// arm.cc -- arm target support for gold.

// Copyright (C) 2009-2024 Free Software Foundation, Inc.
// Written by Doug Kwan <[email protected]> based on the i386 code
// by Ian Lance Taylor <[email protected]>.
// This file also contains borrowed and adapted code from
// bfd/elf32-arm.c.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>
#include <limits>
#include <cstdio>
#include <string>
#include <algorithm>
#include <map>
#include <utility>
#include <set>

#include "elfcpp.h"
#include "parameters.h"
#include "reloc.h"
#include "arm.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "defstd.h"
#include "gc.h"
#include "attributes.h"
#include "arm-reloc-property.h"
#include "nacl.h"

namespace
{

using namespace gold;

template<bool big_endian>
class Output_data_plt_arm;

template<bool big_endian>
class Output_data_plt_arm_short;

template<bool big_endian>
class Output_data_plt_arm_long;

template<bool big_endian>
class Stub_table;

template<bool big_endian>
class Arm_input_section;

class Arm_exidx_cantunwind;

class Arm_exidx_merged_section;

class Arm_exidx_fixup;

template<bool big_endian>
class Arm_output_section;

class Arm_exidx_input_section;

template<bool big_endian>
class Arm_relobj;

template<bool big_endian>
class Arm_relocate_functions;

template<bool big_endian>
class Arm_output_data_got;

template<bool big_endian>
class Target_arm;

// For convenience.
typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address;

// Maximum branch offsets for ARM, THUMB and THUMB2.
const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8);
const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8);
const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4);
const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);

// Thread Control Block size.
const size_t ARM_TCB_SIZE = 8;

// The arm target class.
//
// This is a very simple port of gold for ARM-EABI.  It is intended for
// supporting Android only for the time being.
//
// TODOs:
// - Implement all static relocation types documented in arm-reloc.def.
// - Make PLTs more flexible for different architecture features like
//   Thumb-2 and BE8.
// There are probably a lot more.

// Ideally we would like to avoid using global variables but this is used
// very in many places and sometimes in loops.  If we use a function
// returning a static instance of Arm_reloc_property_table, it will be very
// slow in an threaded environment since the static instance needs to be
// locked.  The pointer is below initialized in the
// Target::do_select_as_default_target() hook so that we do not spend time
// building the table if we are not linking ARM objects.
//
// An alternative is to process the information in arm-reloc.def in
// compilation time and generate a representation of it in PODs only.  That
// way we can avoid initialization when the linker starts.

Arm_reloc_property_table* arm_reloc_property_table = NULL;

// Instruction template class.  This class is similar to the insn_sequence
// struct in bfd/elf32-arm.c.

class Insn_template
{
public:
 // Types of instruction templates.
 enum Type
   {
     THUMB16_TYPE = 1,
     // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction
     // templates with class-specific semantics.  Currently this is used
     // only by the Cortex_a8_stub class for handling condition codes in
     // conditional branches.
     THUMB16_SPECIAL_TYPE,
     THUMB32_TYPE,
     ARM_TYPE,
     DATA_TYPE
   };

 // Factory methods to create instruction templates in different formats.

 static const Insn_template
 thumb16_insn(uint32_t data)
 { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); }

 // A Thumb conditional branch, in which the proper condition is inserted
 // when we build the stub.
 static const Insn_template
 thumb16_bcond_insn(uint32_t data)
 { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); }

 static const Insn_template
 thumb32_insn(uint32_t data)
 { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); }

 static const Insn_template
 thumb32_b_insn(uint32_t data, int reloc_addend)
 {
   return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24,
                        reloc_addend);
 }

 static const Insn_template
 arm_insn(uint32_t data)
 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); }

 static const Insn_template
 arm_rel_insn(unsigned data, int reloc_addend)
 { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); }

 static const Insn_template
 data_word(unsigned data, unsigned int r_type, int reloc_addend)
 { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); }

 // Accessors.  This class is used for read-only objects so no modifiers
 // are provided.

 uint32_t
 data() const
 { return this->data_; }

 // Return the instruction sequence type of this.
 Type
 type() const
 { return this->type_; }

 // Return the ARM relocation type of this.
 unsigned int
 r_type() const
 { return this->r_type_; }

 int32_t
 reloc_addend() const
 { return this->reloc_addend_; }

 // Return size of instruction template in bytes.
 size_t
 size() const;

 // Return byte-alignment of instruction template.
 unsigned
 alignment() const;

private:
 // We make the constructor private to ensure that only the factory
 // methods are used.
 inline
 Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend)
   : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend)
 { }

 // Instruction specific data.  This is used to store information like
 // some of the instruction bits.
 uint32_t data_;
 // Instruction template type.
 Type type_;
 // Relocation type if there is a relocation or R_ARM_NONE otherwise.
 unsigned int r_type_;
 // Relocation addend.
 int32_t reloc_addend_;
};

// Macro for generating code to stub types. One entry per long/short
// branch stub

#define DEF_STUBS \
 DEF_STUB(long_branch_any_any) \
 DEF_STUB(long_branch_v4t_arm_thumb) \
 DEF_STUB(long_branch_thumb_only) \
 DEF_STUB(long_branch_v4t_thumb_thumb) \
 DEF_STUB(long_branch_v4t_thumb_arm) \
 DEF_STUB(short_branch_v4t_thumb_arm) \
 DEF_STUB(long_branch_any_arm_pic) \
 DEF_STUB(long_branch_any_thumb_pic) \
 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
 DEF_STUB(long_branch_thumb_only_pic) \
 DEF_STUB(a8_veneer_b_cond) \
 DEF_STUB(a8_veneer_b) \
 DEF_STUB(a8_veneer_bl) \
 DEF_STUB(a8_veneer_blx) \
 DEF_STUB(v4_veneer_bx)

// Stub types.

#define DEF_STUB(x) arm_stub_##x,
typedef enum
 {
   arm_stub_none,
   DEF_STUBS

   // First reloc stub type.
   arm_stub_reloc_first = arm_stub_long_branch_any_any,
   // Last  reloc stub type.
   arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic,

   // First Cortex-A8 stub type.
   arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond,
   // Last Cortex-A8 stub type.
   arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,

   // Last stub type.
   arm_stub_type_last = arm_stub_v4_veneer_bx
 } Stub_type;
#undef DEF_STUB

// Stub template class.  Templates are meant to be read-only objects.
// A stub template for a stub type contains all read-only attributes
// common to all stubs of the same type.

class Stub_template
{
public:
 Stub_template(Stub_type, const Insn_template*, size_t);

 ~Stub_template()
 { }

 // Return stub type.
 Stub_type
 type() const
 { return this->type_; }

 // Return an array of instruction templates.
 const Insn_template*
 insns() const
 { return this->insns_; }

 // Return size of template in number of instructions.
 size_t
 insn_count() const
 { return this->insn_count_; }

 // Return size of template in bytes.
 size_t
 size() const
 { return this->size_; }

 // Return alignment of the stub template.
 unsigned
 alignment() const
 { return this->alignment_; }

 // Return whether entry point is in thumb mode.
 bool
 entry_in_thumb_mode() const
 { return this->entry_in_thumb_mode_; }

 // Return number of relocations in this template.
 size_t
 reloc_count() const
 { return this->relocs_.size(); }

 // Return index of the I-th instruction with relocation.
 size_t
 reloc_insn_index(size_t i) const
 {
   gold_assert(i < this->relocs_.size());
   return this->relocs_[i].first;
 }

 // Return the offset of the I-th instruction with relocation from the
 // beginning of the stub.
 section_size_type
 reloc_offset(size_t i) const
 {
   gold_assert(i < this->relocs_.size());
   return this->relocs_[i].second;
 }

private:
 // This contains information about an instruction template with a relocation
 // and its offset from start of stub.
 typedef std::pair<size_t, section_size_type> Reloc;

 // A Stub_template may not be copied.  We want to share templates as much
 // as possible.
 Stub_template(const Stub_template&);
 Stub_template& operator=(const Stub_template&);

 // Stub type.
 Stub_type type_;
 // Points to an array of Insn_templates.
 const Insn_template* insns_;
 // Number of Insn_templates in insns_[].
 size_t insn_count_;
 // Size of templated instructions in bytes.
 size_t size_;
 // Alignment of templated instructions.
 unsigned alignment_;
 // Flag to indicate if entry is in thumb mode.
 bool entry_in_thumb_mode_;
 // A table of reloc instruction indices and offsets.  We can find these by
 // looking at the instruction templates but we pre-compute and then stash
 // them here for speed.
 std::vector<Reloc> relocs_;
};

//
// A class for code stubs.  This is a base class for different type of
// stubs used in the ARM target.
//

class Stub
{
private:
 static const section_offset_type invalid_offset =
   static_cast<section_offset_type>(-1);

public:
 Stub(const Stub_template* stub_template)
   : stub_template_(stub_template), offset_(invalid_offset)
 { }

 virtual
  ~Stub()
 { }

 // Return the stub template.
 const Stub_template*
 stub_template() const
 { return this->stub_template_; }

 // Return offset of code stub from beginning of its containing stub table.
 section_offset_type
 offset() const
 {
   gold_assert(this->offset_ != invalid_offset);
   return this->offset_;
 }

 // Set offset of code stub from beginning of its containing stub table.
 void
 set_offset(section_offset_type offset)
 { this->offset_ = offset; }

 // Return the relocation target address of the i-th relocation in the
 // stub.  This must be defined in a child class.
 Arm_address
 reloc_target(size_t i)
 { return this->do_reloc_target(i); }

 // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written.
 void
 write(unsigned char* view, section_size_type view_size, bool big_endian)
 { this->do_write(view, view_size, big_endian); }

 // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
 // for the i-th instruction.
 uint16_t
 thumb16_special(size_t i)
 { return this->do_thumb16_special(i); }

protected:
 // This must be defined in the child class.
 virtual Arm_address
 do_reloc_target(size_t) = 0;

 // This may be overridden in the child class.
 virtual void
 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
 {
   if (big_endian)
     this->do_fixed_endian_write<true>(view, view_size);
   else
     this->do_fixed_endian_write<false>(view, view_size);
 }

 // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
 // instruction template.
 virtual uint16_t
 do_thumb16_special(size_t)
 { gold_unreachable(); }

private:
 // A template to implement do_write.
 template<bool big_endian>
 void inline
 do_fixed_endian_write(unsigned char*, section_size_type);

 // Its template.
 const Stub_template* stub_template_;
 // Offset within the section of containing this stub.
 section_offset_type offset_;
};

// Reloc stub class.  These are stubs we use to fix up relocation because
// of limited branch ranges.

class Reloc_stub : public Stub
{
public:
 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
 // We assume we never jump to this address.
 static const Arm_address invalid_address = static_cast<Arm_address>(-1);

 // Return destination address.
 Arm_address
 destination_address() const
 {
   gold_assert(this->destination_address_ != this->invalid_address);
   return this->destination_address_;
 }

 // Set destination address.
 void
 set_destination_address(Arm_address address)
 {
   gold_assert(address != this->invalid_address);
   this->destination_address_ = address;
 }

 // Reset destination address.
 void
 reset_destination_address()
 { this->destination_address_ = this->invalid_address; }

 // Determine stub type for a branch of a relocation of R_TYPE going
 // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set,
 // the branch target is a thumb instruction.  TARGET is used for look
 // up ARM-specific linker settings.
 static Stub_type
 stub_type_for_reloc(unsigned int r_type, Arm_address branch_address,
                     Arm_address branch_target, bool target_is_thumb);

 // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol
 // and an addend.  Since we treat global and local symbol differently, we
 // use a Symbol object for a global symbol and a object-index pair for
 // a local symbol.
 class Key
 {
  public:
   // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and
   // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL
   // and R_SYM must not be invalid_index.
   Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj,
       unsigned int r_sym, int32_t addend)
     : stub_type_(stub_type), addend_(addend)
   {
     if (symbol != NULL)
       {
         this->r_sym_ = Reloc_stub::invalid_index;
         this->u_.symbol = symbol;
       }
     else
       {
         gold_assert(relobj != NULL && r_sym != invalid_index);
         this->r_sym_ = r_sym;
         this->u_.relobj = relobj;
       }
   }

   ~Key()
   { }

   // Accessors: Keys are meant to be read-only object so no modifiers are
   // provided.

