// dwarf_reader.h -- parse dwarf2/3 debug information for gold  -*- C++ -*-

// Copyright (C) 2007-2024 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_DWARF_READER_H
#define GOLD_DWARF_READER_H

#include <vector>
#include <map>
#include <limits.h>
#include <sys/types.h>

#include "elfcpp.h"
#include "elfcpp_swap.h"
#include "dwarf.h"
#include "reloc.h"

namespace gold
{

class Dwarf_info_reader;
struct LineStateMachine;

// This class is used to extract the section index and offset of
// the target of a relocation for a given offset within the section.

class Elf_reloc_mapper
{
public:
 Elf_reloc_mapper()
 { }

 virtual
 ~Elf_reloc_mapper()
 { }

 // Initialize the relocation tracker for section RELOC_SHNDX.
 bool
 initialize(unsigned int reloc_shndx, unsigned int reloc_type)
 { return this->do_initialize(reloc_shndx, reloc_type); }

 // Return the next reloc_offset.
 off_t
 next_offset()
 { return this->do_next_offset(); }

 // Advance to the next relocation past OFFSET.
 void
 advance(off_t offset)
 { this->do_advance(offset); }

 // Return the section index and offset within the section of the target
 // of the relocation for RELOC_OFFSET in the referring section.
 unsigned int
 get_reloc_target(off_t reloc_offset, off_t* target_offset)
 { return this->do_get_reloc_target(reloc_offset, target_offset); }

 // Checkpoint the current position in the reloc section.
 uint64_t
 checkpoint() const
 { return this->do_checkpoint(); }

 // Reset the current position to the CHECKPOINT.
 void
 reset(uint64_t checkpoint)
 { this->do_reset(checkpoint); }

protected:
 virtual bool
 do_initialize(unsigned int, unsigned int) = 0;

 // Return the next reloc_offset.
 virtual off_t
 do_next_offset() = 0;

 // Advance to the next relocation past OFFSET.
 virtual void
 do_advance(off_t offset) = 0;

 virtual unsigned int
 do_get_reloc_target(off_t reloc_offset, off_t* target_offset) = 0;

 // Checkpoint the current position in the reloc section.
 virtual uint64_t
 do_checkpoint() const = 0;

 // Reset the current position to the CHECKPOINT.
 virtual void
 do_reset(uint64_t checkpoint) = 0;
};

template<int size, bool big_endian>
class Sized_elf_reloc_mapper : public Elf_reloc_mapper
{
public:
 Sized_elf_reloc_mapper(Object* object, const unsigned char* symtab,
                        off_t symtab_size)
   : object_(object), symtab_(symtab), symtab_size_(symtab_size),
     reloc_type_(0), track_relocs_()
 { }

protected:
 bool
 do_initialize(unsigned int reloc_shndx, unsigned int reloc_type);

 // Return the next reloc_offset.
 virtual off_t
 do_next_offset()
 { return this->track_relocs_.next_offset(); }

 // Advance to the next relocation past OFFSET.
 virtual void
 do_advance(off_t offset)
 { this->track_relocs_.advance(offset); }

 unsigned int
 do_get_reloc_target(off_t reloc_offset, off_t* target_offset);

 // Checkpoint the current position in the reloc section.
 uint64_t
 do_checkpoint() const
 { return this->track_relocs_.checkpoint(); }

 // Reset the current position to the CHECKPOINT.
 void
 do_reset(uint64_t checkpoint)
 { this->track_relocs_.reset(checkpoint); }

private:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;

 // Return the section index of symbol SYMNDX, and copy its value to *VALUE.
 // Set *IS_ORDINARY true if the section index is an ordinary section index.
 unsigned int
 symbol_section(unsigned int symndx, Address* value, bool* is_ordinary);

 // The object file.
 Object* object_;
 // The ELF symbol table.
 const unsigned char* symtab_;
 // The size of the ELF symbol table.
 off_t symtab_size_;
 // Type of the relocation section (SHT_REL or SHT_RELA).
 unsigned int reloc_type_;
 // Relocations for the referring section.
 Track_relocs<size, big_endian> track_relocs_;
};

// This class is used to read the abbreviations table from the
// .debug_abbrev section of the object file.

class Dwarf_abbrev_table
{
public:
 // An attribute list entry.
 struct Attribute
 {
   Attribute(unsigned int a, unsigned int f, int c)
     : attr(a), form(f), implicit_const(c)
   { }
   unsigned int attr;
   unsigned int form;
   int implicit_const;
 };

