os->set_link_section(incremental_inputs_os);
 incremental_relocs_os->set_link_section(incremental_inputs_os);
 incremental_got_plt_os->set_link_section(incremental_inputs_os);
}

// Return whether SEG1 should be before SEG2 in the output file.  This
// is based entirely on the segment type and flags.  When this is
// called the segment addresses have normally not yet been set.

bool
Layout::segment_precedes(const Output_segment* seg1,
                        const Output_segment* seg2)
{
 // In order to produce a stable ordering if we're called with the same pointer
 // return false.
 if (seg1 == seg2)
   return false;

 elfcpp::Elf_Word type1 = seg1->type();
 elfcpp::Elf_Word type2 = seg2->type();

 // The single PT_PHDR segment is required to precede any loadable
 // segment.  We simply make it always first.
 if (type1 == elfcpp::PT_PHDR)
   {
     gold_assert(type2 != elfcpp::PT_PHDR);
     return true;
   }
 if (type2 == elfcpp::PT_PHDR)
   return false;

 // The single PT_INTERP segment is required to precede any loadable
 // segment.  We simply make it always second.
 if (type1 == elfcpp::PT_INTERP)
   {
     gold_assert(type2 != elfcpp::PT_INTERP);
     return true;
   }
 if (type2 == elfcpp::PT_INTERP)
   return false;

 // We then put PT_LOAD segments before any other segments.
 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
   return true;
 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
   return false;

 // We put the PT_TLS segment last except for the PT_GNU_RELRO
 // segment, because that is where the dynamic linker expects to find
 // it (this is just for efficiency; other positions would also work
 // correctly).
 if (type1 == elfcpp::PT_TLS
     && type2 != elfcpp::PT_TLS
     && type2 != elfcpp::PT_GNU_RELRO)
   return false;
 if (type2 == elfcpp::PT_TLS
     && type1 != elfcpp::PT_TLS
     && type1 != elfcpp::PT_GNU_RELRO)
   return true;

 // We put the PT_GNU_RELRO segment last, because that is where the
 // dynamic linker expects to find it (as with PT_TLS, this is just
 // for efficiency).
 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
   return false;
 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
   return true;

 const elfcpp::Elf_Word flags1 = seg1->flags();
 const elfcpp::Elf_Word flags2 = seg2->flags();

 // The order of non-PT_LOAD segments is unimportant.  We simply sort
 // by the numeric segment type and flags values.  There should not
 // be more than one segment with the same type and flags, except
 // when a linker script specifies such.
 if (type1 != elfcpp::PT_LOAD)
   {
     if (type1 != type2)
       return type1 < type2;
     uint64_t align1 = seg1->align();
     uint64_t align2 = seg2->align();
     // Place segments with larger alignments first.
     if (align1 != align2)
       return align1 > align2;
     gold_assert(flags1 != flags2
                 || this->script_options_->saw_phdrs_clause());
     return flags1 < flags2;
   }

 // If the addresses are set already, sort by load address.
 if (seg1->are_addresses_set())
   {
     if (!seg2->are_addresses_set())
       return true;

     unsigned int section_count1 = seg1->output_section_count();
     unsigned int section_count2 = seg2->output_section_count();
     if (section_count1 == 0 && section_count2 > 0)
       return true;
     if (section_count1 > 0 && section_count2 == 0)
       return false;

     uint64_t paddr1 = (seg1->are_addresses_set()
                        ? seg1->paddr()
                        : seg1->first_section_load_address());
     uint64_t paddr2 = (seg2->are_addresses_set()
                        ? seg2->paddr()
                        : seg2->first_section_load_address());

     if (paddr1 != paddr2)
       return paddr1 < paddr2;
   }
 else if (seg2->are_addresses_set())
   return false;

 // A segment which holds large data comes after a segment which does
 // not hold large data.
 if (seg1->is_large_data_segment())
   {
     if (!seg2->is_large_data_segment())
       return false;
   }
 else if (seg2->is_large_data_segment())
   return true;

 // Otherwise, we sort PT_LOAD segments based on the flags.  Readonly
 // segments come before writable segments.  Then writable segments
 // with data come before writable segments without data.  Then
 // executable segments come before non-executable segments.  Then
 // the unlikely case of a non-readable segment comes before the
 // normal case of a readable segment.  If there are multiple
 // segments with the same type and flags, we require that the
 // address be set, and we sort by virtual address and then physical
 // address.
 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
   return (flags1 & elfcpp::PF_W) == 0;
 if ((flags1 & elfcpp::PF_W) != 0
     && seg1->has_any_data_sections() != seg2->has_any_data_sections())
   return seg1->has_any_data_sections();
 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
   return (flags1 & elfcpp::PF_X) != 0;
 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
   return (flags1 & elfcpp::PF_R) == 0;

 // We shouldn't get here--we shouldn't create segments which we
 // can't distinguish.  Unless of course we are using a weird linker
 // script or overlapping --section-start options.  We could also get
 // here if plugins want unique segments for subsets of sections.
 gold_assert(this->script_options_->saw_phdrs_clause()
             || parameters->options().any_section_start()
             || this->is_unique_segment_for_sections_specified()
             || parameters->options().text_unlikely_segment());
 return false;
}

// Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.

static off_t
align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
{
 uint64_t unsigned_off = off;
 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
                         | (addr & (abi_pagesize - 1)));
 if (aligned_off < unsigned_off)
   aligned_off += abi_pagesize;
 return aligned_off;
}

// On targets where the text segment contains only executable code,
// a non-executable segment is never the text segment.

static inline bool
is_text_segment(const Target* target, const Output_segment* seg)
{
 elfcpp::Elf_Xword flags = seg->flags();
 if ((flags & elfcpp::PF_W) != 0)
   return false;
 if ((flags & elfcpp::PF_X) == 0)
   return !target->isolate_execinstr();
 return true;
}

// Set the file offsets of all the segments, and all the sections they
// contain.  They have all been created.  LOAD_SEG must be laid out
// first.  Return the offset of the data to follow.

off_t
Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
                           unsigned int* pshndx)
{
 // Sort them into the final order.  We use a stable sort so that we
 // don't randomize the order of indistinguishable segments created
 // by linker scripts.
 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
                  Layout::Compare_segments(this));

 // Find the PT_LOAD segments, and set their addresses and offsets
 // and their section's addresses and offsets.
 uint64_t start_addr;
 if (parameters->options().user_set_Ttext())
   start_addr = parameters->options().Ttext();
 else if (parameters->options().output_is_position_independent())
   start_addr = 0;
 else
   start_addr = target->default_text_segment_address();

 uint64_t addr = start_addr;
 off_t off = 0;

 // If LOAD_SEG is NULL, then the file header and segment headers
 // will not be loadable.  But they still need to be at offset 0 in
 // the file.  Set their offsets now.
 if (load_seg == NULL)
   {
     for (Data_list::iterator p = this->special_output_list_.begin();
          p != this->special_output_list_.end();
          ++p)
       {
         off = align_address(off, (*p)->addralign());
         (*p)->set_address_and_file_offset(0, off);
         off += (*p)->data_size();
       }
   }

 unsigned int increase_relro = this->increase_relro_;
 if (this->script_options_->saw_sections_clause())
   increase_relro = 0;

 const bool check_sections = parameters->options().check_sections();
 Output_segment* last_load_segment = NULL;

 unsigned int shndx_begin = *pshndx;
 unsigned int shndx_load_seg = *pshndx;

 for (Segment_list::iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     if ((*p)->type() == elfcpp::PT_LOAD)
       {
         if (target->isolate_execinstr())
           {
             // When we hit the segment that should contain the
             // file headers, reset the file offset so we place
             // it and subsequent segments appropriately.
             // We'll fix up the preceding segments below.
             if (load_seg == *p)
               {
                 if (off == 0)
                   load_seg = NULL;
                 else
                   {
                     off = 0;
                     shndx_load_seg = *pshndx;
                   }
               }
           }
         else
           {
             // Verify that the file headers fall into the first segment.
             if (load_seg != NULL && load_seg != *p)
               gold_unreachable();
             load_seg = NULL;
           }

         bool are_addresses_set = (*p)->are_addresses_set();
         if (are_addresses_set)
           {
             // When it comes to setting file offsets, we care about
             // the physical address.
             addr = (*p)->paddr();
           }
         else if (parameters->options().user_set_Ttext()
                  && (parameters->options().omagic()
                      || is_text_segment(target, *p)))
           {
             are_addresses_set = true;
           }
         else if (parameters->options().user_set_Trodata_segment()
                  && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
           {
             addr = parameters->options().Trodata_segment();
             are_addresses_set = true;
           }
         else if (parameters->options().user_set_Tdata()
                  && ((*p)->flags() & elfcpp::PF_W) != 0
                  && (!parameters->options().user_set_Tbss()
                      || (*p)->has_any_data_sections()))
           {
             addr = parameters->options().Tdata();
             are_addresses_set = true;
           }
         else if (parameters->options().user_set_Tbss()
                  && ((*p)->flags() & elfcpp::PF_W) != 0
                  && !(*p)->has_any_data_sections())
           {
             addr = parameters->options().Tbss();
             are_addresses_set = true;
           }

         uint64_t orig_addr = addr;
         uint64_t orig_off = off;

         uint64_t aligned_addr = 0;
         uint64_t abi_pagesize = target->abi_pagesize();
         uint64_t common_pagesize = target->common_pagesize();

         if (!parameters->options().nmagic()
             && !parameters->options().omagic())
           (*p)->set_minimum_p_align(abi_pagesize);

         if (!are_addresses_set)
           {
             // Skip the address forward one page, maintaining the same
             // position within the page.  This lets us store both segments
             // overlapping on a single page in the file, but the loader will
             // put them on different pages in memory. We will revisit this
             // decision once we know the size of the segment.