   // Return stub type.
   Stub_type
   stub_type() const
   { return this->stub_type_; }

   // Return the local symbol index or invalid_index.
   unsigned int
   r_sym() const
   { return this->r_sym_; }

   // Return the symbol if there is one.
   const Symbol*
   symbol() const
   { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }

   // Return the relobj if there is one.
   const Relobj*
   relobj() const
   { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }

   // Whether this equals to another key k.
   bool
   eq(const Key& k) const
   {
     return ((this->stub_type_ == k.stub_type_)
             && (this->r_sym_ == k.r_sym_)
             && ((this->r_sym_ != Reloc_stub::invalid_index)
                 ? (this->u_.relobj == k.u_.relobj)
                 : (this->u_.symbol == k.u_.symbol))
             && (this->addend_ == k.addend_));
   }

   // Return a hash value.
   size_t
   hash_value() const
   {
     return (this->stub_type_
             ^ this->r_sym_
             ^ gold::string_hash<char>(
                   (this->r_sym_ != Reloc_stub::invalid_index)
                   ? this->u_.relobj->name().c_str()
                   : this->u_.symbol->name())
             ^ this->addend_);
   }

   // Functors for STL associative containers.
   struct hash
   {
     size_t
     operator()(const Key& k) const
     { return k.hash_value(); }
   };

   struct equal_to
   {
     bool
     operator()(const Key& k1, const Key& k2) const
     { return k1.eq(k2); }
   };

   // Name of key.  This is mainly for debugging.
   std::string
   name() const ATTRIBUTE_UNUSED;

  private:
   // Stub type.
   Stub_type stub_type_;
   // If this is a local symbol, this is the index in the defining object.
   // Otherwise, it is invalid_index for a global symbol.
   unsigned int r_sym_;
   // If r_sym_ is an invalid index, this points to a global symbol.
   // Otherwise, it points to a relobj.  We used the unsized and target
   // independent Symbol and Relobj classes instead of Sized_symbol<32> and
   // Arm_relobj, in order to avoid making the stub class a template
   // as most of the stub machinery is endianness-neutral.  However, it
   // may require a bit of casting done by users of this class.
   union
   {
     const Symbol* symbol;
     const Relobj* relobj;
   } u_;
   // Addend associated with a reloc.
   int32_t addend_;
 };

protected:
 // Reloc_stubs are created via a stub factory.  So these are protected.
 Reloc_stub(const Stub_template* stub_template)
   : Stub(stub_template), destination_address_(invalid_address)
 { }

 ~Reloc_stub()
 { }

 friend class Stub_factory;

 // Return the relocation target address of the i-th relocation in the
 // stub.
 Arm_address
 do_reloc_target(size_t i)
 {
   // All reloc stub have only one relocation.
   gold_assert(i == 0);
   return this->destination_address_;
 }

private:
 // Address of destination.
 Arm_address destination_address_;
};

// Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
// THUMB branch that meets the following conditions:
//
// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
//    branch address is 0xffe.
// 2. The branch target address is in the same page as the first word of the
//    branch.
// 3. The branch follows a 32-bit instruction which is not a branch.
//
// To do the fix up, we need to store the address of the branch instruction
// and its target at least.  We also need to store the original branch
// instruction bits for the condition code in a conditional branch.  The
// condition code is used in a special instruction template.  We also want
// to identify input sections needing Cortex-A8 workaround quickly.  We store
// extra information about object and section index of the code section
// containing a branch being fixed up.  The information is used to mark
// the code section when we finalize the Cortex-A8 stubs.
//

class Cortex_a8_stub : public Stub
{
public:
 ~Cortex_a8_stub()
 { }

 // Return the object of the code section containing the branch being fixed
 // up.
 Relobj*
 relobj() const
 { return this->relobj_; }

 // Return the section index of the code section containing the branch being
 // fixed up.
 unsigned int
 shndx() const
 { return this->shndx_; }

 // Return the source address of stub.  This is the address of the original
 // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
 // instruction.
 Arm_address
 source_address() const
 { return this->source_address_; }

 // Return the destination address of the stub.  This is the branch taken
 // address of the original branch instruction.  LSB is 1 if it is a THUMB
 // instruction address.
 Arm_address
 destination_address() const
 { return this->destination_address_; }

 // Return the instruction being fixed up.
 uint32_t
 original_insn() const
 { return this->original_insn_; }

protected:
 // Cortex_a8_stubs are created via a stub factory.  So these are protected.
 Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
                unsigned int shndx, Arm_address source_address,
                Arm_address destination_address, uint32_t original_insn)
   : Stub(stub_template), relobj_(relobj), shndx_(shndx),
     source_address_(source_address | 1U),
     destination_address_(destination_address),
     original_insn_(original_insn)
 { }

 friend class Stub_factory;

 // Return the relocation target address of the i-th relocation in the
 // stub.
 Arm_address
 do_reloc_target(size_t i)
 {
   if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
     {
       // The conditional branch veneer has two relocations.
       gold_assert(i < 2);
       return i == 0 ? this->source_address_ + 4 : this->destination_address_;
     }
   else
     {
       // All other Cortex-A8 stubs have only one relocation.
       gold_assert(i == 0);
       return this->destination_address_;
     }
 }

 // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
 uint16_t
 do_thumb16_special(size_t);

private:
 // Object of the code section containing the branch being fixed up.
 Relobj* relobj_;
 // Section index of the code section containing the branch begin fixed up.
 unsigned int shndx_;
 // Source address of original branch.
 Arm_address source_address_;
 // Destination address of the original branch.
 Arm_address destination_address_;
 // Original branch instruction.  This is needed for copying the condition
 // code from a condition branch to its stub.
 uint32_t original_insn_;
};

// ARMv4 BX Rx branch relocation stub class.
class Arm_v4bx_stub : public Stub
{
public:
 ~Arm_v4bx_stub()
 { }

 // Return the associated register.
 uint32_t
 reg() const
 { return this->reg_; }

protected:
 // Arm V4BX stubs are created via a stub factory.  So these are protected.
 Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
   : Stub(stub_template), reg_(reg)
 { }

 friend class Stub_factory;

 // Return the relocation target address of the i-th relocation in the
 // stub.
 Arm_address
 do_reloc_target(size_t)
 { gold_unreachable(); }

 // This may be overridden in the child class.
 virtual void
 do_write(unsigned char* view, section_size_type view_size, bool big_endian)
 {
   if (big_endian)
     this->do_fixed_endian_v4bx_write<true>(view, view_size);
   else
     this->do_fixed_endian_v4bx_write<false>(view, view_size);
 }

private:
 // A template to implement do_write.
 template<bool big_endian>
 void inline
 do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
 {
   const Insn_template* insns = this->stub_template()->insns();
   elfcpp::Swap<32, big_endian>::writeval(view,
                                          (insns[0].data()
                                          + (this->reg_ << 16)));
   view += insns[0].size();
   elfcpp::Swap<32, big_endian>::writeval(view,
                                          (insns[1].data() + this->reg_));
   view += insns[1].size();
   elfcpp::Swap<32, big_endian>::writeval(view,
                                          (insns[2].data() + this->reg_));
 }

 // A register index (r0-r14), which is associated with the stub.
 uint32_t reg_;
};

// Stub factory class.

class Stub_factory
{
public:
 // Return the unique instance of this class.
 static const Stub_factory&
 get_instance()
 {
   static Stub_factory singleton;
   return singleton;
 }

 // Make a relocation stub.
 Reloc_stub*
 make_reloc_stub(Stub_type stub_type) const
 {
   gold_assert(stub_type >= arm_stub_reloc_first
               && stub_type <= arm_stub_reloc_last);
   return new Reloc_stub(this->stub_templates_[stub_type]);
 }

 // Make a Cortex-A8 stub.
 Cortex_a8_stub*
 make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
                     Arm_address source, Arm_address destination,
                     uint32_t original_insn) const
 {
   gold_assert(stub_type >= arm_stub_cortex_a8_first
               && stub_type <= arm_stub_cortex_a8_last);
   return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
                             source, destination, original_insn);
 }

 // Make an ARM V4BX relocation stub.
 // This method creates a stub from the arm_stub_v4_veneer_bx template only.
 Arm_v4bx_stub*
 make_arm_v4bx_stub(uint32_t reg) const
 {
   gold_assert(reg < 0xf);
   return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
                            reg);
 }

private:
 // Constructor and destructor are protected since we only return a single
 // instance created in Stub_factory::get_instance().

 Stub_factory();

 // A Stub_factory may not be copied since it is a singleton.
 Stub_factory(const Stub_factory&);
 Stub_factory& operator=(Stub_factory&);

 // Stub templates.  These are initialized in the constructor.
 const Stub_template* stub_templates_[arm_stub_type_last+1];
};

// A class to hold stubs for the ARM target.

template<bool big_endian>
class Stub_table : public Output_data
{
public:
 Stub_table(Arm_input_section<big_endian>* owner)
   : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
     reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
     prev_data_size_(0), prev_addralign_(1)
 { }

 ~Stub_table()
 { }

 // Owner of this stub table.
 Arm_input_section<big_endian>*
 owner() const
 { return this->owner_; }

 // Whether this stub table is empty.
 bool
 empty() const
 {
   return (this->reloc_stubs_.empty()
           && this->cortex_a8_stubs_.empty()
           && this->arm_v4bx_stubs_.empty());
 }

 // Return the current data size.
 off_t
 current_data_size() const
 { return this->current_data_size_for_child(); }

 // Add a STUB using KEY.  The caller is responsible for avoiding addition
 // if a STUB with the same key has already been added.
 void
 add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
 {
   const Stub_template* stub_template = stub->stub_template();
   gold_assert(stub_template->type() == key.stub_type());
   this->reloc_stubs_[key] = stub;

   // Assign stub offset early.  We can do this because we never remove
   // reloc stubs and they are in the beginning of the stub table.
   uint64_t align = stub_template->alignment();
   this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
   stub->set_offset(this->reloc_stubs_size_);
   this->reloc_stubs_size_ += stub_template->size();
   this->reloc_stubs_addralign_ =
     std::max(this->reloc_stubs_addralign_, align);
 }

 // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
 // The caller is responsible for avoiding addition if a STUB with the same
 // address has already been added.
 void
 add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
 {
   std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
   this->cortex_a8_stubs_.insert(value);
 }

 // Add an ARM V4BX relocation stub. A register index will be retrieved
 // from the stub.
 void
 add_arm_v4bx_stub(Arm_v4bx_stub* stub)
 {
   gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
   this->arm_v4bx_stubs_[stub->reg()] = stub;
 }

 // Remove all Cortex-A8 stubs.
 void
 remove_all_cortex_a8_stubs();

 // Look up a relocation stub using KEY.  Return NULL if there is none.
 Reloc_stub*
 find_reloc_stub(const Reloc_stub::Key& key) const
 {
   typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key);
   return (p != this->reloc_stubs_.end()) ? p->second : NULL;
 }

 // Look up an arm v4bx relocation stub using the register index.
 // Return NULL if there is none.
 Arm_v4bx_stub*
 find_arm_v4bx_stub(const uint32_t reg) const
 {
   gold_assert(reg < 0xf);
   return this->arm_v4bx_stubs_[reg];
 }

 // Relocate stubs in this stub table.
 void
 relocate_stubs(const Relocate_info<32, big_endian>*,
                Target_arm<big_endian>*, Output_section*,
                unsigned char*, Arm_address, section_size_type);

 // Update data size and alignment at the end of a relaxation pass.  Return
 // true if either data size or alignment is different from that of the
 // previous relaxation pass.
 bool
 update_data_size_and_addralign();

 // Finalize stubs.  Set the offsets of all stubs and mark input sections
 // needing the Cortex-A8 workaround.
 void
 finalize_stubs();

 // Apply Cortex-A8 workaround to an address range.
 void
 apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
                                             unsigned char*, Arm_address,
                                             section_size_type);

protected:
 // Write out section contents.
 void
 do_write(Output_file*);

 // Return the required alignment.
 uint64_t
 do_addralign() const
 { return this->prev_addralign_; }

 // Reset address and file offset.
 void
 do_reset_address_and_file_offset()
 { this->set_current_data_size_for_child(this->prev_data_size_); }

 // Set final data size.
 void
 set_final_data_size()
 { this->set_data_size(this->current_data_size()); }

private:
 // Relocate one stub.
 void
 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
               Target_arm<big_endian>*, Output_section*,
               unsigned char*, Arm_address, section_size_type);

 // Unordered map of relocation stubs.
 typedef
   Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
                 Reloc_stub::Key::equal_to>
   Reloc_stub_map;

 // List of Cortex-A8 stubs ordered by addresses of branches being
 // fixed up in output.
 typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
 // List of Arm V4BX relocation stubs ordered by associated registers.
 typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;

 // Owner of this stub table.
 Arm_input_section<big_endian>* owner_;
 // The relocation stubs.
 Reloc_stub_map reloc_stubs_;
 // Size of reloc stubs.
 off_t reloc_stubs_size_;
 // Maximum address alignment of reloc stubs.
 uint64_t reloc_stubs_addralign_;
 // The cortex_a8_stubs.
 Cortex_a8_stub_list cortex_a8_stubs_;
 // The Arm V4BX relocation stubs.
 Arm_v4bx_stub_list arm_v4bx_stubs_;
 // data size of this in the previous pass.
 off_t prev_data_size_;
 // address alignment of this in the previous pass.
 uint64_t prev_addralign_;
};

// Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
// we add to the end of an EXIDX input section that goes into the output.

class Arm_exidx_cantunwind : public Output_section_data
{
public:
 Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
   : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
 { }

 // Return the object containing the section pointed by this.
 Relobj*
 relobj() const
 { return this->relobj_; }

 // Return the section index of the section pointed by this.
 unsigned int
 shndx() const
 { return this->shndx_; }

protected:
 void
 do_write(Output_file* of)
 {
   if (parameters->target().is_big_endian())
     this->do_fixed_endian_write<true>(of);
   else
     this->do_fixed_endian_write<false>(of);
 }

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** ARM cantunwind")); }

private:
 // Implement do_write for a given endianness.
 template<bool big_endian>
 void inline
 do_fixed_endian_write(Output_file*);

 // The object containing the section pointed by this.
 Relobj* relobj_;
 // The section index of the section pointed by this.
 unsigned int shndx_;
};

// During EXIDX coverage fix-up, we compact an EXIDX section.  The
// Offset map is used to map input section offset within the EXIDX section
// to the output offset from the start of this EXIDX section.

typedef std::map<section_offset_type, section_offset_type>
       Arm_exidx_section_offset_map;

// Arm_exidx_merged_section class.  This represents an EXIDX input section
// with some of its entries merged.

class Arm_exidx_merged_section : public Output_relaxed_input_section
{
public:
 // Constructor for Arm_exidx_merged_section.
 // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
 // SECTION_OFFSET_MAP points to a section offset map describing how
 // parts of the input section are mapped to output.  DELETED_BYTES is
 // the number of bytes deleted from the EXIDX input section.
 Arm_exidx_merged_section(
     const Arm_exidx_input_section& exidx_input_section,
     const Arm_exidx_section_offset_map& section_offset_map,
     uint32_t deleted_bytes);

 // Build output contents.
 void
 build_contents(const unsigned char*, section_size_type);

 // Return the original EXIDX input section.
 const Arm_exidx_input_section&
 exidx_input_section() const
 { return this->exidx_input_section_; }

 // Return the section offset map.
 const Arm_exidx_section_offset_map&
 section_offset_map() const
 { return this->section_offset_map_; }

protected:
 // Write merged section into file OF.
 void
 do_write(Output_file* of);

 bool
 do_output_offset(const Relobj*, unsigned int, section_offset_type,
                 section_offset_type*) const;

private:
 // Original EXIDX input section.
 const Arm_exidx_input_section& exidx_input_section_;
 // Section offset map.
 const Arm_exidx_section_offset_map& section_offset_map_;
 // Merged section contents.  We need to keep build the merged section
 // and save it here to avoid accessing the original EXIDX section when
 // we cannot lock the sections' object.
 unsigned char* section_contents_;
};

// A class to wrap an ordinary input section containing executable code.

template<bool big_endian>
class Arm_input_section : public Output_relaxed_input_section
{
public:
 Arm_input_section(Relobj* relobj, unsigned int shndx)
   : Output_relaxed_input_section(relobj, shndx, 1),
     original_addralign_(1), original_size_(0), stub_table_(NULL),
     original_contents_(NULL)
 { }