 // An abbrev code entry.
 struct Abbrev_code
 {
   Abbrev_code(unsigned int t, bool hc)
     : tag(t), has_children(hc), has_sibling_attribute(false), attributes()
   {
     this->attributes.reserve(10);
   }

   void
   add_attribute(unsigned int attr, unsigned int form, int implicit_const)
   {
     this->attributes.push_back(Attribute(attr, form, implicit_const));
   }

   // The DWARF tag.
   unsigned int tag;
   // True if the DIE has children.
   bool has_children : 1;
   // True if the DIE has a sibling attribute.
   bool has_sibling_attribute : 1;
   // The list of attributes and forms.
   std::vector<Attribute> attributes;
 };

 Dwarf_abbrev_table()
   : abbrev_shndx_(0), abbrev_offset_(0), buffer_(NULL), buffer_end_(NULL),
     owns_buffer_(false), buffer_pos_(NULL), high_abbrev_codes_()
 {
   memset(this->low_abbrev_codes_, 0, sizeof(this->low_abbrev_codes_));
 }

 ~Dwarf_abbrev_table()
 {
   if (this->owns_buffer_ && this->buffer_ != NULL)
     delete[] this->buffer_;
   this->clear_abbrev_codes();
 }

 // Read the abbrev table from an object file.
 bool
 read_abbrevs(Relobj* object,
              unsigned int abbrev_shndx,
              off_t abbrev_offset)
 {
   // If we've already read this abbrev table, return immediately.
   if (this->abbrev_shndx_ > 0
       && this->abbrev_shndx_ == abbrev_shndx
       && this->abbrev_offset_ == abbrev_offset)
     return true;
   return this->do_read_abbrevs(object, abbrev_shndx, abbrev_offset);
 }

 // Return the abbrev code entry for CODE.  This is a fast path for
 // abbrev codes that are in the direct lookup table.  If not found
 // there, we call do_get_abbrev() to do the hard work.
 const Abbrev_code*
 get_abbrev(unsigned int code)
 {
   if (code < this->low_abbrev_code_max_
       && this->low_abbrev_codes_[code] != NULL)
     return this->low_abbrev_codes_[code];
   return this->do_get_abbrev(code);
 }

private:
 // Read the abbrev table from an object file.
 bool
 do_read_abbrevs(Relobj* object,
                 unsigned int abbrev_shndx,
                 off_t abbrev_offset);

 // Lookup the abbrev code entry for CODE.
 const Abbrev_code*
 do_get_abbrev(unsigned int code);

 // Store an abbrev code entry for CODE.
 void
 store_abbrev(unsigned int code, const Abbrev_code* entry)
 {
   if (code < this->low_abbrev_code_max_)
     this->low_abbrev_codes_[code] = entry;
   else
     this->high_abbrev_codes_[code] = entry;
 }

 // Clear the abbrev code table and release the memory it uses.
 void
 clear_abbrev_codes();

 typedef Unordered_map<unsigned int, const Abbrev_code*> Abbrev_code_table;

 // The section index of the current abbrev table.
 unsigned int abbrev_shndx_;
 // The offset within the section of the current abbrev table.
 off_t abbrev_offset_;
 // The buffer containing the .debug_abbrev section.
 const unsigned char* buffer_;
 const unsigned char* buffer_end_;
 // True if this object owns the buffer and needs to delete it.
 bool owns_buffer_;
 // Pointer to the current position in the buffer.
 const unsigned char* buffer_pos_;
 // The table of abbrev codes.
 // We use a direct-lookup array for low abbrev codes,
 // and store the rest in a hash table.
 static const unsigned int low_abbrev_code_max_ = 256;
 const Abbrev_code* low_abbrev_codes_[low_abbrev_code_max_];
 Abbrev_code_table high_abbrev_codes_;
};

// A DWARF range list.  The start and end offsets are relative
// to the input section SHNDX.  Each range must lie entirely
// within a single section.

class Dwarf_range_list
{
public:
 struct Range
 {
   Range(unsigned int a_shndx, off_t a_start, off_t a_end)
     : shndx(a_shndx), start(a_start), end(a_end)
   { }

   unsigned int shndx;
   off_t start;
   off_t end;
 };

 Dwarf_range_list()
   : range_list_()
 { }

 void
 add(unsigned int shndx, off_t start, off_t end)
 { this->range_list_.push_back(Range(shndx, start, end)); }

 size_t
 size() const
 { return this->range_list_.size(); }

 const Range&
 operator[](off_t i) const
 { return this->range_list_[i]; }

private:
 std::vector<Range> range_list_;
};

// This class is used to read the ranges table from the
// .debug_ranges section of the object file.