             uint64_t max_align = (*p)->maximum_alignment();
             if (max_align > abi_pagesize)
               addr = align_address(addr, max_align);
             aligned_addr = addr;

             if (load_seg == *p)
               {
                 // This is the segment that will contain the file
                 // headers, so its offset will have to be exactly zero.
                 gold_assert(orig_off == 0);

                 // If the target wants a fixed minimum distance from the
                 // text segment to the read-only segment, move up now.
                 uint64_t min_addr =
                   start_addr + (parameters->options().user_set_rosegment_gap()
                                 ? parameters->options().rosegment_gap()
                                 : target->rosegment_gap());
                 if (addr < min_addr)
                   addr = min_addr;

                 // But this is not the first segment!  To make its
                 // address congruent with its offset, that address better
                 // be aligned to the ABI-mandated page size.
                 addr = align_address(addr, abi_pagesize);
                 aligned_addr = addr;
               }
             else
               {
                 if ((addr & (abi_pagesize - 1)) != 0)
                   addr = addr + abi_pagesize;

                 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
               }
           }

         if (!parameters->options().nmagic()
             && !parameters->options().omagic())
           {
             // Here we are also taking care of the case when
             // the maximum segment alignment is larger than the page size.
             off = align_file_offset(off, addr,
                                     std::max(abi_pagesize,
                                              (*p)->maximum_alignment()));
           }
         else
           {
             // This is -N or -n with a section script which prevents
             // us from using a load segment.  We need to ensure that
             // the file offset is aligned to the alignment of the
             // segment.  This is because the linker script
             // implicitly assumed a zero offset.  If we don't align
             // here, then the alignment of the sections in the
             // linker script may not match the alignment of the
             // sections in the set_section_addresses call below,
             // causing an error about dot moving backward.
             off = align_address(off, (*p)->maximum_alignment());
           }

         unsigned int shndx_hold = *pshndx;
         bool has_relro = false;
         uint64_t new_addr = (*p)->set_section_addresses(target, this,
                                                         false, addr,
                                                         &increase_relro,
                                                         &has_relro,
                                                         &off, pshndx);

         // Now that we know the size of this segment, we may be able
         // to save a page in memory, at the cost of wasting some
         // file space, by instead aligning to the start of a new
         // page.  Here we use the real machine page size rather than
         // the ABI mandated page size.  If the segment has been
         // aligned so that the relro data ends at a page boundary,
         // we do not try to realign it.

         if (!are_addresses_set
             && !has_relro
             && aligned_addr != addr
             && !parameters->incremental())
           {
             uint64_t first_off = (common_pagesize
                                   - (aligned_addr
                                      & (common_pagesize - 1)));
             uint64_t last_off = new_addr & (common_pagesize - 1);
             if (first_off > 0
                 && last_off > 0
                 && ((aligned_addr & ~ (common_pagesize - 1))
                     != (new_addr & ~ (common_pagesize - 1)))
                 && first_off + last_off <= common_pagesize)
               {
                 *pshndx = shndx_hold;
                 addr = align_address(aligned_addr, common_pagesize);
                 addr = align_address(addr, (*p)->maximum_alignment());
                 if ((addr & (abi_pagesize - 1)) != 0)
                   addr = addr + abi_pagesize;
                 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
                 off = align_file_offset(off, addr, abi_pagesize);

                 increase_relro = this->increase_relro_;
                 if (this->script_options_->saw_sections_clause())
                   increase_relro = 0;
                 has_relro = false;

                 new_addr = (*p)->set_section_addresses(target, this,
                                                        true, addr,
                                                        &increase_relro,
                                                        &has_relro,
                                                        &off, pshndx);
               }
           }

         addr = new_addr;

         // Implement --check-sections.  We know that the segments
         // are sorted by LMA.
         if (check_sections && last_load_segment != NULL)
           {
             gold_assert(last_load_segment->paddr() <= (*p)->paddr());
             if (last_load_segment->paddr() + last_load_segment->memsz()
                 > (*p)->paddr())
               {
                 unsigned long long lb1 = last_load_segment->paddr();
                 unsigned long long le1 = lb1 + last_load_segment->memsz();
                 unsigned long long lb2 = (*p)->paddr();
                 unsigned long long le2 = lb2 + (*p)->memsz();
                 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
                              "[0x%llx -> 0x%llx]"),
                            lb1, le1, lb2, le2);
               }
           }
         last_load_segment = *p;
       }
   }

 if (load_seg != NULL && target->isolate_execinstr())
   {
     // Process the early segments again, setting their file offsets
     // so they land after the segments starting at LOAD_SEG.
     off = align_file_offset(off, 0, target->abi_pagesize());

     this->reset_relax_output();

     for (Segment_list::iterator p = this->segment_list_.begin();
          *p != load_seg;
          ++p)
       {
         if ((*p)->type() == elfcpp::PT_LOAD)
           {
             // We repeat the whole job of assigning addresses and
             // offsets, but we really only want to change the offsets and
             // must ensure that the addresses all come out the same as
             // they did the first time through.
             bool has_relro = false;
             const uint64_t old_addr = (*p)->vaddr();
             const uint64_t old_end = old_addr + (*p)->memsz();
             uint64_t new_addr = (*p)->set_section_addresses(target, this,
                                                             true, old_addr,
                                                             &increase_relro,
                                                             &has_relro,
                                                             &off,
                                                             &shndx_begin);
             gold_assert(new_addr == old_end);
           }
       }

     gold_assert(shndx_begin == shndx_load_seg);
   }

 // Handle the non-PT_LOAD segments, setting their offsets from their
 // section's offsets.
 for (Segment_list::iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     // PT_GNU_STACK was set up correctly when it was created.
     if ((*p)->type() != elfcpp::PT_LOAD
         && (*p)->type() != elfcpp::PT_GNU_STACK)
       (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
                        ? increase_relro
                        : 0);
   }

 // Set the TLS offsets for each section in the PT_TLS segment.
 if (this->tls_segment_ != NULL)
   this->tls_segment_->set_tls_offsets();

 return off;
}

// Set the offsets of all the allocated sections when doing a
// relocatable link.  This does the same jobs as set_segment_offsets,
// only for a relocatable link.

off_t
Layout::set_relocatable_section_offsets(Output_data* file_header,
                                       unsigned int* pshndx)
{
 off_t off = 0;

 file_header->set_address_and_file_offset(0, 0);
 off += file_header->data_size();

 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     // We skip unallocated sections here, except that group sections
     // have to come first.
     if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
         && (*p)->type() != elfcpp::SHT_GROUP)
       continue;

     off = align_address(off, (*p)->addralign());

     // The linker script might have set the address.
     if (!(*p)->is_address_valid())
       (*p)->set_address(0);
     (*p)->set_file_offset(off);
     (*p)->finalize_data_size();
     if ((*p)->type() != elfcpp::SHT_NOBITS)
       off += (*p)->data_size();

     (*p)->set_out_shndx(*pshndx);
     ++*pshndx;
   }

 return off;
}

// Set the file offset of all the sections not associated with a
// segment.

off_t
Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
{
 off_t startoff = off;
 off_t maxoff = off;

 for (Section_list::iterator p = this->unattached_section_list_.begin();
      p != this->unattached_section_list_.end();
      ++p)
   {
     // The symtab section is handled in create_symtab_sections.
     if (*p == this->symtab_section_)
       continue;

     // If we've already set the data size, don't set it again.
     if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
       continue;

     if (pass == BEFORE_INPUT_SECTIONS_PASS
         && (*p)->requires_postprocessing())
       {
         (*p)->create_postprocessing_buffer();
         this->any_postprocessing_sections_ = true;
       }

     if (pass == BEFORE_INPUT_SECTIONS_PASS
         && (*p)->after_input_sections())
       continue;
     else if (pass == POSTPROCESSING_SECTIONS_PASS
              && (!(*p)->after_input_sections()
                  || (*p)->type() == elfcpp::SHT_STRTAB))
       continue;
     else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
              && (!(*p)->after_input_sections()
                  || (*p)->type() != elfcpp::SHT_STRTAB))
       continue;

     if (!parameters->incremental_update())
       {
         off = align_address(off, (*p)->addralign());
         (*p)->set_file_offset(off);
         (*p)->finalize_data_size();
       }
     else
       {
         // Incremental update: allocate file space from free list.
         (*p)->pre_finalize_data_size();
         off_t current_size = (*p)->current_data_size();
         off = this->allocate(current_size, (*p)->addralign(), startoff);
         if (off == -1)
           {
             if (is_debugging_enabled(DEBUG_INCREMENTAL))
               this->free_list_.dump();
             gold_assert((*p)->output_section() != NULL);
             gold_fallback(_("out of patch space for section %s; "
                             "relink with --incremental-full"),
                           (*p)->output_section()->name());
           }
         (*p)->set_file_offset(off);
         (*p)->finalize_data_size();
         if ((*p)->data_size() > current_size)
           {
             gold_assert((*p)->output_section() != NULL);
             gold_fallback(_("%s: section changed size; "
                             "relink with --incremental-full"),
                           (*p)->output_section()->name());
           }
         gold_debug(DEBUG_INCREMENTAL,
                    "set_section_offsets: %08lx %08lx %s",
                    static_cast<long>(off),
                    static_cast<long>((*p)->data_size()),
                    ((*p)->output_section() != NULL
                     ? (*p)->output_section()->name() : "(special)"));
       }

     off += (*p)->data_size();
     if (off > maxoff)
       maxoff = off;

     // At this point the name must be set.
     if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
       this->namepool_.add((*p)->name(), false, NULL);
   }
 return maxoff;
}

// Set the section indexes of all the sections not associated with a
// segment.

unsigned int
Layout::set_section_indexes(unsigned int shndx)
{
 for (Section_list::iterator p = this->unattached_section_list_.begin();
      p != this->unattached_section_list_.end();
      ++p)
   {
     if (!(*p)->has_out_shndx())
       {
         (*p)->set_out_shndx(shndx);
         ++shndx;
       }
   }
 return shndx;
}

// Set the section addresses according to the linker script.  This is
// only called when we see a SECTIONS clause.  This returns the
// program segment which should hold the file header and segment
// headers, if any.  It will return NULL if they should not be in a
// segment.