 ~Arm_input_section()
 { delete[] this->original_contents_; }

 // Initialize.
 void
 init();

 // Whether this is a stub table owner.
 bool
 is_stub_table_owner() const
 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }

 // Return the stub table.
 Stub_table<big_endian>*
 stub_table() const
 { return this->stub_table_; }

 // Set the stub_table.
 void
 set_stub_table(Stub_table<big_endian>* stub_table)
 { this->stub_table_ = stub_table; }

 // Downcast a base pointer to an Arm_input_section pointer.  This is
 // not type-safe but we only use Arm_input_section not the base class.
 static Arm_input_section<big_endian>*
 as_arm_input_section(Output_relaxed_input_section* poris)
 { return static_cast<Arm_input_section<big_endian>*>(poris); }

 // Return the original size of the section.
 uint32_t
 original_size() const
 { return this->original_size_; }

protected:
 // Write data to output file.
 void
 do_write(Output_file*);

 // Return required alignment of this.
 uint64_t
 do_addralign() const
 {
   if (this->is_stub_table_owner())
     return std::max(this->stub_table_->addralign(),
                     static_cast<uint64_t>(this->original_addralign_));
   else
     return this->original_addralign_;
 }

 // Finalize data size.
 void
 set_final_data_size();

 // Reset address and file offset.
 void
 do_reset_address_and_file_offset();

 // Output offset.
 bool
 do_output_offset(const Relobj* object, unsigned int shndx,
                  section_offset_type offset,
                  section_offset_type* poutput) const
 {
   if ((object == this->relobj())
       && (shndx == this->shndx())
       && (offset >= 0)
       && (offset <=
           convert_types<section_offset_type, uint32_t>(this->original_size_)))
     {
       *poutput = offset;
       return true;
     }
   else
     return false;
 }

private:
 // Copying is not allowed.
 Arm_input_section(const Arm_input_section&);
 Arm_input_section& operator=(const Arm_input_section&);

 // Address alignment of the original input section.
 uint32_t original_addralign_;
 // Section size of the original input section.
 uint32_t original_size_;
 // Stub table.
 Stub_table<big_endian>* stub_table_;
 // Original section contents.  We have to make a copy here since the file
 // containing the original section may not be locked when we need to access
 // the contents.
 unsigned char* original_contents_;
};

// Arm_exidx_fixup class.  This is used to define a number of methods
// and keep states for fixing up EXIDX coverage.

class Arm_exidx_fixup
{
public:
 Arm_exidx_fixup(Output_section* exidx_output_section,
                 bool merge_exidx_entries = true)
   : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
     last_inlined_entry_(0), last_input_section_(NULL),
     section_offset_map_(NULL), first_output_text_section_(NULL),
     merge_exidx_entries_(merge_exidx_entries)
 { }

 ~Arm_exidx_fixup()
 { delete this->section_offset_map_; }

 // Process an EXIDX section for entry merging.  SECTION_CONTENTS points
 // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return
 // number of bytes to be deleted in output.  If parts of the input EXIDX
 // section are merged a heap allocated Arm_exidx_section_offset_map is store
 // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is
 // responsible for releasing it.
 template<bool big_endian>
 uint32_t
 process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
                       const unsigned char* section_contents,
                       section_size_type section_size,
                       Arm_exidx_section_offset_map** psection_offset_map);

 // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
 // input section, if there is not one already.
 void
 add_exidx_cantunwind_as_needed();

 // Return the output section for the text section which is linked to the
 // first exidx input in output.
 Output_section*
 first_output_text_section() const
 { return this->first_output_text_section_; }

private:
 // Copying is not allowed.
 Arm_exidx_fixup(const Arm_exidx_fixup&);
 Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);

 // Type of EXIDX unwind entry.
 enum Unwind_type
 {
   // No type.
   UT_NONE,
   // EXIDX_CANTUNWIND.
   UT_EXIDX_CANTUNWIND,
   // Inlined entry.
   UT_INLINED_ENTRY,
   // Normal entry.
   UT_NORMAL_ENTRY,
 };

 // Process an EXIDX entry.  We only care about the second word of the
 // entry.  Return true if the entry can be deleted.
 bool
 process_exidx_entry(uint32_t second_word);

 // Update the current section offset map during EXIDX section fix-up.
 // If there is no map, create one.  INPUT_OFFSET is the offset of a
 // reference point, DELETED_BYTES is the number of deleted by in the
 // section so far.  If DELETE_ENTRY is true, the reference point and
 // all offsets after the previous reference point are discarded.
 void
 update_offset_map(section_offset_type input_offset,
                   section_size_type deleted_bytes, bool delete_entry);

 // EXIDX output section.
 Output_section* exidx_output_section_;
 // Unwind type of the last EXIDX entry processed.
 Unwind_type last_unwind_type_;
 // Last seen inlined EXIDX entry.
 uint32_t last_inlined_entry_;
 // Last processed EXIDX input section.
 const Arm_exidx_input_section* last_input_section_;
 // Section offset map created in process_exidx_section.
 Arm_exidx_section_offset_map* section_offset_map_;
 // Output section for the text section which is linked to the first exidx
 // input in output.
 Output_section* first_output_text_section_;

 bool merge_exidx_entries_;
};

// Arm output section class.  This is defined mainly to add a number of
// stub generation methods.

template<bool big_endian>
class Arm_output_section : public Output_section
{
public:
 typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;

 // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section.
 Arm_output_section(const char* name, elfcpp::Elf_Word type,
                    elfcpp::Elf_Xword flags)
   : Output_section(name, type,
                    (type == elfcpp::SHT_ARM_EXIDX
                     ? flags | elfcpp::SHF_LINK_ORDER
                     : flags))
 {
   if (type == elfcpp::SHT_ARM_EXIDX)
     this->set_always_keeps_input_sections();
 }

 ~Arm_output_section()
 { }

 // Group input sections for stub generation.
 void
 group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*);

 // Downcast a base pointer to an Arm_output_section pointer.  This is
 // not type-safe but we only use Arm_output_section not the base class.
 static Arm_output_section<big_endian>*
 as_arm_output_section(Output_section* os)
 { return static_cast<Arm_output_section<big_endian>*>(os); }

 // Append all input text sections in this into LIST.
 void
 append_text_sections_to_list(Text_section_list* list);

 // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
 // is a list of text input sections sorted in ascending order of their
 // output addresses.
 void
 fix_exidx_coverage(Layout* layout,
                    const Text_section_list& sorted_text_section,
                    Symbol_table* symtab,
                    bool merge_exidx_entries,
                    const Task* task);

 // Link an EXIDX section into its corresponding text section.
 void
 set_exidx_section_link();

private:
 // For convenience.
 typedef Output_section::Input_section Input_section;
 typedef Output_section::Input_section_list Input_section_list;

 // Create a stub group.
 void create_stub_group(Input_section_list::const_iterator,
                        Input_section_list::const_iterator,
                        Input_section_list::const_iterator,
                        Target_arm<big_endian>*,
                        std::vector<Output_relaxed_input_section*>*,
                        const Task* task);
};

// Arm_exidx_input_section class.  This represents an EXIDX input section.

class Arm_exidx_input_section
{
public:
 static const section_offset_type invalid_offset =
   static_cast<section_offset_type>(-1);

 Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
                         unsigned int link, uint32_t size,
                         uint32_t addralign, uint32_t text_size)
   : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
     addralign_(addralign), text_size_(text_size), has_errors_(false)
 { }

 ~Arm_exidx_input_section()
 { }

 // Accessors:  This is a read-only class.

 // Return the object containing this EXIDX input section.
 Relobj*
 relobj() const
 { return this->relobj_; }

 // Return the section index of this EXIDX input section.
 unsigned int
 shndx() const
 { return this->shndx_; }

 // Return the section index of linked text section in the same object.
 unsigned int
 link() const
 { return this->link_; }

 // Return size of the EXIDX input section.
 uint32_t
 size() const
 { return this->size_; }

 // Return address alignment of EXIDX input section.
 uint32_t
 addralign() const
 { return this->addralign_; }

 // Return size of the associated text input section.
 uint32_t
 text_size() const
 { return this->text_size_; }

 // Whether there are any errors in the EXIDX input section.
 bool
 has_errors() const
 { return this->has_errors_; }

 // Set has-errors flag.
 void
 set_has_errors()
 { this->has_errors_ = true; }

private:
 // Object containing this.
 Relobj* relobj_;
 // Section index of this.
 unsigned int shndx_;
 // text section linked to this in the same object.
 unsigned int link_;
 // Size of this.  For ARM 32-bit is sufficient.
 uint32_t size_;
 // Address alignment of this.  For ARM 32-bit is sufficient.
 uint32_t addralign_;
 // Size of associated text section.
 uint32_t text_size_;
 // Whether this has any errors.
 bool has_errors_;
};

// Arm_relobj class.

template<bool big_endian>
class Arm_relobj : public Sized_relobj_file<32, big_endian>
{
public:
 static const Arm_address invalid_address = static_cast<Arm_address>(-1);

 Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
            const typename elfcpp::Ehdr<32, big_endian>& ehdr)
   : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr),
     stub_tables_(), local_symbol_is_thumb_function_(),
     attributes_section_data_(NULL), mapping_symbols_info_(),
     section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
     output_local_symbol_count_needs_update_(false),
     merge_flags_and_attributes_(true)
 { }

 ~Arm_relobj()
 { delete this->attributes_section_data_; }

 // Return the stub table of the SHNDX-th section if there is one.
 Stub_table<big_endian>*
 stub_table(unsigned int shndx) const
 {
   gold_assert(shndx < this->stub_tables_.size());
   return this->stub_tables_[shndx];
 }

 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
 void
 set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table)
 {
   gold_assert(shndx < this->stub_tables_.size());
   this->stub_tables_[shndx] = stub_table;
 }

 // Whether a local symbol is a THUMB function.  R_SYM is the symbol table
 // index.  This is only valid after do_count_local_symbol is called.
 bool
 local_symbol_is_thumb_function(unsigned int r_sym) const
 {
   gold_assert(r_sym < this->local_symbol_is_thumb_function_.size());
   return this->local_symbol_is_thumb_function_[r_sym];
 }

 // Scan all relocation sections for stub generation.
 void
 scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*,
                         const Layout*);

 // Convert regular input section with index SHNDX to a relaxed section.
 void
 convert_input_section_to_relaxed_section(unsigned shndx)
 {
   // The stubs have relocations and we need to process them after writing
   // out the stubs.  So relocation now must follow section write.
   this->set_section_offset(shndx, -1ULL);
   this->set_relocs_must_follow_section_writes();
 }

 // Downcast a base pointer to an Arm_relobj pointer.  This is
 // not type-safe but we only use Arm_relobj not the base class.
 static Arm_relobj<big_endian>*
 as_arm_relobj(Relobj* relobj)
 { return static_cast<Arm_relobj<big_endian>*>(relobj); }

 // Processor-specific flags in ELF file header.  This is valid only after
 // reading symbols.
 elfcpp::Elf_Word
 processor_specific_flags() const
 { return this->processor_specific_flags_; }

 // Attribute section data  This is the contents of the .ARM.attribute section
 // if there is one.
 const Attributes_section_data*
 attributes_section_data() const
 { return this->attributes_section_data_; }

 // Mapping symbol location.
 typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;

 // Functor for STL container.
 struct Mapping_symbol_position_less
 {
   bool
   operator()(const Mapping_symbol_position& p1,
              const Mapping_symbol_position& p2) const
   {
     return (p1.first < p2.first
             || (p1.first == p2.first && p1.second < p2.second));
   }
 };

 // We only care about the first character of a mapping symbol, so
 // we only store that instead of the whole symbol name.
 typedef std::map<Mapping_symbol_position, char,
                  Mapping_symbol_position_less> Mapping_symbols_info;

 // Whether a section contains any Cortex-A8 workaround.
 bool
 section_has_cortex_a8_workaround(unsigned int shndx) const
 {
   return (this->section_has_cortex_a8_workaround_ != NULL
           && (*this->section_has_cortex_a8_workaround_)[shndx]);
 }

 // Mark a section that has Cortex-A8 workaround.
 void
 mark_section_for_cortex_a8_workaround(unsigned int shndx)
 {
   if (this->section_has_cortex_a8_workaround_ == NULL)
     this->section_has_cortex_a8_workaround_ =
       new std::vector<bool>(this->shnum(), false);
   (*this->section_has_cortex_a8_workaround_)[shndx] = true;
 }

 // Return the EXIDX section of an text section with index SHNDX or NULL
 // if the text section has no associated EXIDX section.
 const Arm_exidx_input_section*
 exidx_input_section_by_link(unsigned int shndx) const
 {
   Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
   return ((p != this->exidx_section_map_.end()
            && p->second->link() == shndx)
           ? p->second
           : NULL);
 }

 // Return the EXIDX section with index SHNDX or NULL if there is none.
 const Arm_exidx_input_section*
 exidx_input_section_by_shndx(unsigned shndx) const
 {
   Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
   return ((p != this->exidx_section_map_.end()
            && p->second->shndx() == shndx)
           ? p->second
           : NULL);
 }

 // Whether output local symbol count needs updating.
 bool
 output_local_symbol_count_needs_update() const
 { return this->output_local_symbol_count_needs_update_; }

 // Set output_local_symbol_count_needs_update flag to be true.
 void
 set_output_local_symbol_count_needs_update()
 { this->output_local_symbol_count_needs_update_ = true; }

 // Update output local symbol count at the end of relaxation.
 void
 update_output_local_symbol_count();

 // Whether we want to merge processor-specific flags and attributes.
 bool
 merge_flags_and_attributes() const
 { return this->merge_flags_and_attributes_; }

 // Export list of EXIDX section indices.
 void
 get_exidx_shndx_list(std::vector<unsigned int>* list) const
 {
   list->clear();
   for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin();
        p != this->exidx_section_map_.end();
        ++p)
     {
       if (p->second->shndx() == p->first)
         list->push_back(p->first);
     }
   // Sort list to make result independent of implementation of map.
   std::sort(list->begin(), list->end());
 }

protected:
 // Post constructor setup.
 void
 do_setup()
 {
   // Call parent's setup method.
   Sized_relobj_file<32, big_endian>::do_setup();

   // Initialize look-up tables.
   Stub_table_list empty_stub_table_list(this->shnum(), NULL);
   this->stub_tables_.swap(empty_stub_table_list);
 }

