// gdb-index.cc -- generate .gdb_index section for fast debug lookup

// Copyright (C) 2012-2024 Free Software Foundation, Inc.
// Written by Cary Coutant <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include "gdb-index.h"
#include "dwarf_reader.h"
#include "dwarf.h"
#include "object.h"
#include "output.h"
#include "demangle.h"

namespace gold
{

const int gdb_index_version = 7;

// Sizes of various records in the .gdb_index section.
const int gdb_index_offset_size = 4;
const int gdb_index_hdr_size = 6 * gdb_index_offset_size;
const int gdb_index_cu_size = 16;
const int gdb_index_tu_size = 24;
const int gdb_index_addr_size = 16 + gdb_index_offset_size;
const int gdb_index_sym_size = 2 * gdb_index_offset_size;

// This class manages the hashed symbol table for the .gdb_index section.
// It is essentially equivalent to the hashtab implementation in libiberty,
// but is copied into gdb sources and here for compatibility because its
// data structure is exposed on disk.

template <typename T>
class Gdb_hashtab
{
public:
 Gdb_hashtab()
   : size_(0), capacity_(0), hashtab_(NULL)
 { }

 ~Gdb_hashtab()
 {
   for (size_t i = 0; i < this->capacity_; ++i)
     if (this->hashtab_[i] != NULL)
       delete this->hashtab_[i];
   delete[] this->hashtab_;
 }

 // Add a symbol.
 T*
 add(T* symbol)
 {
   // Resize the hash table if necessary.
   if (4 * this->size_ / 3 >= this->capacity_)
     this->expand();

   T** slot = this->find_slot(symbol);
   if (*slot == NULL)
     {
       ++this->size_;
       *slot = symbol;
     }

   return *slot;
 }

 // Return the current size.
 size_t
 size() const
 { return this->size_; }

 // Return the current capacity.
 size_t
 capacity() const
 { return this->capacity_; }

 // Return the contents of slot N.
 T*
 operator[](size_t n)
 { return this->hashtab_[n]; }

private:
 // Find a symbol in the hash table, or return an empty slot if
 // the symbol is not in the table.
 T**
 find_slot(T* symbol)
 {
   unsigned int index = symbol->hash() & (this->capacity_ - 1);
   unsigned int step = ((symbol->hash() * 17) & (this->capacity_ - 1)) | 1;

   for (;;)
     {
       if (this->hashtab_[index] == NULL
           || this->hashtab_[index]->equal(symbol))
         return &this->hashtab_[index];
       index = (index + step) & (this->capacity_ - 1);
     }
 }

 // Expand the hash table.
 void
 expand()
 {
   if (this->capacity_ == 0)
     {
       // Allocate the hash table for the first time.
       this->capacity_ = Gdb_hashtab::initial_size;
       this->hashtab_ = new T*[this->capacity_];
       memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
     }
   else
     {
       // Expand and rehash.
       unsigned int old_cap = this->capacity_;
       T** old_hashtab = this->hashtab_;
       this->capacity_ *= 2;
       this->hashtab_ = new T*[this->capacity_];
       memset(this->hashtab_, 0, this->capacity_ * sizeof(T*));
       for (size_t i = 0; i < old_cap; ++i)
         {
           if (old_hashtab[i] != NULL)
             {
               T** slot = this->find_slot(old_hashtab[i]);
               *slot = old_hashtab[i];
             }
         }
       delete[] old_hashtab;
     }
 }

 // Initial size of the hash table; must be a power of 2.
 static const int initial_size = 1024;
 size_t size_;
 size_t capacity_;
 T** hashtab_;
};

// The hash function for strings in the mapped index.  This is copied
// directly from gdb/dwarf2read.c.

static unsigned int
mapped_index_string_hash(const unsigned char* str)
{
 unsigned int r = 0;
 unsigned char c;

 while ((c = *str++) != 0)
   {
     if (gdb_index_version >= 5)
       c = tolower (c);
     r = r * 67 + c - 113;
   }

 return r;
}

// A specialization of Dwarf_info_reader, for building the .gdb_index.

class Gdb_index_info_reader : public Dwarf_info_reader
{
public:
 Gdb_index_info_reader(bool is_type_unit,
                       Relobj* object,
                       const unsigned char* symbols,
                       off_t symbols_size,
                       unsigned int shndx,
                       unsigned int reloc_shndx,
                       unsigned int reloc_type,
                       Gdb_index* gdb_index)
   : Dwarf_info_reader(is_type_unit, object, symbols, symbols_size, shndx,
                       reloc_shndx, reloc_type),
     gdb_index_(gdb_index), cu_index_(0), cu_language_(0)
 { }

 ~Gdb_index_info_reader()
 { this->clear_declarations(); }

 // Print usage statistics.
 static void
 print_stats();

protected:
 // Visit a compilation unit.
 virtual void
 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die*);

 // Visit a type unit.
 virtual void
 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
                 uint64_t signature, Dwarf_die*);

private:
 // A map for recording DIEs we've seen that may be referred to be
 // later DIEs (via DW_AT_specification or DW_AT_abstract_origin).
 // The map is indexed by a DIE offset within the compile unit.
 // PARENT_OFFSET_ is the offset of the DIE that represents the
 // outer context, and NAME_ is a pointer to a component of the
 // fully-qualified name.
 // Normally, the names we point to are in a string table, so we don't
 // have to manage them, but when we have a fully-qualified name
 // computed, we put it in the table, and set PARENT_OFFSET_ to -1
 // indicate a string that we are managing.
 struct Declaration_pair
 {
   Declaration_pair(off_t parent_offset, const char* name)
     : parent_offset_(parent_offset), name_(name)
   { }

   off_t parent_offset_;
   const char* name_;
 };
 typedef Unordered_map<off_t, Declaration_pair> Declaration_map;