Output_segment*
Layout::set_section_addresses_from_script(Symbol_table* symtab)
{
 Script_sections* ss = this->script_options_->script_sections();
 gold_assert(ss->saw_sections_clause());
 return this->script_options_->set_section_addresses(symtab, this);
}

// Place the orphan sections in the linker script.

void
Layout::place_orphan_sections_in_script()
{
 Script_sections* ss = this->script_options_->script_sections();
 gold_assert(ss->saw_sections_clause());

 // Place each orphaned output section in the script.
 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if (!(*p)->found_in_sections_clause())
       ss->place_orphan(*p);
   }
}

// Count the local symbols in the regular symbol table and the dynamic
// symbol table, and build the respective string pools.

void
Layout::count_local_symbols(const Task* task,
                           const Input_objects* input_objects)
{
 // First, figure out an upper bound on the number of symbols we'll
 // be inserting into each pool.  This helps us create the pools with
 // the right size, to avoid unnecessary hashtable resizing.
 unsigned int symbol_count = 0;
 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   symbol_count += (*p)->local_symbol_count();

 // Go from "upper bound" to "estimate."  We overcount for two
 // reasons: we double-count symbols that occur in more than one
 // object file, and we count symbols that are dropped from the
 // output.  Add it all together and assume we overcount by 100%.
 symbol_count /= 2;

 // We assume all symbols will go into both the sympool and dynpool.
 this->sympool_.reserve(symbol_count);
 this->dynpool_.reserve(symbol_count);

 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     Task_lock_obj<Object> tlo(task, *p);
     (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
   }
}

// Create the symbol table sections.  Here we also set the final
// values of the symbols.  At this point all the loadable sections are
// fully laid out.  SHNUM is the number of sections so far.

void
Layout::create_symtab_sections(const Input_objects* input_objects,
                              Symbol_table* symtab,
                              unsigned int shnum,
                              off_t* poff,
                              unsigned int local_dynamic_count)
{
 int symsize;
 unsigned int align;
 if (parameters->target().get_size() == 32)
   {
     symsize = elfcpp::Elf_sizes<32>::sym_size;
     align = 4;
   }
 else if (parameters->target().get_size() == 64)
   {
     symsize = elfcpp::Elf_sizes<64>::sym_size;
     align = 8;
   }
 else
   gold_unreachable();

 // Compute file offsets relative to the start of the symtab section.
 off_t off = 0;

 // Save space for the dummy symbol at the start of the section.  We
 // never bother to write this out--it will just be left as zero.
 off += symsize;
 unsigned int local_symbol_index = 1;

 // Add STT_SECTION symbols for each Output section which needs one.
 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if (!(*p)->needs_symtab_index())
       (*p)->set_symtab_index(-1U);
     else
       {
         (*p)->set_symtab_index(local_symbol_index);
         ++local_symbol_index;
         off += symsize;
       }
   }

 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
                                                       off, symtab);
     off += (index - local_symbol_index) * symsize;
     local_symbol_index = index;
   }

 unsigned int local_symcount = local_symbol_index;
 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);

 off_t dynoff;
 size_t dyncount;
 if (this->dynsym_section_ == NULL)
   {
     dynoff = 0;
     dyncount = 0;
   }
 else
   {
     off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
     dynoff = this->dynsym_section_->offset() + locsize;
     dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
     gold_assert(static_cast<off_t>(dyncount * symsize)
                 == this->dynsym_section_->data_size() - locsize);
   }

 off_t global_off = off;
 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
                        &this->sympool_, &local_symcount);

 if (!parameters->options().strip_all())
   {
     this->sympool_.set_string_offsets();

     const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
     Output_section* osymtab = this->make_output_section(symtab_name,
                                                         elfcpp::SHT_SYMTAB,
                                                         0, ORDER_INVALID,
                                                         false);
     this->symtab_section_ = osymtab;

     Output_section_data* pos = new Output_data_fixed_space(off, align,
                                                            "** symtab");
     osymtab->add_output_section_data(pos);

     // We generate a .symtab_shndx section if we have more than
     // SHN_LORESERVE sections.  Technically it is possible that we
     // don't need one, because it is possible that there are no
     // symbols in any of sections with indexes larger than
     // SHN_LORESERVE.  That is probably unusual, though, and it is
     // easier to always create one than to compute section indexes
     // twice (once here, once when writing out the symbols).
     if (shnum >= elfcpp::SHN_LORESERVE)
       {
         const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
                                                              false, NULL);
         Output_section* osymtab_xindex =
           this->make_output_section(symtab_xindex_name,
                                     elfcpp::SHT_SYMTAB_SHNDX, 0,
                                     ORDER_INVALID, false);

         size_t symcount = off / symsize;
         this->symtab_xindex_ = new Output_symtab_xindex(symcount);

         osymtab_xindex->add_output_section_data(this->symtab_xindex_);

         osymtab_xindex->set_link_section(osymtab);
         osymtab_xindex->set_addralign(4);
         osymtab_xindex->set_entsize(4);

         osymtab_xindex->set_after_input_sections();

         // This tells the driver code to wait until the symbol table
         // has written out before writing out the postprocessing
         // sections, including the .symtab_shndx section.
         this->any_postprocessing_sections_ = true;
       }

     const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
     Output_section* ostrtab = this->make_output_section(strtab_name,
                                                         elfcpp::SHT_STRTAB,
                                                         0, ORDER_INVALID,
                                                         false);

     Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
     ostrtab->add_output_section_data(pstr);

     off_t symtab_off;
     if (!parameters->incremental_update())
       symtab_off = align_address(*poff, align);
     else
       {
         symtab_off = this->allocate(off, align, *poff);
         if (off == -1)
           gold_fallback(_("out of patch space for symbol table; "
                           "relink with --incremental-full"));
         gold_debug(DEBUG_INCREMENTAL,
                    "create_symtab_sections: %08lx %08lx .symtab",
                    static_cast<long>(symtab_off),
                    static_cast<long>(off));
       }

     symtab->set_file_offset(symtab_off + global_off);
     osymtab->set_file_offset(symtab_off);
     osymtab->finalize_data_size();
     osymtab->set_link_section(ostrtab);
     osymtab->set_info(local_symcount);
     osymtab->set_entsize(symsize);

     if (symtab_off + off > *poff)
       *poff = symtab_off + off;
   }
}

// Create the .shstrtab section, which holds the names of the
// sections.  At the time this is called, we have created all the
// output sections except .shstrtab itself.

Output_section*
Layout::create_shstrtab()
{
 // FIXME: We don't need to create a .shstrtab section if we are
 // stripping everything.

 const char* name = this->namepool_.add(".shstrtab", false, NULL);

 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
                                                ORDER_INVALID, false);

 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
   {
     // We can't write out this section until we've set all the
     // section names, and we don't set the names of compressed
     // output sections until relocations are complete.  FIXME: With
     // the current names we use, this is unnecessary.
     os->set_after_input_sections();
   }

 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
 os->add_output_section_data(posd);

 return os;
}

// Create the section headers.  SIZE is 32 or 64.  OFF is the file
// offset.

void
Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
{
 Output_section_headers* oshdrs;
 oshdrs = new Output_section_headers(this,
                                     &this->segment_list_,
                                     &this->section_list_,
                                     &this->unattached_section_list_,
                                     &this->namepool_,
                                     shstrtab_section);
 off_t off;
 if (!parameters->incremental_update())
   off = align_address(*poff, oshdrs->addralign());
 else
   {
     oshdrs->pre_finalize_data_size();
     off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
     if (off == -1)
         gold_fallback(_("out of patch space for section header table; "
                         "relink with --incremental-full"));
     gold_debug(DEBUG_INCREMENTAL,
                "create_shdrs: %08lx %08lx (section header table)",
                static_cast<long>(off),
                static_cast<long>(off + oshdrs->data_size()));
   }
 oshdrs->set_address_and_file_offset(0, off);
 off += oshdrs->data_size();
 if (off > *poff)
   *poff = off;
 this->section_headers_ = oshdrs;
}

// Count the allocated sections.

size_t
Layout::allocated_output_section_count() const
{
 size_t section_count = 0;
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   section_count += (*p)->output_section_count();
 return section_count;
}

// Create the dynamic symbol table.
// *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
// from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
// to the number of global symbols that have been forced local.
// We need to remember the former because the forced-local symbols are
// written along with the global symbols in Symtab::write_globals().

void
Layout::create_dynamic_symtab(const Input_objects* input_objects,
                             Symbol_table* symtab,
                             Output_section** pdynstr,
                             unsigned int* plocal_dynamic_count,
                             unsigned int* pforced_local_dynamic_count,
                             std::vector<Symbol*>* pdynamic_symbols,
                             Versions* pversions)
{
 // Count all the symbols in the dynamic symbol table, and set the
 // dynamic symbol indexes.