 // Count the local symbols.
 void
 do_count_local_symbols(Stringpool_template<char>*,
                        Stringpool_template<char>*);

 void
 do_relocate_sections(
     const Symbol_table* symtab, const Layout* layout,
     const unsigned char* pshdrs, Output_file* of,
     typename Sized_relobj_file<32, big_endian>::Views* pivews);

 // Read the symbol information.
 void
 do_read_symbols(Read_symbols_data* sd);

 // Process relocs for garbage collection.
 void
 do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);

private:

 // Whether a section needs to be scanned for relocation stubs.
 bool
 section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
                                   const Relobj::Output_sections&,
                                   const Symbol_table*, const unsigned char*);

 // Whether a section is a scannable text section.
 bool
 section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
                      const Output_section*, const Symbol_table*);

 // Whether a section needs to be scanned for the Cortex-A8 erratum.
 bool
 section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
                                       unsigned int, Output_section*,
                                       const Symbol_table*);

 // Scan a section for the Cortex-A8 erratum.
 void
 scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
                                    unsigned int, Output_section*,
                                    Target_arm<big_endian>*);

 // Find the linked text section of an EXIDX section by looking at the
 // first relocation of the EXIDX section.  PSHDR points to the section
 // headers of a relocation section and PSYMS points to the local symbols.
 // PSHNDX points to a location storing the text section index if found.
 // Return whether we can find the linked section.
 bool
 find_linked_text_section(const unsigned char* pshdr,
                          const unsigned char* psyms, unsigned int* pshndx);

 //
 // Make a new Arm_exidx_input_section object for EXIDX section with
 // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
 // index of the linked text section.
 void
 make_exidx_input_section(unsigned int shndx,
                          const elfcpp::Shdr<32, big_endian>& shdr,
                          unsigned int text_shndx,
                          const elfcpp::Shdr<32, big_endian>& text_shdr);

 // Return the output address of either a plain input section or a
 // relaxed input section.  SHNDX is the section index.
 Arm_address
 simple_input_section_output_address(unsigned int, Output_section*);

 typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
 typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
   Exidx_section_map;

 // List of stub tables.
 Stub_table_list stub_tables_;
 // Bit vector to tell if a local symbol is a thumb function or not.
 // This is only valid after do_count_local_symbol is called.
 std::vector<bool> local_symbol_is_thumb_function_;
 // processor-specific flags in ELF file header.
 elfcpp::Elf_Word processor_specific_flags_;
 // Object attributes if there is an .ARM.attributes section or NULL.
 Attributes_section_data* attributes_section_data_;
 // Mapping symbols information.
 Mapping_symbols_info mapping_symbols_info_;
 // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
 std::vector<bool>* section_has_cortex_a8_workaround_;
 // Map a text section to its associated .ARM.exidx section, if there is one.
 Exidx_section_map exidx_section_map_;
 // Whether output local symbol count needs updating.
 bool output_local_symbol_count_needs_update_;
 // Whether we merge processor flags and attributes of this object to
 // output.
 bool merge_flags_and_attributes_;
};

// Arm_dynobj class.

template<bool big_endian>
class Arm_dynobj : public Sized_dynobj<32, big_endian>
{
public:
 Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
            const elfcpp::Ehdr<32, big_endian>& ehdr)
   : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
     processor_specific_flags_(0), attributes_section_data_(NULL)
 { }

 ~Arm_dynobj()
 { delete this->attributes_section_data_; }

 // Downcast a base pointer to an Arm_relobj pointer.  This is
 // not type-safe but we only use Arm_relobj not the base class.
 static Arm_dynobj<big_endian>*
 as_arm_dynobj(Dynobj* dynobj)
 { return static_cast<Arm_dynobj<big_endian>*>(dynobj); }

 // Processor-specific flags in ELF file header.  This is valid only after
 // reading symbols.
 elfcpp::Elf_Word
 processor_specific_flags() const
 { return this->processor_specific_flags_; }

 // Attributes section data.
 const Attributes_section_data*
 attributes_section_data() const
 { return this->attributes_section_data_; }

protected:
 // Read the symbol information.
 void
 do_read_symbols(Read_symbols_data* sd);

private:
 // processor-specific flags in ELF file header.
 elfcpp::Elf_Word processor_specific_flags_;
 // Object attributes if there is an .ARM.attributes section or NULL.
 Attributes_section_data* attributes_section_data_;
};

// Functor to read reloc addends during stub generation.

template<int sh_type, bool big_endian>
struct Stub_addend_reader
{
 // Return the addend for a relocation of a particular type.  Depending
 // on whether this is a REL or RELA relocation, read the addend from a
 // view or from a Reloc object.
 elfcpp::Elf_types<32>::Elf_Swxword
 operator()(
   unsigned int /* r_type */,
   const unsigned char* /* view */,
   const typename Reloc_types<sh_type,
                              32, big_endian>::Reloc& /* reloc */) const;
};

// Specialized Stub_addend_reader for SHT_REL type relocation sections.

template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_REL, big_endian>
{
 elfcpp::Elf_types<32>::Elf_Swxword
 operator()(
   unsigned int,
   const unsigned char*,
   const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const;
};

// Specialized Stub_addend_reader for RELA type relocation sections.
// We currently do not handle RELA type relocation sections but it is trivial
// to implement the addend reader.  This is provided for completeness and to
// make it easier to add support for RELA relocation sections in the future.

template<bool big_endian>
struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
{
 elfcpp::Elf_types<32>::Elf_Swxword
 operator()(
   unsigned int,
   const unsigned char*,
   const typename Reloc_types<elfcpp::SHT_RELA, 32,
                              big_endian>::Reloc& reloc) const
 { return reloc.get_r_addend(); }
};

// Cortex_a8_reloc class.  We keep record of relocation that may need
// the Cortex-A8 erratum workaround.

class Cortex_a8_reloc
{
public:
 Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
                 Arm_address destination)
   : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
 { }

 ~Cortex_a8_reloc()
 { }

 // Accessors:  This is a read-only class.

 // Return the relocation stub associated with this relocation if there is
 // one.
 const Reloc_stub*
 reloc_stub() const
 { return this->reloc_stub_; }

 // Return the relocation type.
 unsigned int
 r_type() const
 { return this->r_type_; }

 // Return the destination address of the relocation.  LSB stores the THUMB
 // bit.
 Arm_address
 destination() const
 { return this->destination_; }

private:
 // Associated relocation stub if there is one, or NULL.
 const Reloc_stub* reloc_stub_;
 // Relocation type.
 unsigned int r_type_;
 // Destination address of this relocation.  LSB is used to distinguish
 // ARM/THUMB mode.
 Arm_address destination_;
};

// Arm_output_data_got class.  We derive this from Output_data_got to add
// extra methods to handle TLS relocations in a static link.

template<bool big_endian>
class Arm_output_data_got : public Output_data_got<32, big_endian>
{
public:
 Arm_output_data_got(Symbol_table* symtab, Layout* layout)
   : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
 { }

 // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
 // applied in a static link.
 void
 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }

 // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
 // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
 // relocation that needs to be applied in a static link.
 void
 add_static_reloc(unsigned int got_offset, unsigned int r_type,
                  Sized_relobj_file<32, big_endian>* relobj,
                  unsigned int index)
 {
   this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
                                               index));
 }

 // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
 // The first one is initialized to be 1, which is the module index for
 // the main executable and the second one 0.  A reloc of the type
 // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
 // be applied by gold.  GSYM is a global symbol.
 void
 add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);

 // Same as the above but for a local symbol in OBJECT with INDEX.
 void
 add_tls_gd32_with_static_reloc(unsigned int got_type,
                                Sized_relobj_file<32, big_endian>* object,
                                unsigned int index);

protected:
 // Write out the GOT table.
 void
 do_write(Output_file*);

private:
 // This class represent dynamic relocations that need to be applied by
 // gold because we are using TLS relocations in a static link.
 class Static_reloc
 {
  public:
   Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
     : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
   { this->u_.global.symbol = gsym; }

   Static_reloc(unsigned int got_offset, unsigned int r_type,
         Sized_relobj_file<32, big_endian>* relobj, unsigned int index)
     : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
   {
     this->u_.local.relobj = relobj;
     this->u_.local.index = index;
   }

   // Return the GOT offset.
   unsigned int
   got_offset() const
   { return this->got_offset_; }

   // Relocation type.
   unsigned int
   r_type() const
   { return this->r_type_; }

   // Whether the symbol is global or not.
   bool
   symbol_is_global() const
   { return this->symbol_is_global_; }

   // For a relocation against a global symbol, the global symbol.
   Symbol*
   symbol() const
   {
     gold_assert(this->symbol_is_global_);
     return this->u_.global.symbol;
   }

   // For a relocation against a local symbol, the defining object.
   Sized_relobj_file<32, big_endian>*
   relobj() const
   {
     gold_assert(!this->symbol_is_global_);
     return this->u_.local.relobj;
   }

   // For a relocation against a local symbol, the local symbol index.
   unsigned int
   index() const
   {
     gold_assert(!this->symbol_is_global_);
     return this->u_.local.index;
   }

  private:
   // GOT offset of the entry to which this relocation is applied.
   unsigned int got_offset_;
   // Type of relocation.
   unsigned int r_type_;
   // Whether this relocation is against a global symbol.
   bool symbol_is_global_;
   // A global or local symbol.
   union
   {
     struct
     {
       // For a global symbol, the symbol itself.
       Symbol* symbol;
     } global;
     struct
     {
       // For a local symbol, the object defining object.
       Sized_relobj_file<32, big_endian>* relobj;
       // For a local symbol, the symbol index.
       unsigned int index;
     } local;
   } u_;
 };

 // Symbol table of the output object.
 Symbol_table* symbol_table_;
 // Layout of the output object.
 Layout* layout_;
 // Static relocs to be applied to the GOT.
 std::vector<Static_reloc> static_relocs_;
};

// The ARM target has many relocation types with odd-sizes or noncontiguous
// bits.  The default handling of relocatable relocation cannot process these
// relocations.  So we have to extend the default code.

template<bool big_endian, typename Classify_reloc>
class Arm_scan_relocatable_relocs :
 public Default_scan_relocatable_relocs<Classify_reloc>
{
public:
 // Return the strategy to use for a local symbol which is a section
 // symbol, given the relocation type.
 inline Relocatable_relocs::Reloc_strategy
 local_section_strategy(unsigned int r_type, Relobj*)
 {
   if (Classify_reloc::sh_type == elfcpp::SHT_RELA)
     return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
   else
     {
       if (r_type == elfcpp::R_ARM_TARGET1
           || r_type == elfcpp::R_ARM_TARGET2)
         {
           const Target_arm<big_endian>* arm_target =
             Target_arm<big_endian>::default_target();
           r_type = arm_target->get_real_reloc_type(r_type);
         }

       switch(r_type)
         {
         // Relocations that write nothing.  These exclude R_ARM_TARGET1
         // and R_ARM_TARGET2.
         case elfcpp::R_ARM_NONE:
         case elfcpp::R_ARM_V4BX:
         case elfcpp::R_ARM_TLS_GOTDESC:
         case elfcpp::R_ARM_TLS_CALL:
         case elfcpp::R_ARM_TLS_DESCSEQ:
         case elfcpp::R_ARM_THM_TLS_CALL:
         case elfcpp::R_ARM_GOTRELAX:
         case elfcpp::R_ARM_GNU_VTENTRY:
         case elfcpp::R_ARM_GNU_VTINHERIT:
         case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
         case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
           return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
         // These should have been converted to something else above.
         case elfcpp::R_ARM_TARGET1:
         case elfcpp::R_ARM_TARGET2:
           gold_unreachable();
         // Relocations that write full 32 bits and
         // have alignment of 1.
         case elfcpp::R_ARM_ABS32:
         case elfcpp::R_ARM_REL32:
         case elfcpp::R_ARM_SBREL32:
         case elfcpp::R_ARM_GOTOFF32:
         case elfcpp::R_ARM_BASE_PREL:
         case elfcpp::R_ARM_GOT_BREL:
         case elfcpp::R_ARM_BASE_ABS:
         case elfcpp::R_ARM_ABS32_NOI:
         case elfcpp::R_ARM_REL32_NOI:
         case elfcpp::R_ARM_PLT32_ABS:
         case elfcpp::R_ARM_GOT_ABS:
         case elfcpp::R_ARM_GOT_PREL:
         case elfcpp::R_ARM_TLS_GD32:
         case elfcpp::R_ARM_TLS_LDM32:
         case elfcpp::R_ARM_TLS_LDO32:
         case elfcpp::R_ARM_TLS_IE32:
         case elfcpp::R_ARM_TLS_LE32:
           return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED;
         default:
           // For all other static relocations, return RELOC_SPECIAL.
           return Relocatable_relocs::RELOC_SPECIAL;
         }
     }
 }
};

template<bool big_endian>
class Target_arm : public Sized_target<32, big_endian>
{
public:
 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
   Reloc_section;

 // When were are relocating a stub, we pass this as the relocation number.
 static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);

 Target_arm(const Target::Target_info* info = &arm_info)
   : Sized_target<32, big_endian>(info),
     got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
     rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY),
     got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
     stub_tables_(), stub_factory_(Stub_factory::get_instance()),
     should_force_pic_veneer_(false),
     arm_input_section_map_(), attributes_section_data_(NULL),
     fix_cortex_a8_(false), cortex_a8_relocs_info_(),
     target1_reloc_(elfcpp::R_ARM_ABS32),
     // This can be any reloc type but usually is R_ARM_GOT_PREL.
     target2_reloc_(elfcpp::R_ARM_GOT_PREL)
 { }

 // Whether we force PCI branch veneers.
 bool
 should_force_pic_veneer() const
 { return this->should_force_pic_veneer_; }

 // Set PIC veneer flag.
 void
 set_should_force_pic_veneer(bool value)
 { this->should_force_pic_veneer_ = value; }

 // Whether we use THUMB-2 instructions.
 bool
 using_thumb2() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
   int arch = attr->int_value();
   return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
 }

 // Whether we use THUMB/THUMB-2 instructions only.
 bool
 using_thumb_only() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);

   if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
       || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
     return true;
   if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
       && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
     return false;
   attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
   return attr->int_value() == 'M';
 }

 // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
 bool
 may_use_arm_nop() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
   int arch = attr->int_value();
   return (arch == elfcpp::TAG_CPU_ARCH_V6T2
           || arch == elfcpp::TAG_CPU_ARCH_V6K
           || arch == elfcpp::TAG_CPU_ARCH_V7
           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
 }