 // Visit a top-level DIE.
 void
 visit_top_die(Dwarf_die* die);

 // Visit the children of a DIE.
 void
 visit_children(Dwarf_die* die, Dwarf_die* context);

 // Visit a DIE.
 void
 visit_die(Dwarf_die* die, Dwarf_die* context);

 // Visit the children of a DIE.
 void
 visit_children_for_decls(Dwarf_die* die);

 // Visit a DIE.
 void
 visit_die_for_decls(Dwarf_die* die, Dwarf_die* context);

 // Guess a fully-qualified name for a class type, based on member function
 // linkage names.
 std::string
 guess_full_class_name(Dwarf_die* die);

 // Add a declaration DIE to the table of declarations.
 void
 add_declaration(Dwarf_die* die, Dwarf_die* context);

 // Add a declaration whose fully-qualified name is already known.
 void
 add_declaration_with_full_name(Dwarf_die* die, const char* full_name);

 // Return the context for a DIE whose parent is at DIE_OFFSET.
 std::string
 get_context(off_t die_offset);

 // Construct a fully-qualified name for DIE.
 std::string
 get_qualified_name(Dwarf_die* die, Dwarf_die* context);

 // Record the address ranges for a compilation unit.
 void
 record_cu_ranges(Dwarf_die* die);

 // Wrapper for read_pubtable.
 bool
 read_pubnames_and_pubtypes(Dwarf_die* die);

 // Read the .debug_pubnames and .debug_pubtypes tables.
 bool
 read_pubtable(Dwarf_pubnames_table* table, off_t offset);

 // Clear the declarations map.
 void
 clear_declarations();

 // The Gdb_index section.
 Gdb_index* gdb_index_;
 // The current CU index (negative for a TU).
 int cu_index_;
 // The language of the current CU or TU.
 unsigned int cu_language_;
 // Map from DIE offset to (parent offset, name) pair,
 // for DW_AT_specification.
 Declaration_map declarations_;

 // Statistics.
 // Total number of DWARF compilation units processed.
 static unsigned int dwarf_cu_count;
 // Number of DWARF compilation units with pubnames/pubtypes.
 static unsigned int dwarf_cu_nopubnames_count;
 // Total number of DWARF type units processed.
 static unsigned int dwarf_tu_count;
 // Number of DWARF type units with pubnames/pubtypes.
 static unsigned int dwarf_tu_nopubnames_count;
};

// Total number of DWARF compilation units processed.
unsigned int Gdb_index_info_reader::dwarf_cu_count = 0;
// Number of DWARF compilation units without pubnames/pubtypes.
unsigned int Gdb_index_info_reader::dwarf_cu_nopubnames_count = 0;
// Total number of DWARF type units processed.
unsigned int Gdb_index_info_reader::dwarf_tu_count = 0;
// Number of DWARF type units without pubnames/pubtypes.
unsigned int Gdb_index_info_reader::dwarf_tu_nopubnames_count = 0;

// Process a compilation unit and parse its child DIE.

void
Gdb_index_info_reader::visit_compilation_unit(off_t cu_offset, off_t cu_length,
                                             Dwarf_die* root_die)
{
 ++Gdb_index_info_reader::dwarf_cu_count;
 this->cu_index_ = this->gdb_index_->add_comp_unit(cu_offset, cu_length);
 this->visit_top_die(root_die);
}

// Process a type unit and parse its child DIE.

void
Gdb_index_info_reader::visit_type_unit(off_t tu_offset, off_t,
                                      off_t type_offset, uint64_t signature,
                                      Dwarf_die* root_die)
{
 ++Gdb_index_info_reader::dwarf_tu_count;
 // Use a negative index to flag this as a TU instead of a CU.
 this->cu_index_ = -1 - this->gdb_index_->add_type_unit(tu_offset, type_offset,
                                                        signature);
 this->visit_top_die(root_die);
}

// Process a top-level DIE.
// For compile_unit DIEs, record the address ranges.  For all
// interesting tags, add qualified names to the symbol table
// and process interesting children.  We may need to process
// certain children just for saving declarations that might be
// referenced by later DIEs with a DW_AT_specification attribute.

void
Gdb_index_info_reader::visit_top_die(Dwarf_die* die)
{
 this->clear_declarations();