 // Skip symbol 0, which is always all zeroes.
 unsigned int index = 1;

 // Add STT_SECTION symbols for each Output section which needs one.
 for (Section_list::iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if (!(*p)->needs_dynsym_index())
       (*p)->set_dynsym_index(-1U);
     else
       {
         (*p)->set_dynsym_index(index);
         ++index;
       }
   }

 // Count the local symbols that need to go in the dynamic symbol table,
 // and set the dynamic symbol indexes.
 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
     index = new_index;
   }

 unsigned int local_symcount = index;
 unsigned int forced_local_count = 0;

 index = symtab->set_dynsym_indexes(index, &forced_local_count,
                                    pdynamic_symbols, &this->dynpool_,
                                    pversions);

 *plocal_dynamic_count = local_symcount;
 *pforced_local_dynamic_count = forced_local_count;

 int symsize;
 unsigned int align;
 const int size = parameters->target().get_size();
 if (size == 32)
   {
     symsize = elfcpp::Elf_sizes<32>::sym_size;
     align = 4;
   }
 else if (size == 64)
   {
     symsize = elfcpp::Elf_sizes<64>::sym_size;
     align = 8;
   }
 else
   gold_unreachable();

 // Create the dynamic symbol table section.

 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
                                                      elfcpp::SHT_DYNSYM,
                                                      elfcpp::SHF_ALLOC,
                                                      false,
                                                      ORDER_DYNAMIC_LINKER,
                                                      false, false, false);

 // Check for NULL as a linker script may discard .dynsym.
 if (dynsym != NULL)
   {
     Output_section_data* odata = new Output_data_fixed_space(index * symsize,
                                                              align,
                                                              "** dynsym");
     dynsym->add_output_section_data(odata);

     dynsym->set_info(local_symcount + forced_local_count);
     dynsym->set_entsize(symsize);
     dynsym->set_addralign(align);

     this->dynsym_section_ = dynsym;
   }

 Output_data_dynamic* const odyn = this->dynamic_data_;
 if (odyn != NULL)
   {
     odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
     odyn->add_constant(elfcpp::DT_SYMENT, symsize);
   }

 // If there are more than SHN_LORESERVE allocated sections, we
 // create a .dynsym_shndx section.  It is possible that we don't
 // need one, because it is possible that there are no dynamic
 // symbols in any of the sections with indexes larger than
 // SHN_LORESERVE.  This is probably unusual, though, and at this
 // time we don't know the actual section indexes so it is
 // inconvenient to check.
 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
   {
     Output_section* dynsym_xindex =
       this->choose_output_section(NULL, ".dynsym_shndx",
                                   elfcpp::SHT_SYMTAB_SHNDX,
                                   elfcpp::SHF_ALLOC,
                                   false, ORDER_DYNAMIC_LINKER, false, false,
                                   false);

     if (dynsym_xindex != NULL)
       {
         this->dynsym_xindex_ = new Output_symtab_xindex(index);

         dynsym_xindex->add_output_section_data(this->dynsym_xindex_);

         dynsym_xindex->set_link_section(dynsym);
         dynsym_xindex->set_addralign(4);
         dynsym_xindex->set_entsize(4);

         dynsym_xindex->set_after_input_sections();

         // This tells the driver code to wait until the symbol table
         // has written out before writing out the postprocessing
         // sections, including the .dynsym_shndx section.
         this->any_postprocessing_sections_ = true;
       }
   }

 // Create the dynamic string table section.

 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
                                                      elfcpp::SHT_STRTAB,
                                                      elfcpp::SHF_ALLOC,
                                                      false,
                                                      ORDER_DYNAMIC_LINKER,
                                                      false, false, false);
 *pdynstr = dynstr;
 if (dynstr != NULL)
   {
     Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
     dynstr->add_output_section_data(strdata);

     if (dynsym != NULL)
       dynsym->set_link_section(dynstr);
     if (this->dynamic_section_ != NULL)
       this->dynamic_section_->set_link_section(dynstr);

     if (odyn != NULL)
       {
         odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
         odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
       }
   }

 // Create the hash tables.  The Gnu-style hash table must be
 // built first, because it changes the order of the symbols
 // in the dynamic symbol table.

 if (strcmp(parameters->options().hash_style(), "gnu") == 0
     || strcmp(parameters->options().hash_style(), "both") == 0)
   {
     unsigned char* phash;
     unsigned int hashlen;
     Dynobj::create_gnu_hash_table(*pdynamic_symbols,
                                   local_symcount + forced_local_count,
                                   &phash, &hashlen);

     Output_section* hashsec =
       this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
                                   elfcpp::SHF_ALLOC, false,
                                   ORDER_DYNAMIC_LINKER, false, false,
                                   false);

     Output_section_data* hashdata = new Output_data_const_buffer(phash,
                                                                  hashlen,
                                                                  align,
                                                                  "** hash");
     if (hashsec != NULL && hashdata != NULL)
       hashsec->add_output_section_data(hashdata);

     if (hashsec != NULL)
       {
         if (dynsym != NULL)
           hashsec->set_link_section(dynsym);

         // For a 64-bit target, the entries in .gnu.hash do not have
         // a uniform size, so we only set the entry size for a
         // 32-bit target.
         if (parameters->target().get_size() == 32)
           hashsec->set_entsize(4);

         if (odyn != NULL)
           odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
       }
   }

 if (strcmp(parameters->options().hash_style(), "sysv") == 0
     || strcmp(parameters->options().hash_style(), "both") == 0)
   {
     unsigned char* phash;
     unsigned int hashlen;
     Dynobj::create_elf_hash_table(*pdynamic_symbols,
                                   local_symcount + forced_local_count,
                                   &phash, &hashlen);

     Output_section* hashsec =
       this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
                                   elfcpp::SHF_ALLOC, false,
                                   ORDER_DYNAMIC_LINKER, false, false,
                                   false);

     Output_section_data* hashdata = new Output_data_const_buffer(phash,
                                                                  hashlen,
                                                                  align,
                                                                  "** hash");
     if (hashsec != NULL && hashdata != NULL)
       hashsec->add_output_section_data(hashdata);

     if (hashsec != NULL)
       {
         if (dynsym != NULL)
           hashsec->set_link_section(dynsym);
         hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
       }

     if (odyn != NULL)
       odyn->add_section_address(elfcpp::DT_HASH, hashsec);
   }
}

// Assign offsets to each local portion of the dynamic symbol table.

void
Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
{
 Output_section* dynsym = this->dynsym_section_;
 if (dynsym == NULL)
   return;

 off_t off = dynsym->offset();

 // Skip the dummy symbol at the start of the section.
 off += dynsym->entsize();

 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     unsigned int count = (*p)->set_local_dynsym_offset(off);
     off += count * dynsym->entsize();
   }
}

// Create the version sections.

void
Layout::create_version_sections(const Versions* versions,
                               const Symbol_table* symtab,
                               unsigned int local_symcount,
                               const std::vector<Symbol*>& dynamic_symbols,
                               const Output_section* dynstr)
{
 if (!versions->any_defs() && !versions->any_needs())
   return;

 switch (parameters->size_and_endianness())
   {
#ifdef HAVE_TARGET_32_LITTLE
   case Parameters::TARGET_32_LITTLE:
     this->sized_create_version_sections<32, false>(versions, symtab,
                                                    local_symcount,
                                                    dynamic_symbols, dynstr);
     break;
#endif
#ifdef HAVE_TARGET_32_BIG
   case Parameters::TARGET_32_BIG:
     this->sized_create_version_sections<32, true>(versions, symtab,
                                                   local_symcount,
                                                   dynamic_symbols, dynstr);
     break;
#endif
#ifdef HAVE_TARGET_64_LITTLE
   case Parameters::TARGET_64_LITTLE:
     this->sized_create_version_sections<64, false>(versions, symtab,
                                                    local_symcount,
                                                    dynamic_symbols, dynstr);
     break;
#endif
#ifdef HAVE_TARGET_64_BIG
   case Parameters::TARGET_64_BIG:
     this->sized_create_version_sections<64, true>(versions, symtab,
                                                   local_symcount,
                                                   dynamic_symbols, dynstr);
     break;
#endif
   default:
     gold_unreachable();
   }
}

// Create the version sections, sized version.

template<int size, bool big_endian>
void
Layout::sized_create_version_sections(
   const Versions* versions,
   const Symbol_table* symtab,
   unsigned int local_symcount,
   const std::vector<Symbol*>& dynamic_symbols,
   const Output_section* dynstr)
{
 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
                                                    elfcpp::SHT_GNU_versym,
                                                    elfcpp::SHF_ALLOC,
                                                    false,
                                                    ORDER_DYNAMIC_LINKER,
                                                    false, false, false);

 // Check for NULL since a linker script may discard this section.
 if (vsec != NULL)
   {
     unsigned char* vbuf;
     unsigned int vsize;
     versions->symbol_section_contents<size, big_endian>(symtab,
                                                         &this->dynpool_,
                                                         local_symcount,
                                                         dynamic_symbols,
                                                         &vbuf, &vsize);

     Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
                                                               "** versions");

     vsec->add_output_section_data(vdata);
     vsec->set_entsize(2);
     vsec->set_link_section(this->dynsym_section_);
   }

 Output_data_dynamic* const odyn = this->dynamic_data_;
 if (odyn != NULL && vsec != NULL)
   odyn->add_section_address(elfcpp::DT_VERSYM, vsec);

 if (versions->any_defs())
   {
     Output_section* vdsec;
     vdsec = this->choose_output_section(NULL, ".gnu.version_d",
                                         elfcpp::SHT_GNU_verdef,
                                         elfcpp::SHF_ALLOC,
                                         false, ORDER_DYNAMIC_LINKER, false,
                                         false, false);

     if (vdsec != NULL)
       {
         unsigned char* vdbuf;
         unsigned int vdsize;
         unsigned int vdentries;
         versions->def_section_contents<size, big_endian>(&this->dynpool_,
                                                          &vdbuf, &vdsize,
                                                          &vdentries);