 // Whether we have THUMB-2 NOP.W instruction.
 bool
 may_use_thumb2_nop() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
   int arch = attr->int_value();
   return (arch == elfcpp::TAG_CPU_ARCH_V6T2
           || arch == elfcpp::TAG_CPU_ARCH_V7
           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
 }

 // Whether we have v4T interworking instructions available.
 bool
 may_use_v4t_interworking() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
   int arch = attr->int_value();
   return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
           && arch != elfcpp::TAG_CPU_ARCH_V4);
 }

 // Whether we have v5T interworking instructions available.
 bool
 may_use_v5t_interworking() const
 {
   Object_attribute* attr =
     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
   int arch = attr->int_value();
   if (parameters->options().fix_arm1176())
     return (arch == elfcpp::TAG_CPU_ARCH_V6T2
             || arch == elfcpp::TAG_CPU_ARCH_V7
             || arch == elfcpp::TAG_CPU_ARCH_V6_M
             || arch == elfcpp::TAG_CPU_ARCH_V6S_M
             || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
   else
     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4
             && arch != elfcpp::TAG_CPU_ARCH_V4
             && arch != elfcpp::TAG_CPU_ARCH_V4T);
 }

 // Process the relocations to determine unreferenced sections for
 // garbage collection.
 void
 gc_process_relocs(Symbol_table* symtab,
                   Layout* layout,
                   Sized_relobj_file<32, big_endian>* object,
                   unsigned int data_shndx,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   size_t local_symbol_count,
                   const unsigned char* plocal_symbols);

 // Scan the relocations to look for symbol adjustments.
 void
 scan_relocs(Symbol_table* symtab,
             Layout* layout,
             Sized_relobj_file<32, big_endian>* object,
             unsigned int data_shndx,
             unsigned int sh_type,
             const unsigned char* prelocs,
             size_t reloc_count,
             Output_section* output_section,
             bool needs_special_offset_handling,
             size_t local_symbol_count,
             const unsigned char* plocal_symbols);

 // Finalize the sections.
 void
 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

 // Return the value to use for a dynamic symbol which requires special
 // treatment.
 uint64_t
 do_dynsym_value(const Symbol*) const;

 // Return the plt address for globals. Since we have irelative plt entries,
 // address calculation is not as straightforward as plt_address + plt_offset.
 uint64_t
 do_plt_address_for_global(const Symbol* gsym) const
 { return this->plt_section()->address_for_global(gsym); }

 // Return the plt address for locals. Since we have irelative plt entries,
 // address calculation is not as straightforward as plt_address + plt_offset.
 uint64_t
 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
 { return this->plt_section()->address_for_local(relobj, symndx); }

 // Relocate a section.
 void
 relocate_section(const Relocate_info<32, big_endian>*,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  unsigned char* view,
                  Arm_address view_address,
                  section_size_type view_size,
                  const Reloc_symbol_changes*);

 // Scan the relocs during a relocatable link.
 void
 scan_relocatable_relocs(Symbol_table* symtab,
                         Layout* layout,
                         Sized_relobj_file<32, big_endian>* object,
                         unsigned int data_shndx,
                         unsigned int sh_type,
                         const unsigned char* prelocs,
                         size_t reloc_count,
                         Output_section* output_section,
                         bool needs_special_offset_handling,
                         size_t local_symbol_count,
                         const unsigned char* plocal_symbols,
                         Relocatable_relocs*);

 // Scan the relocs for --emit-relocs.
 void
 emit_relocs_scan(Symbol_table* symtab,
                  Layout* layout,
                  Sized_relobj_file<32, big_endian>* object,
                  unsigned int data_shndx,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  size_t local_symbol_count,
                  const unsigned char* plocal_syms,
                  Relocatable_relocs* rr);

 // Emit relocations for a section.
 void
 relocate_relocs(const Relocate_info<32, big_endian>*,
                 unsigned int sh_type,
                 const unsigned char* prelocs,
                 size_t reloc_count,
                 Output_section* output_section,
                 typename elfcpp::Elf_types<32>::Elf_Off
                   offset_in_output_section,
                 unsigned char* view,
                 Arm_address view_address,
                 section_size_type view_size,
                 unsigned char* reloc_view,
                 section_size_type reloc_view_size);

 // Perform target-specific processing in a relocatable link.  This is
 // only used if we use the relocation strategy RELOC_SPECIAL.
 void
 relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
                              unsigned int sh_type,
                              const unsigned char* preloc_in,
                              size_t relnum,
                              Output_section* output_section,
                              typename elfcpp::Elf_types<32>::Elf_Off
                                offset_in_output_section,
                              unsigned char* view,
                              typename elfcpp::Elf_types<32>::Elf_Addr
                                view_address,
                              section_size_type view_size,
                              unsigned char* preloc_out);

 // Return whether SYM is defined by the ABI.
 bool
 do_is_defined_by_abi(const Symbol* sym) const
 { return strcmp(sym->name(), "__tls_get_addr") == 0; }

 // Return whether there is a GOT section.
 bool
 has_got_section() const
 { return this->got_ != NULL; }

 // Return the size of the GOT section.
 section_size_type
 got_size() const
 {
   gold_assert(this->got_ != NULL);
   return this->got_->data_size();
 }

 // Return the number of entries in the GOT.
 unsigned int
 got_entry_count() const
 {
   if (!this->has_got_section())
     return 0;
   return this->got_size() / 4;
 }

 // Return the number of entries in the PLT.
 unsigned int
 plt_entry_count() const;

 // Return the offset of the first non-reserved PLT entry.
 unsigned int
 first_plt_entry_offset() const;

 // Return the size of each PLT entry.
 unsigned int
 plt_entry_size() const;

 // Get the section to use for IRELATIVE relocations, create it if necessary.
 Reloc_section*
 rel_irelative_section(Layout*);

 // Map platform-specific reloc types
 unsigned int
 get_real_reloc_type(unsigned int r_type) const;

 //
 // Methods to support stub-generations.
 //

 // Return the stub factory
 const Stub_factory&
 stub_factory() const
 { return this->stub_factory_; }

 // Make a new Arm_input_section object.
 Arm_input_section<big_endian>*
 new_arm_input_section(Relobj*, unsigned int);

 // Find the Arm_input_section object corresponding to the SHNDX-th input
 // section of RELOBJ.
 Arm_input_section<big_endian>*
 find_arm_input_section(Relobj* relobj, unsigned int shndx) const;

 // Make a new Stub_table
 Stub_table<big_endian>*
 new_stub_table(Arm_input_section<big_endian>*);

 // Scan a section for stub generation.
 void
 scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
                        const unsigned char*, size_t, Output_section*,
                        bool, const unsigned char*, Arm_address,
                        section_size_type);

 // Relocate a stub.
 void
 relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
               Output_section*, unsigned char*, Arm_address,
               section_size_type);

 // Get the default ARM target.
 static Target_arm<big_endian>*
 default_target()
 {
   gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
               && parameters->target().is_big_endian() == big_endian);
   return static_cast<Target_arm<big_endian>*>(
            parameters->sized_target<32, big_endian>());
 }

 // Whether NAME belongs to a mapping symbol.
 static bool
 is_mapping_symbol_name(const char* name)
 {
   return (name
           && name[0] == '$'
           && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
           && (name[2] == '\0' || name[2] == '.'));
 }

 // Whether we work around the Cortex-A8 erratum.
 bool
 fix_cortex_a8() const
 { return this->fix_cortex_a8_; }

 // Whether we merge exidx entries in debuginfo.
 bool
 merge_exidx_entries() const
 { return parameters->options().merge_exidx_entries(); }

 // Whether we fix R_ARM_V4BX relocation.
 // 0 - do not fix
 // 1 - replace with MOV instruction (armv4 target)
 // 2 - make interworking veneer (>= armv4t targets only)
 General_options::Fix_v4bx
 fix_v4bx() const
 { return parameters->options().fix_v4bx(); }

 // Scan a span of THUMB code section for Cortex-A8 erratum.
 void
 scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
                                 section_size_type, section_size_type,
                                 const unsigned char*, Arm_address);

 // Apply Cortex-A8 workaround to a branch.
 void
 apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
                            unsigned char*, Arm_address);

protected:
 // Make the PLT-generator object.
 Output_data_plt_arm<big_endian>*
 make_data_plt(Layout* layout,
               Arm_output_data_got<big_endian>* got,
               Output_data_space* got_plt,
               Output_data_space* got_irelative)
 { return this->do_make_data_plt(layout, got, got_plt, got_irelative); }

 // Make an ELF object.
 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<32, big_endian>& ehdr);

 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<32, !big_endian>&)
 { gold_unreachable(); }

 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                     const elfcpp::Ehdr<64, false>&)
 { gold_unreachable(); }

 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<64, true>&)
 { gold_unreachable(); }

 // Make an output section.
 Output_section*
 do_make_output_section(const char* name, elfcpp::Elf_Word type,
                        elfcpp::Elf_Xword flags)
 { return new Arm_output_section<big_endian>(name, type, flags); }

 void
 do_adjust_elf_header(unsigned char* view, int len);

 // We only need to generate stubs, and hence perform relaxation if we are
 // not doing relocatable linking.
 bool
 do_may_relax() const
 { return !parameters->options().relocatable(); }

 bool
 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);

 // Determine whether an object attribute tag takes an integer, a
 // string or both.
 int
 do_attribute_arg_type(int tag) const;

 // Reorder tags during output.
 int
 do_attributes_order(int num) const;

 // This is called when the target is selected as the default.
 void
 do_select_as_default_target()
 {
   // No locking is required since there should only be one default target.
   // We cannot have both the big-endian and little-endian ARM targets
   // as the default.
   gold_assert(arm_reloc_property_table == NULL);
   arm_reloc_property_table = new Arm_reloc_property_table();
   if (parameters->options().user_set_target1_rel())
     {
       // FIXME: This is not strictly compatible with ld, which allows both
       // --target1-abs and --target-rel to be given.
       if (parameters->options().user_set_target1_abs())
         gold_error(_("Cannot use both --target1-abs and --target1-rel."));
       else
         this->target1_reloc_ = elfcpp::R_ARM_REL32;
     }
   // We don't need to handle --target1-abs because target1_reloc_ is set
   // to elfcpp::R_ARM_ABS32 in the member initializer list.

   if (parameters->options().user_set_target2())
     {
       const char* target2 = parameters->options().target2();
       if (strcmp(target2, "rel") == 0)
         this->target2_reloc_ = elfcpp::R_ARM_REL32;
       else if (strcmp(target2, "abs") == 0)
         this->target2_reloc_ = elfcpp::R_ARM_ABS32;
       else if (strcmp(target2, "got-rel") == 0)
         this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL;
       else
         gold_unreachable();
     }
 }

 // Virtual function which is set to return true by a target if
 // it can use relocation types to determine if a function's
 // pointer is taken.
 virtual bool
 do_can_check_for_function_pointers() const
 { return true; }

 // Whether a section called SECTION_NAME may have function pointers to
 // sections not eligible for safe ICF folding.
 virtual bool
 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
 {
   return (!is_prefix_of(".ARM.exidx", section_name)
           && !is_prefix_of(".ARM.extab", section_name)
           && Target::do_section_may_have_icf_unsafe_pointers(section_name));
 }

 virtual void
 do_define_standard_symbols(Symbol_table*, Layout*);

 virtual Output_data_plt_arm<big_endian>*
 do_make_data_plt(Layout* layout,
                  Arm_output_data_got<big_endian>* got,
                  Output_data_space* got_plt,
                  Output_data_space* got_irelative)
 {
   gold_assert(got_plt != NULL && got_irelative != NULL);
   if (parameters->options().long_plt())
     return new Output_data_plt_arm_long<big_endian>(
       layout, got, got_plt, got_irelative);
   else
     return new Output_data_plt_arm_short<big_endian>(
       layout, got, got_plt, got_irelative);
 }

private:
 // The class which scans relocations.
 class Scan
 {
  public:
   Scan()
     : issued_non_pic_error_(false)
   { }

   static inline int
   get_reference_flags(unsigned int r_type);

   inline void
   local(Symbol_table* symtab, Layout* layout, Target_arm* target,
         Sized_relobj_file<32, big_endian>* object,
         unsigned int data_shndx,
         Output_section* output_section,
         const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
         const elfcpp::Sym<32, big_endian>& lsym,
         bool is_discarded);

   inline void
   global(Symbol_table* symtab, Layout* layout, Target_arm* target,
          Sized_relobj_file<32, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
          Symbol* gsym);

   inline bool
   local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
                                       Sized_relobj_file<32, big_endian>* ,
                                       unsigned int ,
                                       Output_section* ,
                                       const elfcpp::Rel<32, big_endian>& ,
                                       unsigned int ,
                                       const elfcpp::Sym<32, big_endian>&);

   inline bool
   global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
                                        Sized_relobj_file<32, big_endian>* ,
                                        unsigned int ,
                                        Output_section* ,
                                        const elfcpp::Rel<32, big_endian>& ,
                                        unsigned int , Symbol*);

  private:
   static void
   unsupported_reloc_local(Sized_relobj_file<32, big_endian>*,
                           unsigned int r_type);

   static void
   unsupported_reloc_global(Sized_relobj_file<32, big_endian>*,
                            unsigned int r_type, Symbol*);

   void
   check_non_pic(Relobj*, unsigned int r_type);

   // Almost identical to Symbol::needs_plt_entry except that it also
   // handles STT_ARM_TFUNC.
   static bool
   symbol_needs_plt_entry(const Symbol* sym)
   {
     // An undefined symbol from an executable does not need a PLT entry.
     if (sym->is_undefined() && !parameters->options().shared())
       return false;

     if (sym->type() == elfcpp::STT_GNU_IFUNC)
       return true;

     return (!parameters->doing_static_link()
             && (sym->type() == elfcpp::STT_FUNC
                 || sym->type() == elfcpp::STT_ARM_TFUNC)
             && (sym->is_from_dynobj()
                 || sym->is_undefined()
                 || sym->is_preemptible()));
   }

   inline bool
   possible_function_pointer_reloc(unsigned int r_type);

   // Whether a plt entry is needed for ifunc.
   bool
   reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*,
                             unsigned int r_type);