class Dwarf_ranges_table
{
public:
 Dwarf_ranges_table(Dwarf_info_reader* dwinfo)
   : dwinfo_(dwinfo), ranges_shndx_(0), ranges_buffer_(NULL),
     ranges_buffer_end_(NULL), owns_ranges_buffer_(false),
     ranges_reloc_mapper_(NULL), reloc_type_(0), output_section_offset_(0)
 { }

 ~Dwarf_ranges_table()
 {
   if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
     delete[] this->ranges_buffer_;
   if (this->ranges_reloc_mapper_ != NULL)
     delete this->ranges_reloc_mapper_;
 }

 // Fetch the contents of the ranges table from an object file.
 bool
 read_ranges_table(Relobj* object,
                   const unsigned char* symtab,
                   off_t symtab_size,
                   unsigned int ranges_shndx,
                   unsigned int version);

 // Read the DWARF 2/3/4 range table.
 Dwarf_range_list*
 read_range_list(Relobj* object,
                 const unsigned char* symtab,
                 off_t symtab_size,
                 unsigned int address_size,
                 unsigned int ranges_shndx,
                 off_t ranges_offset);

 // Read the DWARF 5 rnglists table.
 Dwarf_range_list*
 read_range_list_v5(Relobj* object,
                    const unsigned char* symtab,
                    off_t symtab_size,
                    unsigned int address_size,
                    unsigned int ranges_shndx,
                    off_t ranges_offset);

 // Look for a relocation at offset OFF in the range table,
 // and return the section index and offset of the target.
 unsigned int
 lookup_reloc(off_t off, off_t* target_off);

private:
 // The Dwarf_info_reader, for reading data.
 Dwarf_info_reader* dwinfo_;
 // The section index of the ranges table.
 unsigned int ranges_shndx_;
 // The buffer containing the .debug_ranges section.
 const unsigned char* ranges_buffer_;
 const unsigned char* ranges_buffer_end_;
 // True if this object owns the buffer and needs to delete it.
 bool owns_ranges_buffer_;
 // Relocation mapper for the .debug_ranges section.
 Elf_reloc_mapper* ranges_reloc_mapper_;
 // Type of the relocation section (SHT_REL or SHT_RELA).
 unsigned int reloc_type_;
 // For incremental update links, this will hold the offset of the
 // input section within the output section.  Offsets read from
 // relocated data will be relative to the output section, and need
 // to be corrected before reading data from the input section.
 uint64_t output_section_offset_;
};

// This class is used to read the pubnames and pubtypes tables from the
// .debug_pubnames and .debug_pubtypes sections of the object file.

class Dwarf_pubnames_table
{
public:
 Dwarf_pubnames_table(Dwarf_info_reader* dwinfo, bool is_pubtypes)
   : dwinfo_(dwinfo), buffer_(NULL), buffer_end_(NULL), owns_buffer_(false),
     offset_size_(0), pinfo_(NULL), end_of_table_(NULL),
     is_pubtypes_(is_pubtypes), is_gnu_style_(false),
     unit_length_(0), cu_offset_(0)
 { }

 ~Dwarf_pubnames_table()
 {
   if (this->owns_buffer_ && this->buffer_ != NULL)
     delete[] this->buffer_;
 }

 // Read the pubnames section from the object file, using the symbol
 // table for relocating it.
 bool
 read_section(Relobj* object, const unsigned char* symbol_table,
              off_t symtab_size);

 // Read the header for the set at OFFSET.
 bool
 read_header(off_t offset);

 // Return the offset to the cu within the info or types section.
 off_t
 cu_offset()
 { return this->cu_offset_; }

 // Return the size of this subsection of the table.  The unit length
 // doesn't include the size of its own field.
 off_t
 subsection_size()
 { return this->unit_length_; }

 // Read the next name from the set.  If the pubname table is gnu-style,
 // FLAG_BYTE is set to the high-byte of a gdb_index version 7 cu_index.
 const char*
 next_name(uint8_t* flag_byte);

private:
 // The Dwarf_info_reader, for reading data.
 Dwarf_info_reader* dwinfo_;
 // The buffer containing the .debug_ranges section.
 const unsigned char* buffer_;
 const unsigned char* buffer_end_;
 // True if this object owns the buffer and needs to delete it.
 bool owns_buffer_;
 // The size of a DWARF offset for the current set.
 unsigned int offset_size_;
 // The current position within the buffer.
 const unsigned char* pinfo_;
 // The end of the current pubnames table.
 const unsigned char* end_of_table_;
 // TRUE if this is a .debug_pubtypes section.
 bool is_pubtypes_;
 // Gnu-style pubnames table. This style has an extra flag byte between the
 // offset and the name, and is used for generating version 7 of gdb-index.
 bool is_gnu_style_;
 // Fields read from the header.
 uint64_t unit_length_;
 off_t cu_offset_;