 switch (die->tag())
   {
     case elfcpp::DW_TAG_compile_unit:
     case elfcpp::DW_TAG_type_unit:
       this->cu_language_ = die->int_attribute(elfcpp::DW_AT_language);
       if (die->tag() == elfcpp::DW_TAG_compile_unit)
         this->record_cu_ranges(die);
       // If there is a pubnames and/or pubtypes section for this
       // compilation unit, use those; otherwise, parse the DWARF
       // info to extract the names.
       if (!this->read_pubnames_and_pubtypes(die))
         {
           // Check for languages that require specialized knowledge to
           // construct fully-qualified names, that we don't yet support.
           if (this->cu_language_ == elfcpp::DW_LANG_Ada83
               || this->cu_language_ == elfcpp::DW_LANG_Fortran77
               || this->cu_language_ == elfcpp::DW_LANG_Fortran90
               || this->cu_language_ == elfcpp::DW_LANG_Java
               || this->cu_language_ == elfcpp::DW_LANG_Ada95
               || this->cu_language_ == elfcpp::DW_LANG_Fortran95
               || this->cu_language_ == elfcpp::DW_LANG_Fortran03
               || this->cu_language_ == elfcpp::DW_LANG_Fortran08)
             {
               gold_warning(_("%s: --gdb-index currently supports "
                              "only C and C++ languages"),
                            this->object()->name().c_str());
               return;
             }
           if (die->tag() == elfcpp::DW_TAG_compile_unit)
             ++Gdb_index_info_reader::dwarf_cu_nopubnames_count;
           else
             ++Gdb_index_info_reader::dwarf_tu_nopubnames_count;
           this->visit_children(die, NULL);
         }
       break;
     default:
       // The top level DIE should be one of the above.
       gold_warning(_("%s: top level DIE is not DW_TAG_compile_unit "
                      "or DW_TAG_type_unit"),
                    this->object()->name().c_str());
       return;
   }
}

// Visit the children of PARENT, looking for symbols to add to the index.
// CONTEXT points to the DIE to use for constructing the qualified name --
// NULL if PARENT is the top-level DIE; otherwise it is the same as PARENT.

void
Gdb_index_info_reader::visit_children(Dwarf_die* parent, Dwarf_die* context)
{
 off_t next_offset = 0;
 for (off_t die_offset = parent->child_offset();
      die_offset != 0;
      die_offset = next_offset)
   {
     Dwarf_die die(this, die_offset, parent);
     if (die.tag() == 0)
       break;
     this->visit_die(&die, context);
     next_offset = die.sibling_offset();
   }
}

// Visit a child DIE, looking for symbols to add to the index.
// CONTEXT is the parent DIE, used for constructing the qualified name;
// it is NULL if the parent DIE is the top-level DIE.

void
Gdb_index_info_reader::visit_die(Dwarf_die* die, Dwarf_die* context)
{
 switch (die->tag())
   {
     case elfcpp::DW_TAG_subprogram:
     case elfcpp::DW_TAG_constant:
     case elfcpp::DW_TAG_variable:
     case elfcpp::DW_TAG_enumerator:
     case elfcpp::DW_TAG_base_type:
       if (die->is_declaration())
         this->add_declaration(die, context);
       else
         {
           // If the DIE is not a declaration, add it to the index.
           std::string full_name = this->get_qualified_name(die, context);
           if (!full_name.empty())
             this->gdb_index_->add_symbol(this->cu_index_,
                                          full_name.c_str(), 0);
         }
       break;
     case elfcpp::DW_TAG_typedef:
     case elfcpp::DW_TAG_union_type:
     case elfcpp::DW_TAG_class_type:
     case elfcpp::DW_TAG_interface_type:
     case elfcpp::DW_TAG_structure_type:
     case elfcpp::DW_TAG_enumeration_type:
     case elfcpp::DW_TAG_subrange_type:
     case elfcpp::DW_TAG_namespace:
       {
         std::string full_name;

         // For classes at the top level, we need to look for a
         // member function with a linkage name in order to get
         // the properly-canonicalized name.
         if (context == NULL
             && (die->tag() == elfcpp::DW_TAG_class_type
                 || die->tag() == elfcpp::DW_TAG_structure_type
                 || die->tag() == elfcpp::DW_TAG_union_type))
           full_name.assign(this->guess_full_class_name(die));

         // Because we will visit the children, we need to add this DIE
         // to the declarations table.
         if (full_name.empty())
           this->add_declaration(die, context);
         else
           this->add_declaration_with_full_name(die, full_name.c_str());

         // If the DIE is not a declaration, add it to the index.
         // Gdb stores a namespace in the index even when it is
         // a declaration.
         if (die->tag() == elfcpp::DW_TAG_namespace
             || !die->is_declaration())
           {
             if (full_name.empty())
               full_name = this->get_qualified_name(die, context);
             if (!full_name.empty())
               this->gdb_index_->add_symbol(this->cu_index_,
                                            full_name.c_str(), 0);
           }

         // We're interested in the children only for namespaces and
         // enumeration types.  For enumeration types, we do not include
         // the enumeration tag as part of the full name.  For other tags,
         // visit the children only to collect declarations.
         if (die->tag() == elfcpp::DW_TAG_namespace
             || die->tag() == elfcpp::DW_TAG_enumeration_type)
           this->visit_children(die, die);
         else
           this->visit_children_for_decls(die);
       }
       break;
     default:
       break;
   }
}

// Visit the children of PARENT, looking only for declarations that
// may be referenced by later specification DIEs.

void
Gdb_index_info_reader::visit_children_for_decls(Dwarf_die* parent)
{
 off_t next_offset = 0;
 for (off_t die_offset = parent->child_offset();
      die_offset != 0;
      die_offset = next_offset)
   {
     Dwarf_die die(this, die_offset, parent);
     if (die.tag() == 0)
       break;
     this->visit_die_for_decls(&die, parent);
     next_offset = die.sibling_offset();
   }
}

// Visit a child DIE, looking only for declarations that
// may be referenced by later specification DIEs.