   // Whether we have issued an error about a non-PIC compilation.
   bool issued_non_pic_error_;
 };

 // The class which implements relocation.
 class Relocate
 {
  public:
   Relocate()
   { }

   ~Relocate()
   { }

   // Return whether the static relocation needs to be applied.
   inline bool
   should_apply_static_reloc(const Sized_symbol<32>* gsym,
                             unsigned int r_type,
                             bool is_32bit,
                             Output_section* output_section);

   // Do a relocation.  Return false if the caller should not issue
   // any warnings about this relocation.
   inline bool
   relocate(const Relocate_info<32, big_endian>*, unsigned int,
            Target_arm*, Output_section*, size_t, const unsigned char*,
            const Sized_symbol<32>*, const Symbol_value<32>*,
            unsigned char*, Arm_address, section_size_type);

   // Return whether we want to pass flag NON_PIC_REF for this
   // reloc.  This means the relocation type accesses a symbol not via
   // GOT or PLT.
   static inline bool
   reloc_is_non_pic(unsigned int r_type)
   {
     switch (r_type)
       {
       // These relocation types reference GOT or PLT entries explicitly.
       case elfcpp::R_ARM_GOT_BREL:
       case elfcpp::R_ARM_GOT_ABS:
       case elfcpp::R_ARM_GOT_PREL:
       case elfcpp::R_ARM_GOT_BREL12:
       case elfcpp::R_ARM_PLT32_ABS:
       case elfcpp::R_ARM_TLS_GD32:
       case elfcpp::R_ARM_TLS_LDM32:
       case elfcpp::R_ARM_TLS_IE32:
       case elfcpp::R_ARM_TLS_IE12GP:

       // These relocate types may use PLT entries.
       case elfcpp::R_ARM_CALL:
       case elfcpp::R_ARM_THM_CALL:
       case elfcpp::R_ARM_JUMP24:
       case elfcpp::R_ARM_THM_JUMP24:
       case elfcpp::R_ARM_THM_JUMP19:
       case elfcpp::R_ARM_PLT32:
       case elfcpp::R_ARM_THM_XPC22:
       case elfcpp::R_ARM_PREL31:
       case elfcpp::R_ARM_SBREL31:
         return false;

       default:
         return true;
       }
   }

  private:
   // Do a TLS relocation.
   inline typename Arm_relocate_functions<big_endian>::Status
   relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
                size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
                const Sized_symbol<32>*, const Symbol_value<32>*,
                unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
                section_size_type);

 };

 // A class for inquiring about properties of a relocation,
 // used while scanning relocs during a relocatable link and
 // garbage collection.
 class Classify_reloc :
     public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
 {
  public:
   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc
       Reltype;

   // Return the explicit addend of the relocation (return 0 for SHT_REL).
   static typename elfcpp::Elf_types<32>::Elf_Swxword
   get_r_addend(const Reltype*)
   { return 0; }

   // Return the size of the addend of the relocation (only used for SHT_REL).
   static unsigned int
   get_size_for_reloc(unsigned int, Relobj*);
 };

 // Adjust TLS relocation type based on the options and whether this
 // is a local symbol.
 static tls::Tls_optimization
 optimize_tls_reloc(bool is_final, int r_type);

 // Get the GOT section, creating it if necessary.
 Arm_output_data_got<big_endian>*
 got_section(Symbol_table*, Layout*);

 // Get the GOT PLT section.
 Output_data_space*
 got_plt_section() const
 {
   gold_assert(this->got_plt_ != NULL);
   return this->got_plt_;
 }

 // Create the PLT section.
 void
 make_plt_section(Symbol_table* symtab, Layout* layout);

 // Create a PLT entry for a global symbol.
 void
 make_plt_entry(Symbol_table*, Layout*, Symbol*);

 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
 void
 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
                            Sized_relobj_file<32, big_endian>* relobj,
                            unsigned int local_sym_index);

 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
 void
 define_tls_base_symbol(Symbol_table*, Layout*);

 // Create a GOT entry for the TLS module index.
 unsigned int
 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                     Sized_relobj_file<32, big_endian>* object);

 // Get the PLT section.
 const Output_data_plt_arm<big_endian>*
 plt_section() const
 {
   gold_assert(this->plt_ != NULL);
   return this->plt_;
 }

 // Get the dynamic reloc section, creating it if necessary.
 Reloc_section*
 rel_dyn_section(Layout*);

 // Get the section to use for TLS_DESC relocations.
 Reloc_section*
 rel_tls_desc_section(Layout*) const;

 // Return true if the symbol may need a COPY relocation.
 // References from an executable object to non-function symbols
 // defined in a dynamic object may need a COPY relocation.
 bool
 may_need_copy_reloc(Symbol* gsym)
 {
   return (gsym->type() != elfcpp::STT_ARM_TFUNC
           && gsym->may_need_copy_reloc());
 }

 // Add a potential copy relocation.
 void
 copy_reloc(Symbol_table* symtab, Layout* layout,
            Sized_relobj_file<32, big_endian>* object,
            unsigned int shndx, Output_section* output_section,
            Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc)
 {
   unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info());
   this->copy_relocs_.copy_reloc(symtab, layout,
                                 symtab->get_sized_symbol<32>(sym),
                                 object, shndx, output_section,
                                 r_type, reloc.get_r_offset(), 0,
                                 this->rel_dyn_section(layout));
 }

 // Whether two EABI versions are compatible.
 static bool
 are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2);

 // Merge processor-specific flags from input object and those in the ELF
 // header of the output.
 void
 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);

 // Get the secondary compatible architecture.
 static int
 get_secondary_compatible_arch(const Attributes_section_data*);

 // Set the secondary compatible architecture.
 static void
 set_secondary_compatible_arch(Attributes_section_data*, int);

 static int
 tag_cpu_arch_combine(const char*, int, int*, int, int);

 // Helper to print AEABI enum tag value.
 static std::string
 aeabi_enum_name(unsigned int);

 // Return string value for TAG_CPU_name.
 static std::string
 tag_cpu_name_value(unsigned int);

 // Query attributes object to see if integer divide instructions may be
 // present in an object.
 static bool
 attributes_accept_div(int arch, int profile,
                       const Object_attribute* div_attr);

 // Query attributes object to see if integer divide instructions are
 // forbidden to be in the object.  This is not the inverse of
 // attributes_accept_div.
 static bool
 attributes_forbid_div(const Object_attribute* div_attr);

 // Merge object attributes from input object and those in the output.
 void
 merge_object_attributes(const char*, const Attributes_section_data*);

 // Helper to get an AEABI object attribute
 Object_attribute*
 get_aeabi_object_attribute(int tag) const
 {
   Attributes_section_data* pasd = this->attributes_section_data_;
   gold_assert(pasd != NULL);
   Object_attribute* attr =
     pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
   gold_assert(attr != NULL);
   return attr;
 }

 //
 // Methods to support stub-generations.
 //

 // Group input sections for stub generation.
 void
 group_sections(Layout*, section_size_type, bool, const Task*);

 // Scan a relocation for stub generation.
 void
 scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
                     const Sized_symbol<32>*, unsigned int,
                     const Symbol_value<32>*,
                     elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);

 // Scan a relocation section for stub.
 template<int sh_type>
 void
 scan_reloc_section_for_stubs(
     const Relocate_info<32, big_endian>* relinfo,
     const unsigned char* prelocs,
     size_t reloc_count,
     Output_section* output_section,
     bool needs_special_offset_handling,
     const unsigned char* view,
     elfcpp::Elf_types<32>::Elf_Addr view_address,
     section_size_type);

 // Fix .ARM.exidx section coverage.
 void
 fix_exidx_coverage(Layout*, const Input_objects*,
                    Arm_output_section<big_endian>*, Symbol_table*,
                    const Task*);

 // Functors for STL set.
 struct output_section_address_less_than
 {
   bool
   operator()(const Output_section* s1, const Output_section* s2) const
   { return s1->address() < s2->address(); }
 };

 // Information about this specific target which we pass to the
 // general Target structure.
 static const Target::Target_info arm_info;

 // The types of GOT entries needed for this platform.
 // These values are exposed to the ABI in an incremental link.
 // Do not renumber existing values without changing the version
 // number of the .gnu_incremental_inputs section.
 enum Got_type
 {
   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
   GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
   GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
   GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
   GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
 };

 typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;

 // Map input section to Arm_input_section.
 typedef Unordered_map<Section_id,
                       Arm_input_section<big_endian>*,
                       Section_id_hash>
         Arm_input_section_map;

 // Map output addresses to relocs for Cortex-A8 erratum.
 typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
         Cortex_a8_relocs_info;

 // The GOT section.
 Arm_output_data_got<big_endian>* got_;
 // The PLT section.
 Output_data_plt_arm<big_endian>* plt_;
 // The GOT PLT section.
 Output_data_space* got_plt_;
 // The GOT section for IRELATIVE relocations.
 Output_data_space* got_irelative_;
 // The dynamic reloc section.
 Reloc_section* rel_dyn_;
 // The section to use for IRELATIVE relocs.
 Reloc_section* rel_irelative_;
 // Relocs saved to avoid a COPY reloc.
 Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
 // Offset of the GOT entry for the TLS module index.
 unsigned int got_mod_index_offset_;
 // True if the _TLS_MODULE_BASE_ symbol has been defined.
 bool tls_base_symbol_defined_;
 // Vector of Stub_tables created.
 Stub_table_list stub_tables_;
 // Stub factory.
 const Stub_factory &stub_factory_;
 // Whether we force PIC branch veneers.
 bool should_force_pic_veneer_;
 // Map for locating Arm_input_sections.
 Arm_input_section_map arm_input_section_map_;
 // Attributes section data in output.
 Attributes_section_data* attributes_section_data_;
 // Whether we want to fix code for Cortex-A8 erratum.
 bool fix_cortex_a8_;
 // Map addresses to relocs for Cortex-A8 erratum.
 Cortex_a8_relocs_info cortex_a8_relocs_info_;
 // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32.
 unsigned int target1_reloc_;
 // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32
 // and R_ARM_GOT_PREL.
 unsigned int target2_reloc_;
};

template<bool big_endian>
const Target::Target_info Target_arm<big_endian>::arm_info =
{
 32,                   // size
 big_endian,           // is_big_endian
 elfcpp::EM_ARM,       // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 true,                 // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/usr/lib/libc.so.1", // dynamic_linker
 0x8000,               // default_text_segment_address
 0x1000,               // abi_pagesize (overridable by -z max-page-size)
 0x1000,               // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 ".ARM.attributes",    // attributes_section
 "aeabi",              // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

// Arm relocate functions class
//

template<bool big_endian>
class Arm_relocate_functions : public Relocate_functions<32, big_endian>
{
public:
 typedef enum
 {
   STATUS_OKAY,        // No error during relocation.
   STATUS_OVERFLOW,    // Relocation overflow.
   STATUS_BAD_RELOC    // Relocation cannot be applied.
 } Status;

private:
 typedef Relocate_functions<32, big_endian> Base;
 typedef Arm_relocate_functions<big_endian> This;

 // Encoding of imm16 argument for movt and movw ARM instructions
 // from ARM ARM:
 //
 //     imm16 := imm4 | imm12
 //
 //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0
 // +-------+---------------+-------+-------+-----------------------+
 // |       |               |imm4   |       |imm12                  |
 // +-------+---------------+-------+-------+-----------------------+

 // Extract the relocation addend from VAL based on the ARM
 // instruction encoding described above.
 static inline typename elfcpp::Swap<32, big_endian>::Valtype
 extract_arm_movw_movt_addend(
     typename elfcpp::Swap<32, big_endian>::Valtype val)
 {
   // According to the Elf ABI for ARM Architecture the immediate
   // field is sign-extended to form the addend.
   return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff));
 }

 // Insert X into VAL based on the ARM instruction encoding described
 // above.
 static inline typename elfcpp::Swap<32, big_endian>::Valtype
 insert_val_arm_movw_movt(
     typename elfcpp::Swap<32, big_endian>::Valtype val,
     typename elfcpp::Swap<32, big_endian>::Valtype x)
 {
   val &= 0xfff0f000;
   val |= x & 0x0fff;
   val |= (x & 0xf000) << 4;
   return val;
 }

 // Encoding of imm16 argument for movt and movw Thumb2 instructions
 // from ARM ARM:
 //
 //     imm16 := imm4 | i | imm3 | imm8
 //
 //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0
 // +---------+-+-----------+-------++-+-----+-------+---------------+
 // |         |i|           |imm4   || |imm3 |       |imm8           |
 // +---------+-+-----------+-------++-+-----+-------+---------------+

 // Extract the relocation addend from VAL based on the Thumb2
 // instruction encoding described above.
 static inline typename elfcpp::Swap<32, big_endian>::Valtype
 extract_thumb_movw_movt_addend(
     typename elfcpp::Swap<32, big_endian>::Valtype val)
 {
   // According to the Elf ABI for ARM Architecture the immediate
   // field is sign-extended to form the addend.
   return Bits<16>::sign_extend32(((val >> 4) & 0xf000)
                                  | ((val >> 15) & 0x0800)
                                  | ((val >> 4) & 0x0700)
                                  | (val & 0x00ff));
 }

 // Insert X into VAL based on the Thumb2 instruction encoding
 // described above.
 static inline typename elfcpp::Swap<32, big_endian>::Valtype
 insert_val_thumb_movw_movt(
     typename elfcpp::Swap<32, big_endian>::Valtype val,
     typename elfcpp::Swap<32, big_endian>::Valtype x)
 {
   val &= 0xfbf08f00;
   val |= (x & 0xf000) << 4;
   val |= (x & 0x0800) << 15;
   val |= (x & 0x0700) << 4;
   val |= (x & 0x00ff);
   return val;
 }

 // Calculate the smallest constant Kn for the specified residual.
 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
 static uint32_t
 calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
 {
   int32_t msb;

   if (residual == 0)
     return 0;
   // Determine the most significant bit in the residual and
   // align the resulting value to a 2-bit boundary.
   for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
     ;
   // The desired shift is now (msb - 6), or zero, whichever
   // is the greater.
   return (((msb - 6) < 0) ? 0 : (msb - 6));
 }