 // Track relocations for this table so we can find the CUs that
 // correspond to the subsections.
 Elf_reloc_mapper* reloc_mapper_;
 // Type of the relocation section (SHT_REL or SHT_RELA).
 unsigned int reloc_type_;
};

// This class represents a DWARF Debug Info Entry (DIE).

class Dwarf_die
{
public:
 // An attribute value.
 struct Attribute_value
 {
   unsigned int attr;
   unsigned int form;
   union
   {
     int64_t intval;
     uint64_t uintval;
     const char* stringval;
     const unsigned char* blockval;
     off_t refval;
   } val;
   union
   {
     // Section index for reference forms.
     unsigned int shndx;
     // Block length for block forms.
     unsigned int blocklen;
   } aux;
 };

 // A list of attribute values.
 typedef std::vector<Attribute_value> Attributes;

 Dwarf_die(Dwarf_info_reader* dwinfo,
           off_t die_offset,
           Dwarf_die* parent);

 // Return the DWARF tag for this DIE.
 unsigned int
 tag() const
 {
   if (this->abbrev_code_ == NULL)
     return 0;
   return this->abbrev_code_->tag;
 }

 // Return true if this DIE has children.
 bool
 has_children() const
 {
   gold_assert(this->abbrev_code_ != NULL);
   return this->abbrev_code_->has_children;
 }

 // Return true if this DIE has a sibling attribute.
 bool
 has_sibling_attribute() const
 {
   gold_assert(this->abbrev_code_ != NULL);
   return this->abbrev_code_->has_sibling_attribute;
 }

 // Return the value of attribute ATTR.
 const Attribute_value*
 attribute(unsigned int attr);

 // Return the value of the DW_AT_name attribute.
 const char*
 name()
 {
   if (this->name_ == NULL)
     this->set_name();
   return this->name_;
 }

 // Return the value of the DW_AT_linkage_name
 // or DW_AT_MIPS_linkage_name attribute.
 const char*
 linkage_name()
 {
   if (this->linkage_name_ == NULL)
     this->set_linkage_name();
   return this->linkage_name_;
 }

 // Return the value of the DW_AT_specification attribute.
 off_t
 specification()
 {
   if (!this->attributes_read_)
     this->read_attributes();
   return this->specification_;
 }

 // Return the value of the DW_AT_abstract_origin attribute.
 off_t
 abstract_origin()
 {
   if (!this->attributes_read_)
     this->read_attributes();
   return this->abstract_origin_;
 }

 // Return the value of attribute ATTR as a string.
 const char*
 string_attribute(unsigned int attr);

 // Return the value of attribute ATTR as an integer.
 int64_t
 int_attribute(unsigned int attr);

 // Return the value of attribute ATTR as an unsigned integer.
 uint64_t
 uint_attribute(unsigned int attr);

 // Return the value of attribute ATTR as a reference.
 off_t
 ref_attribute(unsigned int attr, unsigned int* shndx);

 // Return the value of attribute ATTR as a address.
 off_t
 address_attribute(unsigned int attr, unsigned int* shndx);

 // Return the value of attribute ATTR as a flag.
 bool
 flag_attribute(unsigned int attr)
 { return this->int_attribute(attr) != 0; }

 // Return true if this DIE is a declaration.
 bool
 is_declaration()
 { return this->flag_attribute(elfcpp::DW_AT_declaration); }

 // Return the parent of this DIE.
 Dwarf_die*
 parent() const
 { return this->parent_; }

 // Return the offset of this DIE.
 off_t
 offset() const
 { return this->die_offset_; }

 // Return the offset of this DIE's first child.
 off_t
 child_offset();

 // Set the offset of this DIE's next sibling.
 void
 set_sibling_offset(off_t sibling_offset)
 { this->sibling_offset_ = sibling_offset; }

 // Return the offset of this DIE's next sibling.
 off_t
 sibling_offset();

private:
 typedef Dwarf_abbrev_table::Abbrev_code Abbrev_code;

 // Read all the attributes of the DIE.
 bool
 read_attributes();

 // Set the name of the DIE if present.
 void
 set_name();

 // Set the linkage name if present.
 void
 set_linkage_name();

 // Skip all the attributes of the DIE and return the offset
 // of the next DIE.
 off_t
 skip_attributes();