void
Gdb_index_info_reader::visit_die_for_decls(Dwarf_die* die, Dwarf_die* context)
{
 switch (die->tag())
   {
     case elfcpp::DW_TAG_subprogram:
     case elfcpp::DW_TAG_constant:
     case elfcpp::DW_TAG_variable:
     case elfcpp::DW_TAG_enumerator:
     case elfcpp::DW_TAG_base_type:
       {
         if (die->is_declaration())
           this->add_declaration(die, context);
       }
       break;
     case elfcpp::DW_TAG_typedef:
     case elfcpp::DW_TAG_union_type:
     case elfcpp::DW_TAG_class_type:
     case elfcpp::DW_TAG_interface_type:
     case elfcpp::DW_TAG_structure_type:
     case elfcpp::DW_TAG_enumeration_type:
     case elfcpp::DW_TAG_subrange_type:
     case elfcpp::DW_TAG_namespace:
       {
         if (die->is_declaration())
           this->add_declaration(die, context);
         this->visit_children_for_decls(die);
       }
       break;
     default:
       break;
   }
}

// Extract the class name from the linkage name of a member function.
// This code is adapted from ../gdb/cp-support.c.

#define d_left(dc) (dc)->u.s_binary.left
#define d_right(dc) (dc)->u.s_binary.right

static char*
class_name_from_linkage_name(const char* linkage_name)
{
 void* storage;
 struct demangle_component* tree =
     cplus_demangle_v3_components(linkage_name, DMGL_NO_OPTS, &storage);
 if (tree == NULL)
   return NULL;

 int done = 0;

 // First strip off any qualifiers, if we have a function or
 // method.
 while (!done)
   switch (tree->type)
     {
       case DEMANGLE_COMPONENT_CONST:
       case DEMANGLE_COMPONENT_RESTRICT:
       case DEMANGLE_COMPONENT_VOLATILE:
       case DEMANGLE_COMPONENT_CONST_THIS:
       case DEMANGLE_COMPONENT_RESTRICT_THIS:
       case DEMANGLE_COMPONENT_VOLATILE_THIS:
       case DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL:
         tree = d_left(tree);
         break;
       default:
         done = 1;
         break;
     }

 // If what we have now is a function, discard the argument list.
 if (tree->type == DEMANGLE_COMPONENT_TYPED_NAME)
   tree = d_left(tree);

 // If what we have now is a template, strip off the template
 // arguments.  The left subtree may be a qualified name.
 if (tree->type == DEMANGLE_COMPONENT_TEMPLATE)
   tree = d_left(tree);

 // What we have now should be a name, possibly qualified.
 // Additional qualifiers could live in the left subtree or the right
 // subtree.  Find the last piece.
 done = 0;
 struct demangle_component* prev_comp = NULL;
 struct demangle_component* cur_comp = tree;
 while (!done)
   switch (cur_comp->type)
     {
       case DEMANGLE_COMPONENT_QUAL_NAME:
       case DEMANGLE_COMPONENT_LOCAL_NAME:
         prev_comp = cur_comp;
         cur_comp = d_right(cur_comp);
         break;
       case DEMANGLE_COMPONENT_TEMPLATE:
       case DEMANGLE_COMPONENT_NAME:
       case DEMANGLE_COMPONENT_CTOR:
       case DEMANGLE_COMPONENT_DTOR:
       case DEMANGLE_COMPONENT_OPERATOR:
       case DEMANGLE_COMPONENT_EXTENDED_OPERATOR:
         done = 1;
         break;
       default:
         done = 1;
         cur_comp = NULL;
         break;
     }

 char* ret = NULL;
 if (cur_comp != NULL && prev_comp != NULL)
   {
     // We want to discard the rightmost child of PREV_COMP.
     *prev_comp = *d_left(prev_comp);
     size_t allocated_size;
     ret = cplus_demangle_print(DMGL_NO_OPTS, tree, 30, &allocated_size);
   }

 free(storage);
 return ret;
}

// Guess a fully-qualified name for a class type, based on member function
// linkage names.  This is needed for class/struct/union types at the
// top level, because GCC does not always properly embed them within
// the namespace.  As in gdb, we look for a member function with a linkage
// name and extract the qualified name from the demangled name.

std::string
Gdb_index_info_reader::guess_full_class_name(Dwarf_die* die)
{
 std::string full_name;
 off_t next_offset = 0;

 // This routine scans ahead in the DIE structure, possibly advancing
 // the relocation tracker beyond the current DIE.  We need to checkpoint
 // the tracker and reset it when we're done.
 uint64_t checkpoint = this->get_reloc_checkpoint();

 for (off_t child_offset = die->child_offset();
      child_offset != 0;
      child_offset = next_offset)
   {
     Dwarf_die child(this, child_offset, die);
     if (child.tag() == 0)
       break;
     if (child.tag() == elfcpp::DW_TAG_subprogram)
       {
         const char* linkage_name = child.linkage_name();
         if (linkage_name != NULL)
           {
             char* guess = class_name_from_linkage_name(linkage_name);
             if (guess != NULL)
               {
                 full_name.assign(guess);
                 free(guess);
                 break;
               }
           }
       }
     next_offset = child.sibling_offset();
   }

 this->reset_relocs(checkpoint);
 return full_name;
}

// Add a declaration DIE to the table of declarations.

void
Gdb_index_info_reader::add_declaration(Dwarf_die* die, Dwarf_die* context)
{
 const char* name = die->name();

 off_t parent_offset = context != NULL ? context->offset() : 0;