         Output_section_data* vddata =
           new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");

         vdsec->add_output_section_data(vddata);
         vdsec->set_link_section(dynstr);
         vdsec->set_info(vdentries);

         if (odyn != NULL)
           {
             odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
             odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
           }
       }
   }

 if (versions->any_needs())
   {
     Output_section* vnsec;
     vnsec = this->choose_output_section(NULL, ".gnu.version_r",
                                         elfcpp::SHT_GNU_verneed,
                                         elfcpp::SHF_ALLOC,
                                         false, ORDER_DYNAMIC_LINKER, false,
                                         false, false);

     if (vnsec != NULL)
       {
         unsigned char* vnbuf;
         unsigned int vnsize;
         unsigned int vnentries;
         versions->need_section_contents<size, big_endian>(&this->dynpool_,
                                                           &vnbuf, &vnsize,
                                                           &vnentries);

         Output_section_data* vndata =
           new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");

         vnsec->add_output_section_data(vndata);
         vnsec->set_link_section(dynstr);
         vnsec->set_info(vnentries);

         if (odyn != NULL)
           {
             odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
             odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
           }
       }
   }
}

// Create the .interp section and PT_INTERP segment.

void
Layout::create_interp(const Target* target)
{
 gold_assert(this->interp_segment_ == NULL);

 const char* interp = parameters->options().dynamic_linker();
 if (interp == NULL)
   {
     interp = target->dynamic_linker();
     gold_assert(interp != NULL);
   }

 size_t len = strlen(interp) + 1;

 Output_section_data* odata = new Output_data_const(interp, len, 1);

 Output_section* osec = this->choose_output_section(NULL, ".interp",
                                                    elfcpp::SHT_PROGBITS,
                                                    elfcpp::SHF_ALLOC,
                                                    false, ORDER_INTERP,
                                                    false, false, false);
 if (osec != NULL)
   osec->add_output_section_data(odata);
}

// Add dynamic tags for the PLT and the dynamic relocs.  This is
// called by the target-specific code.  This does nothing if not doing
// a dynamic link.

// USE_REL is true for REL relocs rather than RELA relocs.

// If PLT_GOT is not NULL, then DT_PLTGOT points to it.

// If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
// and we also set DT_PLTREL.  We use PLT_REL's output section, since
// some targets have multiple reloc sections in PLT_REL.

// If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
// DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.  Again we use the output
// section.

// If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
// executable.

void
Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
                               const Output_data* plt_rel,
                               const Output_data_reloc_generic* dyn_rel,
                               bool add_debug, bool dynrel_includes_plt,
                               bool custom_relcount)
{
 Output_data_dynamic* odyn = this->dynamic_data_;
 if (odyn == NULL)
   return;

 if (plt_got != NULL && plt_got->output_section() != NULL)
   odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);

 if (plt_rel != NULL && plt_rel->output_section() != NULL)
   {
     odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
     odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
     odyn->add_constant(elfcpp::DT_PLTREL,
                        use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
   }

 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
     || (dynrel_includes_plt
         && plt_rel != NULL
         && plt_rel->output_section() != NULL))
   {
     bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
     bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
     odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
                               (have_dyn_rel
                                ? dyn_rel->output_section()
                                : plt_rel->output_section()));
     elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
     if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
       odyn->add_section_size(size_tag,
                              dyn_rel->output_section(),
                              plt_rel->output_section());
     else if (have_dyn_rel)
       odyn->add_section_size(size_tag, dyn_rel->output_section());
     else
       odyn->add_section_size(size_tag, plt_rel->output_section());
     const int size = parameters->target().get_size();
     elfcpp::DT rel_tag;
     int rel_size;
     if (use_rel)
       {
         rel_tag = elfcpp::DT_RELENT;
         if (size == 32)
           rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
         else if (size == 64)
           rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
         else
           gold_unreachable();
       }
     else
       {
         rel_tag = elfcpp::DT_RELAENT;
         if (size == 32)
           rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
         else if (size == 64)
           rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
         else
           gold_unreachable();
       }
     odyn->add_constant(rel_tag, rel_size);

     if (parameters->options().combreloc() && have_dyn_rel)
       {
         size_t c = dyn_rel->relative_reloc_count();
         if (c != 0)
           {
             elfcpp::DT tag
               = use_rel ? elfcpp::DT_RELCOUNT : elfcpp::DT_RELACOUNT;
             if (custom_relcount)
               odyn->add_custom(tag);
             else
               odyn->add_constant(tag, c);
           }
       }
   }

 if (add_debug && !parameters->options().shared())
   {
     // The value of the DT_DEBUG tag is filled in by the dynamic
     // linker at run time, and used by the debugger.
     odyn->add_constant(elfcpp::DT_DEBUG, 0);
   }
}

void
Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
{
 Output_data_dynamic* odyn = this->dynamic_data_;
 if (odyn == NULL)
   return;
 odyn->add_constant(tag, val);
}

// Finish the .dynamic section and PT_DYNAMIC segment.

void
Layout::finish_dynamic_section(const Input_objects* input_objects,
                              const Symbol_table* symtab)
{
 if (!this->script_options_->saw_phdrs_clause()
     && this->dynamic_section_ != NULL)
   {
     Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
                                                      (elfcpp::PF_R
                                                       | elfcpp::PF_W));
     oseg->add_output_section_to_nonload(this->dynamic_section_,
                                         elfcpp::PF_R | elfcpp::PF_W);
   }

 Output_data_dynamic* const odyn = this->dynamic_data_;
 if (odyn == NULL)
   return;

 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
      p != input_objects->dynobj_end();
      ++p)
   {
     if (!(*p)->is_needed() && (*p)->as_needed())
       {
         // This dynamic object was linked with --as-needed, but it
         // is not needed.
         continue;
       }

     odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
   }

 if (parameters->options().shared())
   {
     const char* soname = parameters->options().soname();
     if (soname != NULL)
       odyn->add_string(elfcpp::DT_SONAME, soname);
   }

 Symbol* sym = symtab->lookup(parameters->options().init());
 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
   odyn->add_symbol(elfcpp::DT_INIT, sym);

 sym = symtab->lookup(parameters->options().fini());
 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
   odyn->add_symbol(elfcpp::DT_FINI, sym);

 // Look for .init_array, .preinit_array and .fini_array by checking
 // section types.
 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
     p != this->section_list_.end();
     ++p)
   switch((*p)->type())
     {
     case elfcpp::SHT_FINI_ARRAY:
       odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
       odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
       break;
     case elfcpp::SHT_INIT_ARRAY:
       odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
       odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
       break;
     case elfcpp::SHT_PREINIT_ARRAY:
       odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
       odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
       break;
     default:
       break;
     }

 // Add a DT_RPATH entry if needed.
 const General_options::Dir_list& rpath(parameters->options().rpath());
 if (!rpath.empty())
   {
     std::string rpath_val;
     for (General_options::Dir_list::const_iterator p = rpath.begin();
          p != rpath.end();
          ++p)
       {
         if (rpath_val.empty())
           rpath_val = p->name();
         else
           {
             // Eliminate duplicates.
             General_options::Dir_list::const_iterator q;
             for (q = rpath.begin(); q != p; ++q)
               if (q->name() == p->name())
                 break;
             if (q == p)
               {
                 rpath_val += ':';
                 rpath_val += p->name();
               }
           }
       }

     if (!parameters->options().enable_new_dtags())
       odyn->add_string(elfcpp::DT_RPATH, rpath_val);
     else
       odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
   }

 // Look for text segments that have dynamic relocations.
 bool have_textrel = false;
 if (!this->script_options_->saw_sections_clause())
   {
     for (Segment_list::const_iterator p = this->segment_list_.begin();
          p != this->segment_list_.end();
          ++p)
       {
         if ((*p)->type() == elfcpp::PT_LOAD
             && ((*p)->flags() & elfcpp::PF_W) == 0
             && (*p)->has_dynamic_reloc())
           {
             have_textrel = true;
             break;
           }
       }
   }
 else
   {
     // We don't know the section -> segment mapping, so we are
     // conservative and just look for readonly sections with
     // relocations.  If those sections wind up in writable segments,
     // then we have created an unnecessary DT_TEXTREL entry.
     for (Section_list::const_iterator p = this->section_list_.begin();
          p != this->section_list_.end();
          ++p)
       {
         if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
             && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
             && (*p)->has_dynamic_reloc())
           {
             have_textrel = true;
             break;
           }
       }
   }

 if (parameters->options().filter() != NULL)
   odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
 if (parameters->options().any_auxiliary())
   {
     for (options::String_set::const_iterator p =
            parameters->options().auxiliary_begin();
          p != parameters->options().auxiliary_end();
          ++p)
       odyn->add_string(elfcpp::DT_AUXILIARY, *p);
   }