 // The Dwarf_info_reader, for reading attributes.
 Dwarf_info_reader* dwinfo_;
 // The parent of this DIE.
 Dwarf_die* parent_;
 // Offset of this DIE within its compilation unit.
 off_t die_offset_;
 // Offset of the first attribute, relative to the beginning of the DIE.
 off_t attr_offset_;
 // Offset of the first child, relative to the compilation unit.
 off_t child_offset_;
 // Offset of the next sibling, relative to the compilation unit.
 off_t sibling_offset_;
 // The abbreviation table entry.
 const Abbrev_code* abbrev_code_;
 // The list of attributes.
 Attributes attributes_;
 // True if the attributes have been read.
 bool attributes_read_;
 // The following fields hold common attributes to avoid a linear
 // search through the attribute list.
 // The DIE name (DW_AT_name).
 const char* name_;
 // Offset of the name in the string table (for DW_FORM_strp).
 off_t name_off_;
 // The linkage name (DW_AT_linkage_name or DW_AT_MIPS_linkage_name).
 const char* linkage_name_;
 // Offset of the linkage name in the string table (for DW_FORM_strp).
 off_t linkage_name_off_;
 // Section index of the string table (for DW_FORM_strp).
 unsigned int string_shndx_;
 // The value of a DW_AT_specification attribute.
 off_t specification_;
 // The value of a DW_AT_abstract_origin attribute.
 off_t abstract_origin_;
};

// This class is used to read the debug info from the .debug_info
// or .debug_types sections.  This is a base class that implements
// the generic parsing of the compilation unit header and DIE
// structure.  The parse() method parses the entire section, and
// calls the various visit_xxx() methods for each header.  Clients
// should derive a new class from this one and implement the
// visit_compilation_unit() and visit_type_unit() functions.
// IS_TYPE_UNIT is true if we are reading from a .debug_types section,
// which is used only in DWARF 4. For DWARF 5, it will be false,
// and we will determine whether it's a type init when we parse the
// header.

class Dwarf_info_reader
{
public:
 Dwarf_info_reader(bool is_type_unit,
                   Relobj* object,
                   const unsigned char* symtab,
                   off_t symtab_size,
                   unsigned int shndx,
                   unsigned int reloc_shndx,
                   unsigned int reloc_type)
   : object_(object), symtab_(symtab),
     symtab_size_(symtab_size), shndx_(shndx), reloc_shndx_(reloc_shndx),
     reloc_type_(reloc_type), abbrev_shndx_(0), string_shndx_(0),
     buffer_(NULL), buffer_end_(NULL), cu_offset_(0), cu_length_(0),
     offset_size_(0), address_size_(0), cu_version_(0),
     abbrev_table_(), ranges_table_(this),
     reloc_mapper_(NULL), string_buffer_(NULL), string_buffer_end_(NULL),
     owns_string_buffer_(false), string_output_section_offset_(0)
 {
   // For DWARF 4, we infer the unit type from the section name.
   // For DWARF 5, we will read this from the unit header.
   this->unit_type_ =
       (is_type_unit ? elfcpp::DW_UT_type : elfcpp::DW_UT_compile);
 }

 virtual
 ~Dwarf_info_reader()
 {
   if (this->reloc_mapper_ != NULL)
     delete this->reloc_mapper_;
   if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
     delete[] this->string_buffer_;
 }

 bool
 is_type_unit() const
 {
   return (this->unit_type_ == elfcpp::DW_UT_type
           || this->unit_type_ == elfcpp::DW_UT_split_type);
 }

 // Begin parsing the debug info.  This calls visit_compilation_unit()
 // or visit_type_unit() for each compilation or type unit found in the
 // section, and visit_die() for each top-level DIE.
 void
 parse();

 // Return the abbrev code entry for a CODE.
 const Dwarf_abbrev_table::Abbrev_code*
 get_abbrev(unsigned int code)
 { return this->abbrev_table_.get_abbrev(code); }

 // Return a pointer to the DWARF info buffer at OFFSET.
 const unsigned char*
 buffer_at_offset(off_t offset) const
 {
   const unsigned char* p = this->buffer_ + this->cu_offset_ + offset;
   if (this->check_buffer(p + 1))
     return p;
   return NULL;
 }

 // Read a possibly unaligned integer of SIZE.
 template <int valsize>
 inline typename elfcpp::Valtype_base<valsize>::Valtype
 read_from_pointer(const unsigned char* source);

 // Read a possibly unaligned integer of SIZE.  Update SOURCE after read.
 template <int valsize>
 inline typename elfcpp::Valtype_base<valsize>::Valtype
 read_from_pointer(const unsigned char** source);

 inline typename elfcpp::Valtype_base<32>::Valtype
 read_3bytes_from_pointer(const unsigned char** source);