 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
 // attribute, use the parent and name from the earlier declaration.
 off_t spec = die->specification();
 if (spec == 0)
   spec = die->abstract_origin();
 if (spec > 0)
   {
     Declaration_map::iterator it = this->declarations_.find(spec);
     if (it != this->declarations_.end())
       {
         parent_offset = it->second.parent_offset_;
         name = it->second.name_;
       }
   }

 if (name == NULL)
   {
     if (die->tag() == elfcpp::DW_TAG_namespace)
       name = "(anonymous namespace)";
     else if (die->tag() == elfcpp::DW_TAG_union_type)
       name = "(anonymous union)";
     else
       name = "(unknown)";
   }

 Declaration_pair decl(parent_offset, name);
 this->declarations_.insert(std::make_pair(die->offset(), decl));
}

// Add a declaration whose fully-qualified name is already known.
// In the case where we had to get the canonical name by demangling
// a linkage name, this ensures we use that name instead of the one
// provided in DW_AT_name.

void
Gdb_index_info_reader::add_declaration_with_full_name(
   Dwarf_die* die,
   const char* full_name)
{
 // We need to copy the name.
 int len = strlen(full_name);
 char* copy = new char[len + 1];
 memcpy(copy, full_name, len + 1);

 // Flag that we now manage the memory this points to.
 Declaration_pair decl(-1, copy);
 this->declarations_.insert(std::make_pair(die->offset(), decl));
}

// Return the context for a DIE whose parent is at DIE_OFFSET.

std::string
Gdb_index_info_reader::get_context(off_t die_offset)
{
 std::string context;
 Declaration_map::iterator it = this->declarations_.find(die_offset);
 if (it != this->declarations_.end())
   {
     off_t parent_offset = it->second.parent_offset_;
     if (parent_offset > 0)
       {
         context = get_context(parent_offset);
         context.append("::");
       }
     if (it->second.name_ != NULL)
       context.append(it->second.name_);
   }
 return context;
}

// Construct the fully-qualified name for DIE.

std::string
Gdb_index_info_reader::get_qualified_name(Dwarf_die* die, Dwarf_die* context)
{
 std::string full_name;
 const char* name = die->name();

 off_t parent_offset = context != NULL ? context->offset() : 0;

 // If this DIE has a DW_AT_specification or DW_AT_abstract_origin
 // attribute, use the parent and name from the earlier declaration.
 off_t spec = die->specification();
 if (spec == 0)
   spec = die->abstract_origin();
 if (spec > 0)
   {
     Declaration_map::iterator it = this->declarations_.find(spec);
     if (it != this->declarations_.end())
       {
         parent_offset = it->second.parent_offset_;
         name = it->second.name_;
       }
   }

 if (name == NULL && die->tag() == elfcpp::DW_TAG_namespace)
   name = "(anonymous namespace)";
 else if (name == NULL)
   return full_name;

 // If this is an enumerator constant, skip the immediate parent,
 // which is the enumeration tag.
 if (die->tag() == elfcpp::DW_TAG_enumerator)
   {
     Declaration_map::iterator it = this->declarations_.find(parent_offset);
     if (it != this->declarations_.end())
       parent_offset = it->second.parent_offset_;
   }

 if (parent_offset > 0)
   {
     full_name.assign(this->get_context(parent_offset));
     full_name.append("::");
   }
 full_name.append(name);

 return full_name;
}

// Record the address ranges for a compilation unit.

void
Gdb_index_info_reader::record_cu_ranges(Dwarf_die* die)
{
 unsigned int shndx;
 unsigned int shndx2;

 off_t ranges_offset = die->ref_attribute(elfcpp::DW_AT_ranges, &shndx);
 if (ranges_offset != -1)
   {
     Dwarf_range_list* ranges = this->read_range_list(shndx, ranges_offset);
     if (ranges != NULL)
       this->gdb_index_->add_address_range_list(this->object(),
                                                this->cu_index_, ranges);
     return;
   }

 off_t low_pc = die->address_attribute(elfcpp::DW_AT_low_pc, &shndx);
 off_t high_pc = die->address_attribute(elfcpp::DW_AT_high_pc, &shndx2);
 if (high_pc == -1)
   {
     high_pc = die->uint_attribute(elfcpp::DW_AT_high_pc);
     high_pc += low_pc;
     shndx2 = shndx;
   }
 if ((low_pc != 0 || high_pc != 0) && low_pc != -1)
   {
     if (shndx != shndx2)
       {
         gold_warning(_("%s: DWARF info may be corrupt; low_pc and high_pc "
                        "are in different sections"),
                      this->object()->name().c_str());
         return;
       }
     if (shndx == 0 || this->object()->is_section_included(shndx))
       {
         Dwarf_range_list* ranges = new Dwarf_range_list();
         ranges->add(shndx, low_pc, high_pc);
         this->gdb_index_->add_address_range_list(this->object(),
                                                  this->cu_index_, ranges);
       }
   }
}

// Read table and add the relevant names to the index.  Returns true
// if any names were added.

bool
Gdb_index_info_reader::read_pubtable(Dwarf_pubnames_table* table, off_t offset)
{
 // If we couldn't read the section when building the cu_pubname_map,
 // then we won't find any pubnames now.
 if (table == NULL)
   return false;

 if (!table->read_header(offset))
   return false;
 while (true)
   {
     uint8_t flag_byte;
     const char* name = table->next_name(&flag_byte);
     if (name == NULL)
       break;

     this->gdb_index_->add_symbol(this->cu_index_, name, flag_byte);
   }
 return true;
}

// Read the .debug_pubnames and .debug_pubtypes tables for the CU or TU.
// Returns TRUE if either a pubnames or pubtypes section was found.