 // Calculate the final residual for the specified group index.
 // If the passed group index is less than zero, the method will return
 // the value of the specified residual without any change.
 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
 static typename elfcpp::Swap<32, big_endian>::Valtype
 calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
                   const int group)
 {
   for (int n = 0; n <= group; n++)
     {
       // Calculate which part of the value to mask.
       uint32_t shift = calc_grp_kn(residual);
       // Calculate the residual for the next time around.
       residual &= ~(residual & (0xff << shift));
     }

   return residual;
 }

 // Calculate the value of Gn for the specified group index.
 // We return it in the form of an encoded constant-and-rotation.
 // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
 static typename elfcpp::Swap<32, big_endian>::Valtype
 calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
             const int group)
 {
   typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
   uint32_t shift = 0;

   for (int n = 0; n <= group; n++)
     {
       // Calculate which part of the value to mask.
       shift = calc_grp_kn(residual);
       // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
       gn = residual & (0xff << shift);
       // Calculate the residual for the next time around.
       residual &= ~gn;
     }
   // Return Gn in the form of an encoded constant-and-rotation.
   return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
 }

public:
 // Handle ARM long branches.
 static typename This::Status
 arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
                   unsigned char*, const Sized_symbol<32>*,
                   const Arm_relobj<big_endian>*, unsigned int,
                   const Symbol_value<32>*, Arm_address, Arm_address, bool);

 // Handle THUMB long branches.
 static typename This::Status
 thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
                     unsigned char*, const Sized_symbol<32>*,
                     const Arm_relobj<big_endian>*, unsigned int,
                     const Symbol_value<32>*, Arm_address, Arm_address, bool);


 // Return the branch offset of a 32-bit THUMB branch.
 static inline int32_t
 thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
 {
   // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
   // involving the J1 and J2 bits.
   uint32_t s = (upper_insn & (1U << 10)) >> 10;
   uint32_t upper = upper_insn & 0x3ffU;
   uint32_t lower = lower_insn & 0x7ffU;
   uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
   uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
   uint32_t i1 = j1 ^ s ? 0 : 1;
   uint32_t i2 = j2 ^ s ? 0 : 1;

   return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22)
                                  | (upper << 12) | (lower << 1));
 }

 // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
 // UPPER_INSN is the original upper instruction of the branch.  Caller is
 // responsible for overflow checking and BLX offset adjustment.
 static inline uint16_t
 thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
 {
   uint32_t s = offset < 0 ? 1 : 0;
   uint32_t bits = static_cast<uint32_t>(offset);
   return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
 }

 // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
 // LOWER_INSN is the original lower instruction of the branch.  Caller is
 // responsible for overflow checking and BLX offset adjustment.
 static inline uint16_t
 thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
 {
   uint32_t s = offset < 0 ? 1 : 0;
   uint32_t bits = static_cast<uint32_t>(offset);
   return ((lower_insn & ~0x2fffU)
           | ((((bits >> 23) & 1) ^ !s) << 13)
           | ((((bits >> 22) & 1) ^ !s) << 11)
           | ((bits >> 1) & 0x7ffU));
 }

 // Return the branch offset of a 32-bit THUMB conditional branch.
 static inline int32_t
 thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
 {
   uint32_t s = (upper_insn & 0x0400U) >> 10;
   uint32_t j1 = (lower_insn & 0x2000U) >> 13;
   uint32_t j2 = (lower_insn & 0x0800U) >> 11;
   uint32_t lower = (lower_insn & 0x07ffU);
   uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);

   return Bits<21>::sign_extend32((upper << 12) | (lower << 1));
 }

 // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
 // instruction.  UPPER_INSN is the original upper instruction of the branch.
 // Caller is responsible for overflow checking.
 static inline uint16_t
 thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
 {
   uint32_t s = offset < 0 ? 1 : 0;
   uint32_t bits = static_cast<uint32_t>(offset);
   return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
 }

 // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
 // instruction.  LOWER_INSN is the original lower instruction of the branch.
 // The caller is responsible for overflow checking.
 static inline uint16_t
 thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
 {
   uint32_t bits = static_cast<uint32_t>(offset);
   uint32_t j2 = (bits & 0x00080000U) >> 19;
   uint32_t j1 = (bits & 0x00040000U) >> 18;
   uint32_t lo = (bits & 0x00000ffeU) >> 1;

   return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
 }

 // R_ARM_ABS8: S + A
 static inline typename This::Status
 abs8(unsigned char* view,
      const Sized_relobj_file<32, big_endian>* object,
      const Symbol_value<32>* psymval)
 {
   typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
   int32_t addend = Bits<8>::sign_extend32(val);
   Arm_address x = psymval->value(object, addend);
   val = Bits<32>::bit_select32(val, x, 0xffU);
   elfcpp::Swap<8, big_endian>::writeval(wv, val);

   // R_ARM_ABS8 permits signed or unsigned results.
   return (Bits<8>::has_signed_unsigned_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_THM_ABS5: S + A
 static inline typename This::Status
 thm_abs5(unsigned char* view,
      const Sized_relobj_file<32, big_endian>* object,
      const Symbol_value<32>* psymval)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
   Reltype addend = (val & 0x7e0U) >> 6;
   Reltype x = psymval->value(object, addend);
   val = Bits<32>::bit_select32(val, x << 6, 0x7e0U);
   elfcpp::Swap<16, big_endian>::writeval(wv, val);
   return (Bits<5>::has_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_ABS12: S + A
 static inline typename This::Status
 abs12(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval)
 {
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
   Reltype addend = val & 0x0fffU;
   Reltype x = psymval->value(object, addend);
   val = Bits<32>::bit_select32(val, x, 0x0fffU);
   elfcpp::Swap<32, big_endian>::writeval(wv, val);
   return (Bits<12>::has_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_ABS16: S + A
 static inline typename This::Status
 abs16(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval)
 {
   typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype;
   Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view);
   int32_t addend = Bits<16>::sign_extend32(val);
   Arm_address x = psymval->value(object, addend);
   val = Bits<32>::bit_select32(val, x, 0xffffU);
   elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val);

   // R_ARM_ABS16 permits signed or unsigned results.
   return (Bits<16>::has_signed_unsigned_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_ABS32: (S + A) | T
 static inline typename This::Status
 abs32(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       Arm_address thumb_bit)
 {
   typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
   Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
   Valtype x = psymval->value(object, addend) | thumb_bit;
   elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
   return This::STATUS_OKAY;
 }

 // R_ARM_REL32: (S + A) | T - P
 static inline typename This::Status
 rel32(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       Arm_address address,
       Arm_address thumb_bit)
 {
   typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
   Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
   Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
   elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x);
   return This::STATUS_OKAY;
 }

 // R_ARM_THM_JUMP24: (S + A) | T - P
 static typename This::Status
 thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object,
            const Symbol_value<32>* psymval, Arm_address address,
            Arm_address thumb_bit);

 // R_ARM_THM_JUMP6: S + A - P
 static inline typename This::Status
 thm_jump6(unsigned char* view,
           const Sized_relobj_file<32, big_endian>* object,
           const Symbol_value<32>* psymval,
           Arm_address address)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
   // bit[9]:bit[7:3]:'0' (mask: 0x02f8)
   Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
   Reltype x = (psymval->value(object, addend) - address);
   val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
   elfcpp::Swap<16, big_endian>::writeval(wv, val);
   // CZB does only forward jumps.
   return ((x > 0x007e)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_THM_JUMP8: S + A - P
 static inline typename This::Status
 thm_jump8(unsigned char* view,
           const Sized_relobj_file<32, big_endian>* object,
           const Symbol_value<32>* psymval,
           Arm_address address)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
   int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1);
   int32_t x = (psymval->value(object, addend) - address);
   elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00)
                                               | ((x & 0x01fe) >> 1)));
   // We do a 9-bit overflow check because x is right-shifted by 1 bit.
   return (Bits<9>::has_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_THM_JUMP11: S + A - P
 static inline typename This::Status
 thm_jump11(unsigned char* view,
           const Sized_relobj_file<32, big_endian>* object,
           const Symbol_value<32>* psymval,
           Arm_address address)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
   int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1);
   int32_t x = (psymval->value(object, addend) - address);
   elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800)
                                               | ((x & 0x0ffe) >> 1)));
   // We do a 12-bit overflow check because x is right-shifted by 1 bit.
   return (Bits<12>::has_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_BASE_PREL: B(S) + A - P
 static inline typename This::Status
 base_prel(unsigned char* view,
           Arm_address origin,
           Arm_address address)
 {
   Base::rel32(view, origin - address);
   return STATUS_OKAY;
 }

 // R_ARM_BASE_ABS: B(S) + A
 static inline typename This::Status
 base_abs(unsigned char* view,
          Arm_address origin)
 {
   Base::rel32(view, origin);
   return STATUS_OKAY;
 }

 // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG
 static inline typename This::Status
 got_brel(unsigned char* view,
          typename elfcpp::Swap<32, big_endian>::Valtype got_offset)
 {
   Base::rel32(view, got_offset);
   return This::STATUS_OKAY;
 }

 // R_ARM_GOT_PREL: GOT(S) + A - P
 static inline typename This::Status
 got_prel(unsigned char* view,
          Arm_address got_entry,
          Arm_address address)
 {
   Base::rel32(view, got_entry - address);
   return This::STATUS_OKAY;
 }

 // R_ARM_PREL: (S + A) | T - P
 static inline typename This::Status
 prel31(unsigned char* view,
        const Sized_relobj_file<32, big_endian>* object,
        const Symbol_value<32>* psymval,
        Arm_address address,
        Arm_address thumb_bit)
 {
   typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype;
   Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view);
   Valtype addend = Bits<31>::sign_extend32(val);
   Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
   val = Bits<32>::bit_select32(val, x, 0x7fffffffU);
   elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val);
   return (Bits<31>::has_overflow32(x)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_MOVW_ABS_NC: (S + A) | T     (relative address base is )
 // R_ARM_MOVW_PREL_NC: (S + A) | T - P
 // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
 // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
 static inline typename This::Status
 movw(unsigned char* view,
      const Sized_relobj_file<32, big_endian>* object,
      const Symbol_value<32>* psymval,
      Arm_address relative_address_base,
      Arm_address thumb_bit,
      bool check_overflow)
 {
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
   Valtype addend = This::extract_arm_movw_movt_addend(val);
   Valtype x = ((psymval->value(object, addend) | thumb_bit)
                - relative_address_base);
   val = This::insert_val_arm_movw_movt(val, x);
   elfcpp::Swap<32, big_endian>::writeval(wv, val);
   return ((check_overflow && Bits<16>::has_overflow32(x))
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_MOVT_ABS: S + A      (relative address base is 0)
 // R_ARM_MOVT_PREL: S + A - P
 // R_ARM_MOVT_BREL: S + A - B(S)
 static inline typename This::Status
 movt(unsigned char* view,
      const Sized_relobj_file<32, big_endian>* object,
      const Symbol_value<32>* psymval,
      Arm_address relative_address_base)
 {
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
   Valtype addend = This::extract_arm_movw_movt_addend(val);
   Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
   val = This::insert_val_arm_movw_movt(val, x);
   elfcpp::Swap<32, big_endian>::writeval(wv, val);
   // FIXME: IHI0044D says that we should check for overflow.
   return This::STATUS_OKAY;
 }

 // R_ARM_THM_MOVW_ABS_NC: S + A | T           (relative_address_base is 0)
 // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
 // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
 // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
 static inline typename This::Status
 thm_movw(unsigned char* view,
          const Sized_relobj_file<32, big_endian>* object,
          const Symbol_value<32>* psymval,
          Arm_address relative_address_base,
          Arm_address thumb_bit,
          bool check_overflow)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
   Reltype addend = This::extract_thumb_movw_movt_addend(val);
   Reltype x =
     (psymval->value(object, addend) | thumb_bit) - relative_address_base;
   val = This::insert_val_thumb_movw_movt(val, x);
   elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
   elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
   return ((check_overflow && Bits<16>::has_overflow32(x))
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_THM_MOVT_ABS: S + A          (relative address base is 0)
 // R_ARM_THM_MOVT_PREL: S + A - P
 // R_ARM_THM_MOVT_BREL: S + A - B(S)
 static inline typename This::Status
 thm_movt(unsigned char* view,
          const Sized_relobj_file<32, big_endian>* object,
          const Symbol_value<32>* psymval,
          Arm_address relative_address_base)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
   Reltype addend = This::extract_thumb_movw_movt_addend(val);
   Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
   val = This::insert_val_thumb_movw_movt(val, x);
   elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
   elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
   return This::STATUS_OKAY;
 }

 // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
 static inline typename This::Status
 thm_alu11(unsigned char* view,
           const Sized_relobj_file<32, big_endian>* object,
           const Symbol_value<32>* psymval,
           Arm_address address,
           Arm_address thumb_bit)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);

   //        f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
   // -----------------------------------------------------------------------
   // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
   // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
   // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
   // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
   // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
   // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8

   // Determine a sign for the addend.
   const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
                     || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
   // Thumb2 addend encoding:
   // imm12 := i | imm3 | imm8
   int32_t addend = (insn & 0xff)
                    | ((insn & 0x00007000) >> 4)
                    | ((insn & 0x04000000) >> 15);
   // Apply a sign to the added.
   addend *= sign;

   int32_t x = (psymval->value(object, addend) | thumb_bit)
               - (address & 0xfffffffc);
   Reltype val = abs(x);
   // Mask out the value and a distinct part of the ADD/SUB opcode
   // (bits 7:5 of opword).
   insn = (insn & 0xfb0f8f00)
          | (val & 0xff)
          | ((val & 0x700) << 4)
          | ((val & 0x800) << 15);
   // Set the opcode according to whether the value to go in the
   // place is negative.
   if (x < 0)
     insn |= 0x00a00000;

   elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
   elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
   return ((val > 0xfff) ?
           This::STATUS_OVERFLOW : This::STATUS_OKAY);
 }

 // R_ARM_THM_PC8: S + A - Pa (Thumb)
 static inline typename This::Status
 thm_pc8(unsigned char* view,
         const Sized_relobj_file<32, big_endian>* object,
         const Symbol_value<32>* psymval,
         Arm_address address)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
   Reltype addend = ((insn & 0x00ff) << 2);
   int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
   Reltype val = abs(x);
   insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);

   elfcpp::Swap<16, big_endian>::writeval(wv, insn);
   return ((val > 0x03fc)
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // R_ARM_THM_PC12: S + A - Pa (Thumb32)
 static inline typename This::Status
 thm_pc12(unsigned char* view,
          const Sized_relobj_file<32, big_endian>* object,
          const Symbol_value<32>* psymval,
          Arm_address address)
 {
   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
   // Determine a sign for the addend (positive if the U bit is 1).
   const int sign = (insn & 0x00800000) ? 1 : -1;
   int32_t addend = (insn & 0xfff);
   // Apply a sign to the added.
   addend *= sign;

   int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
   Reltype val = abs(x);
   // Mask out and apply the value and the U bit.
   insn = (insn & 0xff7ff000) | (val & 0xfff);
   // Set the U bit according to whether the value to go in the
   // place is positive.
   if (x >= 0)
     insn |= 0x00800000;

   elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
   elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
   return ((val > 0xfff) ?
           This::STATUS_OVERFLOW : This::STATUS_OKAY);
 }