 // Add a DT_FLAGS entry if necessary.
 unsigned int flags = 0;
 if (have_textrel)
   {
     // Add a DT_TEXTREL for compatibility with older loaders.
     odyn->add_constant(elfcpp::DT_TEXTREL, 0);
     flags |= elfcpp::DF_TEXTREL;

     if (parameters->options().text())
       gold_error(_("read-only segment has dynamic relocations"));
     else if (parameters->options().warn_shared_textrel()
              && parameters->options().shared())
       gold_warning(_("shared library text segment is not shareable"));
   }
 if (parameters->options().shared() && this->has_static_tls())
   flags |= elfcpp::DF_STATIC_TLS;
 if (parameters->options().origin())
   flags |= elfcpp::DF_ORIGIN;
 if (parameters->options().Bsymbolic()
     && !parameters->options().have_dynamic_list())
   {
     flags |= elfcpp::DF_SYMBOLIC;
     // Add DT_SYMBOLIC for compatibility with older loaders.
     odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
   }
 if (parameters->options().now())
   flags |= elfcpp::DF_BIND_NOW;
 if (flags != 0)
   odyn->add_constant(elfcpp::DT_FLAGS, flags);

 flags = 0;
 if (parameters->options().global())
   flags |= elfcpp::DF_1_GLOBAL;
 if (parameters->options().initfirst())
   flags |= elfcpp::DF_1_INITFIRST;
 if (parameters->options().interpose())
   flags |= elfcpp::DF_1_INTERPOSE;
 if (parameters->options().loadfltr())
   flags |= elfcpp::DF_1_LOADFLTR;
 if (parameters->options().nodefaultlib())
   flags |= elfcpp::DF_1_NODEFLIB;
 if (parameters->options().nodelete())
   flags |= elfcpp::DF_1_NODELETE;
 if (parameters->options().nodlopen())
   flags |= elfcpp::DF_1_NOOPEN;
 if (parameters->options().nodump())
   flags |= elfcpp::DF_1_NODUMP;
 if (!parameters->options().shared())
   flags &= ~(elfcpp::DF_1_INITFIRST
              | elfcpp::DF_1_NODELETE
              | elfcpp::DF_1_NOOPEN);
 if (parameters->options().origin())
   flags |= elfcpp::DF_1_ORIGIN;
 if (parameters->options().now())
   flags |= elfcpp::DF_1_NOW;
 if (parameters->options().Bgroup())
   flags |= elfcpp::DF_1_GROUP;
 if (parameters->options().pie())
   flags |= elfcpp::DF_1_PIE;
 if (flags != 0)
   odyn->add_constant(elfcpp::DT_FLAGS_1, flags);

 flags = 0;
 if (parameters->options().unique())
   flags |= elfcpp::DF_GNU_1_UNIQUE;
 if (flags != 0)
   odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags);
}

// Set the size of the _DYNAMIC symbol table to be the size of the
// dynamic data.

void
Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
{
 Output_data_dynamic* const odyn = this->dynamic_data_;
 if (odyn == NULL)
   return;
 odyn->finalize_data_size();
 if (this->dynamic_symbol_ == NULL)
   return;
 off_t data_size = odyn->data_size();
 const int size = parameters->target().get_size();
 if (size == 32)
   symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
 else if (size == 64)
   symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
 else
   gold_unreachable();
}

// The mapping of input section name prefixes to output section names.
// In some cases one prefix is itself a prefix of another prefix; in
// such a case the longer prefix must come first.  These prefixes are
// based on the GNU linker default ELF linker script.

#define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
#define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
const Layout::Section_name_mapping Layout::section_name_mapping[] =
{
 MAPPING_INIT(".text.", ".text"),
 MAPPING_INIT(".rodata.", ".rodata"),
 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
 MAPPING_INIT(".data.", ".data"),
 MAPPING_INIT(".bss.", ".bss"),
 MAPPING_INIT(".tdata.", ".tdata"),
 MAPPING_INIT(".tbss.", ".tbss"),
 MAPPING_INIT(".init_array.", ".init_array"),
 MAPPING_INIT(".fini_array.", ".fini_array"),
 MAPPING_INIT(".sdata.", ".sdata"),
 MAPPING_INIT(".sbss.", ".sbss"),
 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
 // differently depending on whether it is creating a shared library.
 MAPPING_INIT(".sdata2.", ".sdata"),
 MAPPING_INIT(".sbss2.", ".sbss"),
 MAPPING_INIT(".lrodata.", ".lrodata"),
 MAPPING_INIT(".ldata.", ".ldata"),
 MAPPING_INIT(".lbss.", ".lbss"),
 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
};

// Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
{
 MAPPING_INIT(".text.hot.", ".text.hot"),
 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
 MAPPING_INIT(".text.startup.", ".text.startup"),
 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
 MAPPING_INIT(".text.exit.", ".text.exit"),
 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
 MAPPING_INIT(".text.", ".text"),
};
#undef MAPPING_INIT
#undef MAPPING_INIT_EXACT

const int Layout::section_name_mapping_count =
 (sizeof(Layout::section_name_mapping)
  / sizeof(Layout::section_name_mapping[0]));

const int Layout::text_section_name_mapping_count =
 (sizeof(Layout::text_section_name_mapping)
  / sizeof(Layout::text_section_name_mapping[0]));

// Find section name NAME in PSNM and return the mapped name if found
// with the length set in PLEN.
const char *
Layout::match_section_name(const Layout::Section_name_mapping* psnm,
                          const int count,
                          const char* name, size_t* plen)
{
 for (int i = 0; i < count; ++i, ++psnm)
   {
     if (psnm->fromlen > 0)
       {
         if (strncmp(name, psnm->from, psnm->fromlen) == 0)
           {
             *plen = psnm->tolen;
             return psnm->to;
           }
       }
     else
       {
         if (strcmp(name, psnm->from) == 0)
           {
             *plen = psnm->tolen;
             return psnm->to;
           }
       }
   }
 return NULL;
}

// Choose the output section name to use given an input section name.
// Set *PLEN to the length of the name.  *PLEN is initialized to the
// length of NAME.

const char*
Layout::output_section_name(const Relobj* relobj, const char* name,
                           size_t* plen)
{
 // gcc 4.3 generates the following sorts of section names when it
 // needs a section name specific to a function:
 //   .text.FN
 //   .rodata.FN
 //   .sdata2.FN
 //   .data.FN
 //   .data.rel.FN
 //   .data.rel.local.FN
 //   .data.rel.ro.FN
 //   .data.rel.ro.local.FN
 //   .sdata.FN
 //   .bss.FN
 //   .sbss.FN
 //   .tdata.FN
 //   .tbss.FN

 // The GNU linker maps all of those to the part before the .FN,
 // except that .data.rel.local.FN is mapped to .data, and
 // .data.rel.ro.local.FN is mapped to .data.rel.ro.  The sections
 // beginning with .data.rel.ro.local are grouped together.

 // For an anonymous namespace, the string FN can contain a '.'.

 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
 // GNU linker maps to .rodata.

 // The .data.rel.ro sections are used with -z relro.  The sections
 // are recognized by name.  We use the same names that the GNU
 // linker does for these sections.

 // It is hard to handle this in a principled way, so we don't even
 // try.  We use a table of mappings.  If the input section name is
 // not found in the table, we simply use it as the output section
 // name.

 if (parameters->options().keep_text_section_prefix()
     && is_prefix_of(".text", name))
   {
     const char* match = match_section_name(text_section_name_mapping,
                                            text_section_name_mapping_count,
                                            name, plen);
     if (match != NULL)
       return match;
   }

 const char* match = match_section_name(section_name_mapping,
                                        section_name_mapping_count, name, plen);
 if (match != NULL)
   return match;

 // As an additional complication, .ctors sections are output in
 // either .ctors or .init_array sections, and .dtors sections are
 // output in either .dtors or .fini_array sections.
 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
   {
     if (parameters->options().ctors_in_init_array())
       {
         *plen = 11;
         return name[1] == 'c' ? ".init_array" : ".fini_array";
       }
     else
       {
         *plen = 6;
         return name[1] == 'c' ? ".ctors" : ".dtors";
       }
   }
 if (parameters->options().ctors_in_init_array()
     && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
   {
     // To make .init_array/.fini_array work with gcc we must exclude
     // .ctors and .dtors sections from the crtbegin and crtend
     // files.
     if (relobj == NULL
         || (!Layout::match_file_name(relobj, "crtbegin")
             && !Layout::match_file_name(relobj, "crtend")))
       {
         *plen = 11;
         return name[1] == 'c' ? ".init_array" : ".fini_array";
       }
   }

 return name;
}

// Return true if RELOBJ is an input file whose base name matches
// FILE_NAME.  The base name must have an extension of ".o", and must
// be exactly FILE_NAME.o or FILE_NAME, one character, ".o".  This is
// to match crtbegin.o as well as crtbeginS.o without getting confused
// by other possibilities.  Overall matching the file name this way is
// a dreadful hack, but the GNU linker does it in order to better
// support gcc, and we need to be compatible.

bool
Layout::match_file_name(const Relobj* relobj, const char* match)
{
 const std::string& file_name(relobj->name());
 const char* base_name = lbasename(file_name.c_str());
 size_t match_len = strlen(match);
 if (strncmp(base_name, match, match_len) != 0)
   return false;
 size_t base_len = strlen(base_name);
 if (base_len != match_len + 2 && base_len != match_len + 3)
   return false;
 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
}

// Check if a comdat group or .gnu.linkonce section with the given
// NAME is selected for the link.  If there is already a section,
// *KEPT_SECTION is set to point to the existing section and the
// function returns false.  Otherwise, OBJECT, SHNDX, IS_COMDAT, and
// IS_GROUP_NAME are recorded for this NAME in the layout object,
// *KEPT_SECTION is set to the internal copy and the function returns
// true.

bool
Layout::find_or_add_kept_section(const std::string& name,
                                Relobj* object,
                                unsigned int shndx,
                                bool is_comdat,
                                bool is_group_name,
                                Kept_section** kept_section)
{
 // It's normal to see a couple of entries here, for the x86 thunk
 // sections.  If we see more than a few, we're linking a C++
 // program, and we resize to get more space to minimize rehashing.
 if (this->signatures_.size() > 4
     && !this->resized_signatures_)
   {
     reserve_unordered_map(&this->signatures_,
                           this->number_of_input_files_ * 64);
     this->resized_signatures_ = true;
   }