bool
Gdb_index_info_reader::read_pubnames_and_pubtypes(Dwarf_die* die)
{
 // If this is a skeleton debug-type die (generated via
 // -gsplit-dwarf), then the associated pubnames should have been
 // read along with the corresponding CU.  In any case, there isn't
 // enough info inside to build a gdb index entry.
 if (die->tag() == elfcpp::DW_TAG_type_unit
     && die->string_attribute(elfcpp::DW_AT_GNU_dwo_name))
   return true;

 // We use stmt_list_off as a unique identifier for the
 // compilation unit and its associated type units.
 unsigned int shndx;
 off_t stmt_list_off = die->ref_attribute (elfcpp::DW_AT_stmt_list,
                                           &shndx);
 // Look for the attr as either a flag or a ref.
 off_t offset = die->ref_attribute(elfcpp::DW_AT_GNU_pubnames, &shndx);

 // Newer versions of GCC generate CUs, but not TUs, with
 // DW_AT_FORM_flag_present.
 unsigned int flag = die->uint_attribute(elfcpp::DW_AT_GNU_pubnames);
 if (offset == -1 && flag == 0)
   {
     // Didn't find the attribute.
     if (die->tag() == elfcpp::DW_TAG_type_unit)
       {
         // If die is a TU, then it might correspond to a CU which we
         // have read. If it does, then no need to read the pubnames.
         // If it doesn't, then the caller will have to parse the
         // dies manually to find the names.
         return this->gdb_index_->pubnames_read(this->object(),
                                                stmt_list_off);
       }
     else
       {
         // No attribute on the CU means that no pubnames were read.
         return false;
       }
   }

 // We found the attribute, so we can check if the corresponding
 // pubnames have been read.
 if (this->gdb_index_->pubnames_read(this->object(), stmt_list_off))
   return true;

 this->gdb_index_->set_pubnames_read(this->object(), stmt_list_off);

 // We have an attribute, and the pubnames haven't been read, so read
 // them.
 bool names = false;
 // In some of the cases, we could rely on the previous value of
 // offset here, but sorting out which cases complicates the logic
 // enough that it isn't worth it. So just look up the offset again.
 offset = this->gdb_index_->find_pubname_offset(this->cu_offset());
 names = this->read_pubtable(this->gdb_index_->pubnames_table(), offset);

 bool types = false;
 offset = this->gdb_index_->find_pubtype_offset(this->cu_offset());
 types = this->read_pubtable(this->gdb_index_->pubtypes_table(), offset);
 return names || types;
}

// Clear the declarations map.
void
Gdb_index_info_reader::clear_declarations()
{
 // Free strings in memory we manage.
 for (Declaration_map::iterator it = this->declarations_.begin();
      it != this->declarations_.end();
      ++it)
   {
     if (it->second.parent_offset_ == -1)
       delete[] it->second.name_;
   }

 this->declarations_.clear();
}

// Print usage statistics.
void
Gdb_index_info_reader::print_stats()
{
 fprintf(stderr, _("%s: DWARF CUs: %u\n"),
         program_name, Gdb_index_info_reader::dwarf_cu_count);
 fprintf(stderr, _("%s: DWARF CUs without pubnames/pubtypes: %u\n"),
         program_name, Gdb_index_info_reader::dwarf_cu_nopubnames_count);
 fprintf(stderr, _("%s: DWARF TUs: %u\n"),
         program_name, Gdb_index_info_reader::dwarf_tu_count);
 fprintf(stderr, _("%s: DWARF TUs without pubnames/pubtypes: %u\n"),
         program_name, Gdb_index_info_reader::dwarf_tu_nopubnames_count);
}

// Class Gdb_index.

// Construct the .gdb_index section.

Gdb_index::Gdb_index(Output_section* gdb_index_section)
 : Output_section_data(4),
   pubnames_table_(NULL),
   pubtypes_table_(NULL),
   gdb_index_section_(gdb_index_section),
   comp_units_(),
   type_units_(),
   ranges_(),
   cu_vector_list_(),
   cu_vector_offsets_(NULL),
   stringpool_(),
   tu_offset_(0),
   addr_offset_(0),
   symtab_offset_(0),
   cu_pool_offset_(0),
   stringpool_offset_(0),
   pubnames_object_(NULL),
   stmt_list_offset_(-1)
{
 this->gdb_symtab_ = new Gdb_hashtab<Gdb_symbol>();
}

Gdb_index::~Gdb_index()
{
 // Free the memory used by the symbol table.
 delete this->gdb_symtab_;
 // Free the memory used by the CU vectors.
 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
   delete this->cu_vector_list_[i];
}


// Scan the pubnames and pubtypes sections and build a map of the
// various cus and tus they refer to, so we can process the entries
// when we encounter the die for that cu or tu.
// Return the just-read table so it can be cached.