 // Look for a relocation at offset ATTR_OFF in the dwarf info,
 // and return the section index and offset of the target.
 unsigned int
 lookup_reloc(off_t attr_off, off_t* target_off);

 // Return a string from the DWARF string table.
 const char*
 get_string(off_t str_off, unsigned int string_shndx);

 // Return the size of a DWARF offset.
 unsigned int
 offset_size() const
 { return this->offset_size_; }

 // Return the size of an address.
 unsigned int
 address_size() const
 { return this->address_size_; }

 // Return the size of a DW_FORM_ref_addr.
 // In DWARF v2, this was the size of an address; in DWARF v3 and later,
 // it is the size of an DWARF offset.
 unsigned int
 ref_addr_size() const
 { return this->cu_version_ > 2 ? this->offset_size_ : this->address_size_; }

 // Set the section index of the .debug_abbrev section.
 // We use this if there are no relocations for the .debug_info section.
 // If not set, the code parse() routine will search for the section by name.
 void
 set_abbrev_shndx(unsigned int abbrev_shndx)
 { this->abbrev_shndx_ = abbrev_shndx; }

 // Return a pointer to the object file's ELF symbol table.
 const unsigned char*
 symtab() const
 { return this->symtab_; }

 // Return the size of the object file's ELF symbol table.
 off_t
 symtab_size() const
 { return this->symtab_size_; }

 // Return the offset of the current compilation unit.
 off_t
 cu_offset() const
 { return this->cu_offset_; }

protected:
 // Begin parsing the debug info.  This calls visit_compilation_unit()
 // or visit_type_unit() for each compilation or type unit found in the
 // section, and visit_die() for each top-level DIE.
 template<bool big_endian>
 void
 do_parse();

 // The following methods are hooks that are meant to be implemented
 // by a derived class.  A default, do-nothing, implementation of
 // each is provided for this base class.

 // Visit a compilation unit.
 virtual void
 visit_compilation_unit(off_t cu_offset, off_t cu_length, Dwarf_die* root_die);

 // Visit a type unit.
 virtual void
 visit_type_unit(off_t tu_offset, off_t tu_length, off_t type_offset,
                 uint64_t signature, Dwarf_die* root_die);

 // Read the range table.
 Dwarf_range_list*
 read_range_list(unsigned int ranges_shndx, off_t ranges_offset)
 {
   if (this->cu_version_ < 5)
     return this->ranges_table_.read_range_list(this->object_,
                                                this->symtab_,
                                                this->symtab_size_,
                                                this->address_size_,
                                                ranges_shndx,
                                                ranges_offset);
   else
     return this->ranges_table_.read_range_list_v5(this->object_,
                                                   this->symtab_,
                                                   this->symtab_size_,
                                                   this->address_size_,
                                                   ranges_shndx,
                                                   ranges_offset);
 }

 // Return the object.
 Relobj*
 object() const
 { return this->object_; }

 // Checkpoint the relocation tracker.
 uint64_t
 get_reloc_checkpoint() const
 { return this->reloc_mapper_->checkpoint(); }

 // Reset the relocation tracker to the CHECKPOINT.
 void
 reset_relocs(uint64_t checkpoint)
 { this->reloc_mapper_->reset(checkpoint); }

private:
 // Print a warning about a corrupt debug section.
 void
 warn_corrupt_debug_section() const;

 // Check that P is within the bounds of the current section.
 bool
 check_buffer(const unsigned char* p) const
 {
   if (p > this->buffer_ + this->cu_offset_ + this->cu_length_)
     {
       this->warn_corrupt_debug_section();
       return false;
     }
   return true;
 }

 // Read the DWARF string table.
 bool
 read_string_table(unsigned int string_shndx)
 {
   // If we've already read this string table, return immediately.
   if (this->string_shndx_ > 0 && this->string_shndx_ == string_shndx)
     return true;
   if (string_shndx == 0 && this->string_shndx_ > 0)
     return true;
   return this->do_read_string_table(string_shndx);
 }

 bool
 do_read_string_table(unsigned int string_shndx);