 Kept_section candidate;
 std::pair<Signatures::iterator, bool> ins =
   this->signatures_.insert(std::make_pair(name, candidate));

 if (kept_section != NULL)
   *kept_section = &ins.first->second;
 if (ins.second)
   {
     // This is the first time we've seen this signature.
     ins.first->second.set_object(object);
     ins.first->second.set_shndx(shndx);
     if (is_comdat)
       ins.first->second.set_is_comdat();
     if (is_group_name)
       ins.first->second.set_is_group_name();
     return true;
   }

 // We have already seen this signature.

 if (ins.first->second.is_group_name())
   {
     // We've already seen a real section group with this signature.
     // If the kept group is from a plugin object, and we're in the
     // replacement phase, accept the new one as a replacement.
     if (ins.first->second.object() == NULL
         && parameters->options().plugins()->in_replacement_phase())
       {
         ins.first->second.set_object(object);
         ins.first->second.set_shndx(shndx);
         return true;
       }
     return false;
   }
 else if (is_group_name)
   {
     // This is a real section group, and we've already seen a
     // linkonce section with this signature.  Record that we've seen
     // a section group, and don't include this section group.
     ins.first->second.set_is_group_name();
     return false;
   }
 else
   {
     // We've already seen a linkonce section and this is a linkonce
     // section.  These don't block each other--this may be the same
     // symbol name with different section types.
     return true;
   }
}

// Store the allocated sections into the section list.

void
Layout::get_allocated_sections(Section_list* section_list) const
{
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
     section_list->push_back(*p);
}

// Store the executable sections into the section list.

void
Layout::get_executable_sections(Section_list* section_list) const
{
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
       == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
     section_list->push_back(*p);
}

// Create an output segment.

Output_segment*
Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
{
 gold_assert(!parameters->options().relocatable());
 Output_segment* oseg = new Output_segment(type, flags);
 this->segment_list_.push_back(oseg);

 if (type == elfcpp::PT_TLS)
   this->tls_segment_ = oseg;
 else if (type == elfcpp::PT_GNU_RELRO)
   this->relro_segment_ = oseg;
 else if (type == elfcpp::PT_INTERP)
   this->interp_segment_ = oseg;

 return oseg;
}

// Return the file offset of the normal symbol table.

off_t
Layout::symtab_section_offset() const
{
 if (this->symtab_section_ != NULL)
   return this->symtab_section_->offset();
 return 0;
}

// Return the section index of the normal symbol table.  It may have
// been stripped by the -s/--strip-all option.

unsigned int
Layout::symtab_section_shndx() const
{
 if (this->symtab_section_ != NULL)
   return this->symtab_section_->out_shndx();
 return 0;
}

// Write out the Output_sections.  Most won't have anything to write,
// since most of the data will come from input sections which are
// handled elsewhere.  But some Output_sections do have Output_data.

void
Layout::write_output_sections(Output_file* of) const
{
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if (!(*p)->after_input_sections())
       (*p)->write(of);
   }
}

// Write out data not associated with a section or the symbol table.

void
Layout::write_data(const Symbol_table* symtab, Output_file* of) const
{
 if (!parameters->options().strip_all())
   {
     const Output_section* symtab_section = this->symtab_section_;
     for (Section_list::const_iterator p = this->section_list_.begin();
          p != this->section_list_.end();
          ++p)
       {
         if ((*p)->needs_symtab_index())
           {
             gold_assert(symtab_section != NULL);
             unsigned int index = (*p)->symtab_index();
             gold_assert(index > 0 && index != -1U);
             off_t off = (symtab_section->offset()
                          + index * symtab_section->entsize());
             symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
           }
       }
   }

 const Output_section* dynsym_section = this->dynsym_section_;
 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if ((*p)->needs_dynsym_index())
       {
         gold_assert(dynsym_section != NULL);
         unsigned int index = (*p)->dynsym_index();
         gold_assert(index > 0 && index != -1U);
         off_t off = (dynsym_section->offset()
                      + index * dynsym_section->entsize());
         symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
       }
   }

 // Write out the Output_data which are not in an Output_section.
 for (Data_list::const_iterator p = this->special_output_list_.begin();
      p != this->special_output_list_.end();
      ++p)
   (*p)->write(of);

 // Write out the Output_data which are not in an Output_section
 // and are regenerated in each iteration of relaxation.
 for (Data_list::const_iterator p = this->relax_output_list_.begin();
      p != this->relax_output_list_.end();
      ++p)
   (*p)->write(of);
}

// Write out the Output_sections which can only be written after the
// input sections are complete.

void
Layout::write_sections_after_input_sections(Output_file* of)
{
 // Determine the final section offsets, and thus the final output
 // file size.  Note we finalize the .shstrab last, to allow the
 // after_input_section sections to modify their section-names before
 // writing.
 if (this->any_postprocessing_sections_)
   {
     off_t off = this->output_file_size_;
     off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);

     // Now that we've finalized the names, we can finalize the shstrab.
     off =
       this->set_section_offsets(off,
                                 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);

     if (off > this->output_file_size_)
       {
         of->resize(off);
         this->output_file_size_ = off;
       }
   }

 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   {
     if ((*p)->after_input_sections())
       (*p)->write(of);
   }

 this->section_headers_->write(of);
}

// If a tree-style build ID was requested, the parallel part of that computation
// is already done, and the final hash-of-hashes is computed here.  For other
// types of build IDs, all the work is done here.

void
Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
                      size_t size_of_hashes) const
{
 if (this->build_id_note_ == NULL)
   return;

 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
                                         this->build_id_note_->data_size());

 if (array_of_hashes == NULL)
   {
     const size_t output_file_size = this->output_file_size();
     const unsigned char* iv = of->get_input_view(0, output_file_size);
     const char* style = parameters->options().build_id();

     // If we get here with style == "tree" then the output must be
     // too small for chunking, and we use SHA-1 in that case.
     if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
       sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
     else if (strcmp(style, "md5") == 0)
       md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
     else
       gold_unreachable();

     of->free_input_view(0, output_file_size, iv);
   }
 else
   {
     // Non-overlapping substrings of the output file have been hashed.
     // Compute SHA-1 hash of the hashes.
     sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
                 size_of_hashes, ov);
     delete[] array_of_hashes;
   }

 of->write_output_view(this->build_id_note_->offset(),
                       this->build_id_note_->data_size(),
                       ov);
}

// Write out a binary file.  This is called after the link is
// complete.  IN is the temporary output file we used to generate the
// ELF code.  We simply walk through the segments, read them from
// their file offset in IN, and write them to their load address in
// the output file.  FIXME: with a bit more work, we could support
// S-records and/or Intel hex format here.

void
Layout::write_binary(Output_file* in) const
{
 gold_assert(parameters->options().oformat_enum()
             == General_options::OBJECT_FORMAT_BINARY);

 // Get the size of the binary file.
 uint64_t max_load_address = 0;
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
       {
         uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
         if (max_paddr > max_load_address)
           max_load_address = max_paddr;
       }
   }

 Output_file out(parameters->options().output_file_name());
 out.open(max_load_address);

 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   {
     if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
       {
         const unsigned char* vin = in->get_input_view((*p)->offset(),
                                                       (*p)->filesz());
         unsigned char* vout = out.get_output_view((*p)->paddr(),
                                                   (*p)->filesz());
         memcpy(vout, vin, (*p)->filesz());
         out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
         in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
       }
   }

 out.close();
}

// Print the output sections to the map file.

void
Layout::print_to_mapfile(Mapfile* mapfile) const
{
 for (Segment_list::const_iterator p = this->segment_list_.begin();
      p != this->segment_list_.end();
      ++p)
   (*p)->print_sections_to_mapfile(mapfile);
 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
      p != this->unattached_section_list_.end();
      ++p)
   (*p)->print_to_mapfile(mapfile);
}

// Print statistical information to stderr.  This is used for --stats.

void
Layout::print_stats() const
{
 this->namepool_.print_stats("section name pool");
 this->sympool_.print_stats("output symbol name pool");
 this->dynpool_.print_stats("dynamic name pool");

 for (Section_list::const_iterator p = this->section_list_.begin();
      p != this->section_list_.end();
      ++p)
   (*p)->print_merge_stats();
}

// Write_sections_task methods.

// We can always run this task.

Task_token*
Write_sections_task::is_runnable()
{
 return NULL;
}

// We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
// when finished.

void
Write_sections_task::locks(Task_locker* tl)
{
 tl->add(this, this->output_sections_blocker_);
 if (this->input_sections_blocker_ != NULL)
   tl->add(this, this->input_sections_blocker_);
 tl->add(this, this->final_blocker_);
}

// Run the task--write out the data.

void
Write_sections_task::run(Workqueue*)
{
 this->layout_->write_output_sections(this->of_);
}

// Write_data_task methods.

// We can always run this task.

Task_token*
Write_data_task::is_runnable()
{
 return NULL;
}

// We need to unlock FINAL_BLOCKER when finished.

void
Write_data_task::locks(Task_locker* tl)
{
 tl->add(this, this->final_blocker_);
}

// Run the task--write out the data.

void
Write_data_task::run(Workqueue*)
{
 this->layout_->write_data(this->symtab_, this->of_);
}

// Write_symbols_task methods.

// We can always run this task.

Task_token*
Write_symbols_task::is_runnable()
{
 return NULL;
}

// We need to unlock FINAL_BLOCKER when finished.

void
Write_symbols_task::locks(Task_locker* tl)
{
 tl->add(this, this->final_blocker_);
}

// Run the task--write out the symbols.

void
Write_symbols_task::run(Workqueue*)
{
 this->symtab_->write_globals(this->sympool_, this->dynpool_,
                              this->layout_->symtab_xindex(),
                              this->layout_->dynsym_xindex(), this->of_);
}

// Write_after_input_sections_task methods.