Dwarf_pubnames_table*
Gdb_index::map_pubtable_to_dies(unsigned int attr,
                               Gdb_index_info_reader* dwinfo,
                               Relobj* object,
                               const unsigned char* symbols,
                               off_t symbols_size)
{
 uint64_t section_offset = 0;
 Dwarf_pubnames_table* table;
 Pubname_offset_map* map;

 if (attr == elfcpp::DW_AT_GNU_pubnames)
   {
     table = new Dwarf_pubnames_table(dwinfo, false);
     map = &this->cu_pubname_map_;
   }
 else
   {
     table = new Dwarf_pubnames_table(dwinfo, true);
     map = &this->cu_pubtype_map_;
   }

 map->clear();
 if (!table->read_section(object, symbols, symbols_size))
   return NULL;

 while (table->read_header(section_offset))
   {
     map->insert(std::make_pair(table->cu_offset(), section_offset));
     section_offset += table->subsection_size();
   }

 return table;
}

// Wrapper for map_pubtable_to_dies

void
Gdb_index::map_pubnames_and_types_to_dies(Gdb_index_info_reader* dwinfo,
                                         Relobj* object,
                                         const unsigned char* symbols,
                                         off_t symbols_size)
{
 // This is a new object, so reset the relevant variables.
 this->pubnames_object_ = object;
 this->stmt_list_offset_ = -1;

 delete this->pubnames_table_;
 this->pubnames_table_
     = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubnames, dwinfo,
                                  object, symbols, symbols_size);
 delete this->pubtypes_table_;
 this->pubtypes_table_
     = this->map_pubtable_to_dies(elfcpp::DW_AT_GNU_pubtypes, dwinfo,
                                  object, symbols, symbols_size);
}

// Given a cu_offset, find the associated section of the pubnames
// table.

off_t
Gdb_index::find_pubname_offset(off_t cu_offset)
{
 Pubname_offset_map::iterator it = this->cu_pubname_map_.find(cu_offset);
 if (it != this->cu_pubname_map_.end())
   return it->second;
 return -1;
}

// Given a cu_offset, find the associated section of the pubnames
// table.

off_t
Gdb_index::find_pubtype_offset(off_t cu_offset)
{
 Pubname_offset_map::iterator it = this->cu_pubtype_map_.find(cu_offset);
 if (it != this->cu_pubtype_map_.end())
   return it->second;
 return -1;
}

// Scan a .debug_info or .debug_types input section.

void
Gdb_index::scan_debug_info(bool is_type_unit,
                          Relobj* object,
                          const unsigned char* symbols,
                          off_t symbols_size,
                          unsigned int shndx,
                          unsigned int reloc_shndx,
                          unsigned int reloc_type)
{
 Gdb_index_info_reader dwinfo(is_type_unit, object,
                              symbols, symbols_size,
                              shndx, reloc_shndx,
                              reloc_type, this);
 if (object != this->pubnames_object_)
   map_pubnames_and_types_to_dies(&dwinfo, object, symbols, symbols_size);
 dwinfo.parse();
}

// Add a symbol.

void
Gdb_index::add_symbol(int cu_index, const char* sym_name, uint8_t flags)
{
 unsigned int hash = mapped_index_string_hash(
     reinterpret_cast<const unsigned char*>(sym_name));
 Gdb_symbol* sym = new Gdb_symbol();
 this->stringpool_.add(sym_name, true, &sym->name_key);
 sym->hashval = hash;
 sym->cu_vector_index = 0;

 Gdb_symbol* found = this->gdb_symtab_->add(sym);
 if (found == sym)
   {
     // New symbol -- allocate a new CU index vector.
     found->cu_vector_index = this->cu_vector_list_.size();
     this->cu_vector_list_.push_back(new Cu_vector());
   }
 else
   {
     // Found an existing symbol -- append to the existing
     // CU index vector.
     delete sym;
   }

 // Add the CU index to the vector list for this symbol,
 // if it's not already on the list.  We only need to
 // check the last added entry.
 Cu_vector* cu_vec = this->cu_vector_list_[found->cu_vector_index];
 if (cu_vec->size() == 0
     || cu_vec->back().first != cu_index
     || cu_vec->back().second != flags)
   cu_vec->push_back(std::make_pair(cu_index, flags));
}

// Return TRUE if we have already processed the pubnames associated
// with the statement list at the given OFFSET.

bool
Gdb_index::pubnames_read(const Relobj* object, off_t offset)
{
 bool ret = (this->pubnames_object_ == object
             && this->stmt_list_offset_ == offset);
 return ret;
}

// Record that we have processed the pubnames associated with the
// statement list for OBJECT at the given OFFSET.

void
Gdb_index::set_pubnames_read(const Relobj* object, off_t offset)
{
 this->pubnames_object_ = object;
 this->stmt_list_offset_ = offset;
}

// Set the size of the .gdb_index section.

void
Gdb_index::set_final_data_size()
{
 // Finalize the string pool.
 this->stringpool_.set_string_offsets();

 // Compute the total size of the CU vectors.
 // For each CU vector, include one entry for the count at the
 // beginning of the vector.
 unsigned int cu_vector_count = this->cu_vector_list_.size();
 unsigned int cu_vector_size = 0;
 this->cu_vector_offsets_ = new off_t[cu_vector_count];
 for (unsigned int i = 0; i < cu_vector_count; ++i)
   {
     Cu_vector* cu_vec = this->cu_vector_list_[i];
     cu_vector_offsets_[i] = cu_vector_size;
     cu_vector_size += gdb_index_offset_size * (cu_vec->size() + 1);
   }

 // Assign relative offsets to each portion of the index,
 // and find the total size of the section.
 section_size_type data_size = gdb_index_hdr_size;
 data_size += this->comp_units_.size() * gdb_index_cu_size;
 this->tu_offset_ = data_size;
 data_size += this->type_units_.size() * gdb_index_tu_size;
 this->addr_offset_ = data_size;
 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
   data_size += this->ranges_[i].ranges->size() * gdb_index_addr_size;
 this->symtab_offset_ = data_size;
 data_size += this->gdb_symtab_->capacity() * gdb_index_sym_size;
 this->cu_pool_offset_ = data_size;
 data_size += cu_vector_size;
 this->stringpool_offset_ = data_size;
 data_size += this->stringpool_.get_strtab_size();

 this->set_data_size(data_size);
}

// Write the data to the file.