 // The unit type (DW_UT_xxx).
 unsigned int unit_type_;
 // The object containing the .debug_info or .debug_types input section.
 Relobj* object_;
 // The ELF symbol table.
 const unsigned char* symtab_;
 // The size of the ELF symbol table.
 off_t symtab_size_;
 // Index of the .debug_info or .debug_types section.
 unsigned int shndx_;
 // Index of the relocation section.
 unsigned int reloc_shndx_;
 // Type of the relocation section (SHT_REL or SHT_RELA).
 unsigned int reloc_type_;
 // Index of the .debug_abbrev section (0 if not known).
 unsigned int abbrev_shndx_;
 // Index of the .debug_str section.
 unsigned int string_shndx_;
 // The buffer for the debug info.
 const unsigned char* buffer_;
 const unsigned char* buffer_end_;
 // Offset of the current compilation unit.
 off_t cu_offset_;
 // Length of the current compilation unit.
 off_t cu_length_;
 // Size of a DWARF offset for the current compilation unit.
 unsigned int offset_size_;
 // Size of an address for the target architecture.
 unsigned int address_size_;
 // Compilation unit version number.
 unsigned int cu_version_;
 // Abbreviations table for current compilation unit.
 Dwarf_abbrev_table abbrev_table_;
 // Ranges table for the current compilation unit.
 Dwarf_ranges_table ranges_table_;
 // Relocation mapper for the section.
 Elf_reloc_mapper* reloc_mapper_;
 // The buffer for the debug string table.
 const char* string_buffer_;
 const char* string_buffer_end_;
 // True if this object owns the buffer and needs to delete it.
 bool owns_string_buffer_;
 // For incremental update links, this will hold the offset of the
 // input .debug_str section within the output section.  Offsets read
 // from relocated data will be relative to the output section, and need
 // to be corrected before reading data from the input section.
 uint64_t string_output_section_offset_;
};

// We can't do better than to keep the offsets in a sorted vector.
// Here, offset is the key, and file_num/line_num is the value.
struct Offset_to_lineno_entry
{
 off_t offset;
 int header_num;  // which file-list to use (i.e. which .o file are we in)
 // A pointer into files_.
 unsigned int file_num : sizeof(int) * CHAR_BIT - 1;
 // True if this was the last entry for the current offset, meaning
 // it's the line that actually applies.
 unsigned int last_line_for_offset : 1;
 // The line number in the source file.  -1 to indicate end-of-function.
 int line_num;

 // This sorts by offsets first, and then puts the correct line to
 // report for a given offset at the beginning of the run of equal
 // offsets (so that asking for 1 line gives the best answer).  This
 // is not a total ordering.
 bool operator<(const Offset_to_lineno_entry& that) const
 {
   if (this->offset != that.offset)
     return this->offset < that.offset;
   // Note the '>' which makes this sort 'true' first.
   return this->last_line_for_offset > that.last_line_for_offset;
 }
};

// This class is used to read the line information from the debugging
// section of an object file.

class Dwarf_line_info
{
public:
 Dwarf_line_info()
 { }

 virtual
 ~Dwarf_line_info()
 { }

 // Given a section number and an offset, returns the associated
 // file and line-number, as a string: "file:lineno".  If unable
 // to do the mapping, returns the empty string.  You must call
 // read_line_mappings() before calling this function.  If
 // 'other_lines' is non-NULL, fills that in with other line
 // numbers assigned to the same offset.
 std::string
 addr2line(unsigned int shndx, off_t offset,
           std::vector<std::string>* other_lines)
 { return this->do_addr2line(shndx, offset, other_lines); }

 // A helper function for a single addr2line lookup.  It also keeps a
 // cache of the last CACHE_SIZE Dwarf_line_info objects it created;
 // set to 0 not to cache at all.  The larger CACHE_SIZE is, the more
 // chance this routine won't have to re-create a Dwarf_line_info
 // object for its addr2line computation; such creations are slow.
 // NOTE: Not thread-safe, so only call from one thread at a time.
 static std::string
 one_addr2line(Object* object, unsigned int shndx, off_t offset,
               size_t cache_size, std::vector<std::string>* other_lines);

 // This reclaims all the memory that one_addr2line may have cached.
 // Use this when you know you will not be calling one_addr2line again.
 static void
 clear_addr2line_cache();

private:
 virtual std::string
 do_addr2line(unsigned int shndx, off_t offset,
              std::vector<std::string>* other_lines) = 0;
};

template<int size, bool big_endian>
class Sized_dwarf_line_info : public Dwarf_line_info
{
public:
 // Initializes a .debug_line reader for a given object file.
 // If SHNDX is specified and non-negative, only read the debug
 // information that pertains to the specified section.
 Sized_dwarf_line_info(Object* object, unsigned int read_shndx = -1U);

 virtual
 ~Sized_dwarf_line_info()
 {
   if (this->buffer_start_ != NULL)
     delete[] this->buffer_start_;
   if (this->str_buffer_start_ != NULL)
     delete[] this->str_buffer_start_;
 }

private:
 std::string
 do_addr2line(unsigned int shndx, off_t offset,
              std::vector<std::string>* other_lines);