// We can only run this task after the input sections have completed.

Task_token*
Write_after_input_sections_task::is_runnable()
{
 if (this->input_sections_blocker_->is_blocked())
   return this->input_sections_blocker_;
 return NULL;
}

// We need to unlock FINAL_BLOCKER when finished.

void
Write_after_input_sections_task::locks(Task_locker* tl)
{
 tl->add(this, this->final_blocker_);
}

// Run the task.

void
Write_after_input_sections_task::run(Workqueue*)
{
 this->layout_->write_sections_after_input_sections(this->of_);
}

// Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
// or as a "tree" where each chunk of the string is hashed and then those
// hashes are put into a (much smaller) string which is hashed with sha1.
// We compute a checksum over the entire file because that is simplest.

void
Build_id_task_runner::run(Workqueue* workqueue, const Task*)
{
 Task_token* post_hash_tasks_blocker = new Task_token(true);
 const Layout* layout = this->layout_;
 Output_file* of = this->of_;
 const size_t filesize = (layout->output_file_size() <= 0 ? 0
                          : static_cast<size_t>(layout->output_file_size()));
 unsigned char* array_of_hashes = NULL;
 size_t size_of_hashes = 0;

 if (strcmp(this->options_->build_id(), "tree") == 0
     && this->options_->build_id_chunk_size_for_treehash() > 0
     && filesize > 0
     && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
   {
     static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
     const size_t chunk_size =
         this->options_->build_id_chunk_size_for_treehash();
     const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
     post_hash_tasks_blocker->add_blockers(num_hashes);
     size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
     array_of_hashes = new unsigned char[size_of_hashes];
     unsigned char *dst = array_of_hashes;
     for (size_t i = 0, src_offset = 0; i < num_hashes;
          i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
       {
         size_t size = std::min(chunk_size, filesize - src_offset);
         workqueue->queue(new Hash_task(of,
                                        src_offset,
                                        size,
                                        dst,
                                        post_hash_tasks_blocker));
       }
   }

 // Queue the final task to write the build id and close the output file.
 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
                                                          layout,
                                                          of,
                                                          array_of_hashes,
                                                          size_of_hashes),
                                    post_hash_tasks_blocker,
                                    "Task_function Close_task_runner"));
}

// Close_task_runner methods.

// Finish up the build ID computation, if necessary, and write a binary file,
// if necessary.  Then close the output file.

void
Close_task_runner::run(Workqueue*, const Task*)
{
 // At this point the multi-threaded part of the build ID computation,
 // if any, is done.  See Build_id_task_runner.
 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
                               this->size_of_hashes_);

 // If we've been asked to create a binary file, we do so here.
 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
   this->layout_->write_binary(this->of_);

 if (this->options_->dependency_file())
   File_read::write_dependency_file(this->options_->dependency_file(),
                                    this->options_->output_file_name());

 this->of_->close();
}

// Instantiate the templates we need.  We could use the configure
// script to restrict this to only the ones for implemented targets.

#ifdef HAVE_TARGET_32_LITTLE
template
Output_section*
Layout::init_fixed_output_section<32, false>(
   const char* name,
   elfcpp::Shdr<32, false>& shdr);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Output_section*
Layout::init_fixed_output_section<32, true>(
   const char* name,
   elfcpp::Shdr<32, true>& shdr);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Output_section*
Layout::init_fixed_output_section<64, false>(
   const char* name,
   elfcpp::Shdr<64, false>& shdr);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Output_section*
Layout::init_fixed_output_section<64, true>(
   const char* name,
   elfcpp::Shdr<64, true>& shdr);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Output_section*
Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
                         unsigned int shndx,
                         const char* name,
                         const elfcpp::Shdr<32, false>& shdr,
                         unsigned int, unsigned int, unsigned int, off_t*);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Output_section*
Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
                        unsigned int shndx,
                        const char* name,
                        const elfcpp::Shdr<32, true>& shdr,
                        unsigned int, unsigned int, unsigned int, off_t*);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Output_section*
Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
                         unsigned int shndx,
                         const char* name,
                         const elfcpp::Shdr<64, false>& shdr,
                         unsigned int, unsigned int, unsigned int, off_t*);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Output_section*
Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
                        unsigned int shndx,
                        const char* name,
                        const elfcpp::Shdr<64, true>& shdr,
                        unsigned int, unsigned int, unsigned int, off_t*);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Output_section*
Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
                               unsigned int reloc_shndx,
                               const elfcpp::Shdr<32, false>& shdr,
                               Output_section* data_section,
                               Relocatable_relocs* rr);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Output_section*
Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
                              unsigned int reloc_shndx,
                              const elfcpp::Shdr<32, true>& shdr,
                              Output_section* data_section,
                              Relocatable_relocs* rr);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Output_section*
Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
                               unsigned int reloc_shndx,
                               const elfcpp::Shdr<64, false>& shdr,
                               Output_section* data_section,
                               Relocatable_relocs* rr);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Output_section*
Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
                              unsigned int reloc_shndx,
                              const elfcpp::Shdr<64, true>& shdr,
                              Output_section* data_section,
                              Relocatable_relocs* rr);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Layout::layout_group<32, false>(Symbol_table* symtab,
                               Sized_relobj_file<32, false>* object,
                               unsigned int,
                               const char* group_section_name,
                               const char* signature,
                               const elfcpp::Shdr<32, false>& shdr,
                               elfcpp::Elf_Word flags,
                               std::vector<unsigned int>* shndxes);
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Layout::layout_group<32, true>(Symbol_table* symtab,
                              Sized_relobj_file<32, true>* object,
                              unsigned int,
                              const char* group_section_name,
                              const char* signature,
                              const elfcpp::Shdr<32, true>& shdr,
                              elfcpp::Elf_Word flags,
                              std::vector<unsigned int>* shndxes);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Layout::layout_group<64, false>(Symbol_table* symtab,
                               Sized_relobj_file<64, false>* object,
                               unsigned int,
                               const char* group_section_name,
                               const char* signature,
                               const elfcpp::Shdr<64, false>& shdr,
                               elfcpp::Elf_Word flags,
                               std::vector<unsigned int>* shndxes);
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Layout::layout_group<64, true>(Symbol_table* symtab,
                              Sized_relobj_file<64, true>* object,
                              unsigned int,
                              const char* group_section_name,
                              const char* signature,
                              const elfcpp::Shdr<64, true>& shdr,
                              elfcpp::Elf_Word flags,
                              std::vector<unsigned int>* shndxes);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
Output_section*
Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
                                  const unsigned char* symbols,
                                  off_t symbols_size,
                                  const unsigned char* symbol_names,
                                  off_t symbol_names_size,
                                  unsigned int shndx,
                                  const elfcpp::Shdr<32, false>& shdr,
                                  unsigned int reloc_shndx,
                                  unsigned int reloc_type,
                                  off_t* off);
#endif

#ifdef HAVE_TARGET_32_BIG
template
Output_section*
Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
                                 const unsigned char* symbols,
                                 off_t symbols_size,
                                 const unsigned char* symbol_names,
                                 off_t symbol_names_size,
                                 unsigned int shndx,
                                 const elfcpp::Shdr<32, true>& shdr,
                                 unsigned int reloc_shndx,
                                 unsigned int reloc_type,
                                 off_t* off);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
Output_section*
Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
                                  const unsigned char* symbols,
                                  off_t symbols_size,
                                  const unsigned char* symbol_names,
                                  off_t symbol_names_size,
                                  unsigned int shndx,
                                  const elfcpp::Shdr<64, false>& shdr,
                                  unsigned int reloc_shndx,
                                  unsigned int reloc_type,
                                  off_t* off);
#endif

#ifdef HAVE_TARGET_64_BIG
template
Output_section*
Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
                                 const unsigned char* symbols,
                                 off_t symbols_size,
                                 const unsigned char* symbol_names,
                                 off_t symbol_names_size,
                                 unsigned int shndx,
                                 const elfcpp::Shdr<64, true>& shdr,
                                 unsigned int reloc_shndx,
                                 unsigned int reloc_type,
                                 off_t* off);
#endif

#ifdef HAVE_TARGET_32_LITTLE
template
void
Layout::add_to_gdb_index(bool is_type_unit,
                        Sized_relobj<32, false>* object,
                        const unsigned char* symbols,
                        off_t symbols_size,
                        unsigned int shndx,
                        unsigned int reloc_shndx,
                        unsigned int reloc_type);
#endif

#ifdef HAVE_TARGET_32_BIG
template
void
Layout::add_to_gdb_index(bool is_type_unit,
                        Sized_relobj<32, true>* object,
                        const unsigned char* symbols,
                        off_t symbols_size,
                        unsigned int shndx,
                        unsigned int reloc_shndx,
                        unsigned int reloc_type);
#endif

#ifdef HAVE_TARGET_64_LITTLE
template
void
Layout::add_to_gdb_index(bool is_type_unit,
                        Sized_relobj<64, false>* object,
                        const unsigned char* symbols,
                        off_t symbols_size,
                        unsigned int shndx,
                        unsigned int reloc_shndx,
                        unsigned int reloc_type);
#endif

#ifdef HAVE_TARGET_64_BIG
template
void
Layout::add_to_gdb_index(bool is_type_unit,
                        Sized_relobj<64, true>* object,
                        const unsigned char* symbols,
                        off_t symbols_size,
                        unsigned int shndx,
                        unsigned int reloc_shndx,
                        unsigned int reloc_type);
#endif

} // End namespace gold.