void
Gdb_index::do_write(Output_file* of)
{
 const off_t off = this->offset();
 const off_t oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(off, oview_size);
 unsigned char* pov = oview;

 // Write the file header.
 // (1) Version number.
 elfcpp::Swap<32, false>::writeval(pov, gdb_index_version);
 pov += 4;
 // (2) Offset of the CU list.
 elfcpp::Swap<32, false>::writeval(pov, gdb_index_hdr_size);
 pov += 4;
 // (3) Offset of the types CU list.
 elfcpp::Swap<32, false>::writeval(pov, this->tu_offset_);
 pov += 4;
 // (4) Offset of the address area.
 elfcpp::Swap<32, false>::writeval(pov, this->addr_offset_);
 pov += 4;
 // (5) Offset of the symbol table.
 elfcpp::Swap<32, false>::writeval(pov, this->symtab_offset_);
 pov += 4;
 // (6) Offset of the constant pool.
 elfcpp::Swap<32, false>::writeval(pov, this->cu_pool_offset_);
 pov += 4;

 gold_assert(pov - oview == gdb_index_hdr_size);

 // Write the CU list.
 unsigned int comp_units_count = this->comp_units_.size();
 for (unsigned int i = 0; i < comp_units_count; ++i)
   {
     const Comp_unit& cu = this->comp_units_[i];
     elfcpp::Swap<64, false>::writeval(pov, cu.cu_offset);
     elfcpp::Swap<64, false>::writeval(pov + 8, cu.cu_length);
     pov += 16;
   }

 gold_assert(pov - oview == this->tu_offset_);

 // Write the types CU list.
 for (unsigned int i = 0; i < this->type_units_.size(); ++i)
   {
     const Type_unit& tu = this->type_units_[i];
     elfcpp::Swap<64, false>::writeval(pov, tu.tu_offset);
     elfcpp::Swap<64, false>::writeval(pov + 8, tu.type_offset);
     elfcpp::Swap<64, false>::writeval(pov + 16, tu.type_signature);
     pov += 24;
   }

 gold_assert(pov - oview == this->addr_offset_);

 // Write the address area.
 for (unsigned int i = 0; i < this->ranges_.size(); ++i)
   {
     int cu_index = this->ranges_[i].cu_index;
     // Translate negative indexes, which refer to a TU, to a
     // logical index into a concatenated CU/TU list.
     if (cu_index < 0)
       cu_index = comp_units_count + (-1 - cu_index);
     Relobj* object = this->ranges_[i].object;
     const Dwarf_range_list& ranges = *this->ranges_[i].ranges;
     for (unsigned int j = 0; j < ranges.size(); ++j)
       {
         const Dwarf_range_list::Range& range = ranges[j];
         uint64_t base = 0;
         if (range.shndx > 0)
           {
             const Output_section* os = object->output_section(range.shndx);
             base = (os->address()
                     + object->output_section_offset(range.shndx));
           }
         elfcpp::Swap_aligned32<64, false>::writeval(pov, base + range.start);
         elfcpp::Swap_aligned32<64, false>::writeval(pov + 8,
                                                     base + range.end);
         elfcpp::Swap<32, false>::writeval(pov + 16, cu_index);
         pov += 20;
       }
   }

 gold_assert(pov - oview == this->symtab_offset_);

 // Write the symbol table.
 for (unsigned int i = 0; i < this->gdb_symtab_->capacity(); ++i)
   {
     const Gdb_symbol* sym = (*this->gdb_symtab_)[i];
     section_offset_type name_offset = 0;
     unsigned int cu_vector_offset = 0;
     if (sym != NULL)
       {
         name_offset = (this->stringpool_.get_offset_from_key(sym->name_key)
                        + this->stringpool_offset_ - this->cu_pool_offset_);
         cu_vector_offset = this->cu_vector_offsets_[sym->cu_vector_index];
       }
     elfcpp::Swap<32, false>::writeval(pov, name_offset);
     elfcpp::Swap<32, false>::writeval(pov + 4, cu_vector_offset);
     pov += 8;
   }

 gold_assert(pov - oview == this->cu_pool_offset_);

 // Write the CU vectors into the constant pool.
 for (unsigned int i = 0; i < this->cu_vector_list_.size(); ++i)
   {
     Cu_vector* cu_vec = this->cu_vector_list_[i];
     elfcpp::Swap<32, false>::writeval(pov, cu_vec->size());
     pov += 4;
     for (unsigned int j = 0; j < cu_vec->size(); ++j)
       {
         int cu_index = (*cu_vec)[j].first;
         uint8_t flags = (*cu_vec)[j].second;
         if (cu_index < 0)
           cu_index = comp_units_count + (-1 - cu_index);
         cu_index |= flags << 24;
         elfcpp::Swap<32, false>::writeval(pov, cu_index);
         pov += 4;
       }
   }

 gold_assert(pov - oview == this->stringpool_offset_);

 // Write the strings into the constant pool.
 this->stringpool_.write_to_buffer(pov, oview_size - this->stringpool_offset_);

 of->write_output_view(off, oview_size, oview);
}

// Print usage statistics.
void
Gdb_index::print_stats()
{
 if (parameters->options().gdb_index())
   Gdb_index_info_reader::print_stats();
}

} // End namespace gold.