 // Formats a file and line number to a string like "dirname/filename:lineno".
 std::string
 format_file_lineno(const Offset_to_lineno_entry& lineno) const;

 // Start processing line info, and populates the offset_map_.
 // If SHNDX is non-negative, only store debug information that
 // pertains to the specified section.
 void
 read_line_mappings(unsigned int shndx);

 // Reads the relocation section associated with .debug_line and
 // stores relocation information in reloc_map_.
 void
 read_relocs();

 // Reads the DWARF header for this line info.  Each takes as input
 // a starting buffer position, and returns the ending position.
 const unsigned char*
 read_header_prolog(const unsigned char* lineptr);

 const unsigned char*
 read_header_tables_v2(const unsigned char* lineptr);

 const unsigned char*
 read_header_tables_v5(const unsigned char* lineptr);

 // Reads the DWARF line information.  If shndx is non-negative,
 // discard all line information that doesn't pertain to the given
 // section.
 const unsigned char*
 read_lines(const unsigned char* lineptr, const unsigned char* endptr,
            unsigned int shndx);

 // Process a single line info opcode at START using the state
 // machine at LSM.  Return true if we should define a line using the
 // current state of the line state machine.  Place the length of the
 // opcode in LEN.
 bool
 process_one_opcode(const unsigned char* start,
                    struct LineStateMachine* lsm, size_t* len);

 // Some parts of processing differ depending on whether the input
 // was a .o file or not.
 bool input_is_relobj();

 // If we saw anything amiss while parsing, we set this to false.
 // Then addr2line will always fail (rather than return possibly-
 // corrupt data).
 bool data_valid_;

 // A DWARF2/3 line info header.  This is not the same size as in the
 // actual file, as the one in the file may have a 32 bit or 64 bit
 // lengths.

 struct Dwarf_line_infoHeader
 {
   off_t total_length;
   int version;
   int address_size;
   off_t prologue_length;
   int min_insn_length; // insn stands for instruction
   int max_ops_per_insn; // Added in DWARF-4.
   bool default_is_stmt; // stmt stands for statement
   signed char line_base;
   int line_range;
   unsigned char opcode_base;
   std::vector<unsigned char> std_opcode_lengths;
   int offset_size;
 } header_;

 // buffer is the buffer for our line info, starting at exactly where
 // the line info to read is.
 const unsigned char* buffer_;
 const unsigned char* buffer_end_;
 // If the buffer was allocated temporarily, and therefore must be
 // deallocated in the dtor, this contains a pointer to the start
 // of the buffer.
 const unsigned char* buffer_start_;

 // str_buffer is the buffer for the line table strings.
 const unsigned char* str_buffer_;
 const unsigned char* str_buffer_end_;
 // If the buffer was allocated temporarily, and therefore must be
 // deallocated in the dtor, this contains a pointer to the start
 // of the buffer.
 const unsigned char* str_buffer_start_;

 // Pointer to the end of the header_length field (aka prologue_length).
 const unsigned char* end_of_header_length_;

 // Pointer to the end of the current compilation unit.
 const unsigned char* end_of_unit_;

 // This has relocations that point into buffer.
 Sized_elf_reloc_mapper<size, big_endian>* reloc_mapper_;
 // The type of the reloc section in track_relocs_--SHT_REL or SHT_RELA.
 unsigned int track_relocs_type_;

 // This is used to figure out what section to apply a relocation to.
 const unsigned char* symtab_buffer_;
 section_size_type symtab_buffer_size_;

 // Holds the directories and files as we see them.  We have an array
 // of directory-lists, one for each .o file we're reading (usually
 // there will just be one, but there may be more if input is a .so).
 std::vector<std::vector<std::string> > directories_;
 // The first part is an index into directories_, the second the filename.
 std::vector<std::vector< std::pair<int, std::string> > > files_;

 // An index into the current directories_ and files_ vectors.
 int current_header_index_;

 // A sorted map from offset of the relocation target to the shndx
 // and addend for the relocation.
 typedef std::map<off_t, std::pair<unsigned int, off_t> >
 Reloc_map;
 Reloc_map reloc_map_;

 // We have a vector of offset->lineno entries for every input section.
 typedef Unordered_map<unsigned int, std::vector<Offset_to_lineno_entry> >
 Lineno_map;

 Lineno_map line_number_map_;
};

} // End namespace gold.

#endif // !defined(GOLD_DWARF_READER_H)