 // R_ARM_V4BX
 static inline typename This::Status
 v4bx(const Relocate_info<32, big_endian>* relinfo,
      unsigned char* view,
      const Arm_relobj<big_endian>* object,
      const Arm_address address,
      const bool is_interworking)
 {

   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);

   // Ensure that we have a BX instruction.
   gold_assert((val & 0x0ffffff0) == 0x012fff10);
   const uint32_t reg = (val & 0xf);
   if (is_interworking && reg != 0xf)
     {
       Stub_table<big_endian>* stub_table =
           object->stub_table(relinfo->data_shndx);
       gold_assert(stub_table != NULL);

       Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
       gold_assert(stub != NULL);

       int32_t veneer_address =
           stub_table->address() + stub->offset() - 8 - address;
       gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
                   && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
       // Replace with a branch to veneer (B <addr>)
       val = (val & 0xf0000000) | 0x0a000000
             | ((veneer_address >> 2) & 0x00ffffff);
     }
   else
     {
       // Preserve Rm (lowest four bits) and the condition code
       // (highest four bits). Other bits encode MOV PC,Rm.
       val = (val & 0xf000000f) | 0x01a0f000;
     }
   elfcpp::Swap<32, big_endian>::writeval(wv, val);
   return This::STATUS_OKAY;
 }

 // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
 // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
 // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
 // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
 // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
 // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
 // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
 // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
 // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
 // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
 static inline typename This::Status
 arm_grp_alu(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       const int group,
       Arm_address address,
       Arm_address thumb_bit,
       bool check_overflow)
 {
   gold_assert(group >= 0 && group < 3);
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);

   // ALU group relocations are allowed only for the ADD/SUB instructions.
   // (0x00800000 - ADD, 0x00400000 - SUB)
   const Valtype opcode = insn & 0x01e00000;
   if (opcode != 0x00800000 && opcode != 0x00400000)
     return This::STATUS_BAD_RELOC;

   // Determine a sign for the addend.
   const int sign = (opcode == 0x00800000) ? 1 : -1;
   // shifter = rotate_imm * 2
   const uint32_t shifter = (insn & 0xf00) >> 7;
   // Initial addend value.
   int32_t addend = insn & 0xff;
   // Rotate addend right by shifter.
   addend = (addend >> shifter) | (addend << (32 - shifter));
   // Apply a sign to the added.
   addend *= sign;

   int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
   Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
   // Check for overflow if required
   if (check_overflow
       && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
     return This::STATUS_OVERFLOW;

   // Mask out the value and the ADD/SUB part of the opcode; take care
   // not to destroy the S bit.
   insn &= 0xff1ff000;
   // Set the opcode according to whether the value to go in the
   // place is negative.
   insn |= ((x < 0) ? 0x00400000 : 0x00800000);
   // Encode the offset (encoded Gn).
   insn |= gn;

   elfcpp::Swap<32, big_endian>::writeval(wv, insn);
   return This::STATUS_OKAY;
 }

 // R_ARM_LDR_PC_G0: S + A - P
 // R_ARM_LDR_PC_G1: S + A - P
 // R_ARM_LDR_PC_G2: S + A - P
 // R_ARM_LDR_SB_G0: S + A - B(S)
 // R_ARM_LDR_SB_G1: S + A - B(S)
 // R_ARM_LDR_SB_G2: S + A - B(S)
 static inline typename This::Status
 arm_grp_ldr(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       const int group,
       Arm_address address)
 {
   gold_assert(group >= 0 && group < 3);
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);

   const int sign = (insn & 0x00800000) ? 1 : -1;
   int32_t addend = (insn & 0xfff) * sign;
   int32_t x = (psymval->value(object, addend) - address);
   // Calculate the relevant G(n-1) value to obtain this stage residual.
   Valtype residual =
       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
   if (residual >= 0x1000)
     return This::STATUS_OVERFLOW;

   // Mask out the value and U bit.
   insn &= 0xff7ff000;
   // Set the U bit for non-negative values.
   if (x >= 0)
     insn |= 0x00800000;
   insn |= residual;

   elfcpp::Swap<32, big_endian>::writeval(wv, insn);
   return This::STATUS_OKAY;
 }

 // R_ARM_LDRS_PC_G0: S + A - P
 // R_ARM_LDRS_PC_G1: S + A - P
 // R_ARM_LDRS_PC_G2: S + A - P
 // R_ARM_LDRS_SB_G0: S + A - B(S)
 // R_ARM_LDRS_SB_G1: S + A - B(S)
 // R_ARM_LDRS_SB_G2: S + A - B(S)
 static inline typename This::Status
 arm_grp_ldrs(unsigned char* view,
       const Sized_relobj_file<32, big_endian>* object,
       const Symbol_value<32>* psymval,
       const int group,
       Arm_address address)
 {
   gold_assert(group >= 0 && group < 3);
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);

   const int sign = (insn & 0x00800000) ? 1 : -1;
   int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
   int32_t x = (psymval->value(object, addend) - address);
   // Calculate the relevant G(n-1) value to obtain this stage residual.
   Valtype residual =
       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
  if (residual >= 0x100)
     return This::STATUS_OVERFLOW;

   // Mask out the value and U bit.
   insn &= 0xff7ff0f0;
   // Set the U bit for non-negative values.
   if (x >= 0)
     insn |= 0x00800000;
   insn |= ((residual & 0xf0) << 4) | (residual & 0xf);

   elfcpp::Swap<32, big_endian>::writeval(wv, insn);
   return This::STATUS_OKAY;
 }

 // R_ARM_LDC_PC_G0: S + A - P
 // R_ARM_LDC_PC_G1: S + A - P
 // R_ARM_LDC_PC_G2: S + A - P
 // R_ARM_LDC_SB_G0: S + A - B(S)
 // R_ARM_LDC_SB_G1: S + A - B(S)
 // R_ARM_LDC_SB_G2: S + A - B(S)
 static inline typename This::Status
 arm_grp_ldc(unsigned char* view,
     const Sized_relobj_file<32, big_endian>* object,
     const Symbol_value<32>* psymval,
     const int group,
     Arm_address address)
 {
   gold_assert(group >= 0 && group < 3);
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);

   const int sign = (insn & 0x00800000) ? 1 : -1;
   int32_t addend = ((insn & 0xff) << 2) * sign;
   int32_t x = (psymval->value(object, addend) - address);
   // Calculate the relevant G(n-1) value to obtain this stage residual.
   Valtype residual =
     Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
   if ((residual & 0x3) != 0 || residual >= 0x400)
     return This::STATUS_OVERFLOW;

   // Mask out the value and U bit.
   insn &= 0xff7fff00;
   // Set the U bit for non-negative values.
   if (x >= 0)
     insn |= 0x00800000;
   insn |= (residual >> 2);

   elfcpp::Swap<32, big_endian>::writeval(wv, insn);
   return This::STATUS_OKAY;
 }
};

// Relocate ARM long branches.  This handles relocation types
// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::arm_branch_common(
   unsigned int r_type,
   const Relocate_info<32, big_endian>* relinfo,
   unsigned char* view,
   const Sized_symbol<32>* gsym,
   const Arm_relobj<big_endian>* object,
   unsigned int r_sym,
   const Symbol_value<32>* psymval,
   Arm_address address,
   Arm_address thumb_bit,
   bool is_weakly_undefined_without_plt)
{
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
 Valtype* wv = reinterpret_cast<Valtype*>(view);
 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);

 bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
                   && ((val & 0x0f000000UL) == 0x0a000000UL);
 bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
 bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
                         && ((val & 0x0f000000UL) == 0x0b000000UL);
 bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
 bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;

 // Check that the instruction is valid.
 if (r_type == elfcpp::R_ARM_CALL)
   {
     if (!insn_is_uncond_bl && !insn_is_blx)
       return This::STATUS_BAD_RELOC;
   }
 else if (r_type == elfcpp::R_ARM_JUMP24)
   {
     if (!insn_is_b && !insn_is_cond_bl)
       return This::STATUS_BAD_RELOC;
   }
 else if (r_type == elfcpp::R_ARM_PLT32)
   {
     if (!insn_is_any_branch)
       return This::STATUS_BAD_RELOC;
   }
 else if (r_type == elfcpp::R_ARM_XPC25)
   {
     // FIXME: AAELF document IH0044C does not say much about it other
     // than it being obsolete.
     if (!insn_is_any_branch)
       return This::STATUS_BAD_RELOC;
   }
 else
   gold_unreachable();

 // A branch to an undefined weak symbol is turned into a jump to
 // the next instruction unless a PLT entry will be created.
 // Do the same for local undefined symbols.
 // The jump to the next instruction is optimized as a NOP depending
 // on the architecture.
 const Target_arm<big_endian>* arm_target =
   Target_arm<big_endian>::default_target();
 if (is_weakly_undefined_without_plt)
   {
     gold_assert(!parameters->options().relocatable());
     Valtype cond = val & 0xf0000000U;
     if (arm_target->may_use_arm_nop())
       val = cond | 0x0320f000;
     else
       val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
     return This::STATUS_OKAY;
   }

 Valtype addend = Bits<26>::sign_extend32(val << 2);
 Valtype branch_target = psymval->value(object, addend);
 int32_t branch_offset = branch_target - address;

 // We need a stub if the branch offset is too large or if we need
 // to switch mode.
 bool may_use_blx = arm_target->may_use_v5t_interworking();
 Reloc_stub* stub = NULL;

 if (!parameters->options().relocatable()
     && (Bits<26>::has_overflow32(branch_offset)
         || ((thumb_bit != 0)
             && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
   {
     Valtype unadjusted_branch_target = psymval->value(object, 0);

     Stub_type stub_type =
       Reloc_stub::stub_type_for_reloc(r_type, address,
                                       unadjusted_branch_target,
                                       (thumb_bit != 0));
     if (stub_type != arm_stub_none)
       {
         Stub_table<big_endian>* stub_table =
           object->stub_table(relinfo->data_shndx);
         gold_assert(stub_table != NULL);

         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
         stub = stub_table->find_reloc_stub(stub_key);
         gold_assert(stub != NULL);
         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
         branch_target = stub_table->address() + stub->offset() + addend;
         branch_offset = branch_target - address;
         gold_assert(!Bits<26>::has_overflow32(branch_offset));
       }
   }

 // At this point, if we still need to switch mode, the instruction
 // must either be a BLX or a BL that can be converted to a BLX.
 if (thumb_bit != 0)
   {
     // Turn BL to BLX.
     gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
     val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
   }

 val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL);
 elfcpp::Swap<32, big_endian>::writeval(wv, val);
 return (Bits<26>::has_overflow32(branch_offset)
         ? This::STATUS_OVERFLOW
         : This::STATUS_OKAY);
}

// Relocate THUMB long branches.  This handles relocation types
// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thumb_branch_common(
   unsigned int r_type,
   const Relocate_info<32, big_endian>* relinfo,
   unsigned char* view,
   const Sized_symbol<32>* gsym,
   const Arm_relobj<big_endian>* object,
   unsigned int r_sym,
   const Symbol_value<32>* psymval,
   Arm_address address,
   Arm_address thumb_bit,
   bool is_weakly_undefined_without_plt)
{
 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
 Valtype* wv = reinterpret_cast<Valtype*>(view);
 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);

 // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
 // into account.
 bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
 bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;

 // Check that the instruction is valid.
 if (r_type == elfcpp::R_ARM_THM_CALL)
   {
     if (!is_bl_insn && !is_blx_insn)
       return This::STATUS_BAD_RELOC;
   }
 else if (r_type == elfcpp::R_ARM_THM_JUMP24)
   {
     // This cannot be a BLX.
     if (!is_bl_insn)
       return This::STATUS_BAD_RELOC;
   }
 else if (r_type == elfcpp::R_ARM_THM_XPC22)
   {
     // Check for Thumb to Thumb call.
     if (!is_blx_insn)
       return This::STATUS_BAD_RELOC;
     if (thumb_bit != 0)
       {
         gold_warning(_("%s: Thumb BLX instruction targets "
                        "thumb function '%s'."),
                        object->name().c_str(),
                        (gsym ? gsym->name() : "(local)"));
         // Convert BLX to BL.
         lower_insn |= 0x1000U;
       }
   }
 else
   gold_unreachable();

 // A branch to an undefined weak symbol is turned into a jump to
 // the next instruction unless a PLT entry will be created.
 // The jump to the next instruction is optimized as a NOP.W for
 // Thumb-2 enabled architectures.
 const Target_arm<big_endian>* arm_target =
   Target_arm<big_endian>::default_target();
 if (is_weakly_undefined_without_plt)
   {
     gold_assert(!parameters->options().relocatable());
     if (arm_target->may_use_thumb2_nop())
       {
         elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
       }
     else
       {
         elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
       }
     return This::STATUS_OKAY;
   }

 int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
 Arm_address branch_target = psymval->value(object, addend);

 // For BLX, bit 1 of target address comes from bit 1 of base address.
 bool may_use_blx = arm_target->may_use_v5t_interworking();
 if (thumb_bit == 0 && may_use_blx)
   branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);

 int32_t branch_offset = branch_target - address;

 // We need a stub if the branch offset is too large or if we need
 // to switch mode.
 bool thumb2 = arm_target->using_thumb2();
 if (!parameters->options().relocatable()
     && ((!thumb2 && Bits<23>::has_overflow32(branch_offset))
         || (thumb2 && Bits<25>::has_overflow32(branch_offset))
         || ((thumb_bit == 0)
             && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
                 || r_type == elfcpp::R_ARM_THM_JUMP24))))
   {
     Arm_address unadjusted_branch_target = psymval->value(object, 0);

     Stub_type stub_type =
       Reloc_stub::stub_type_for_reloc(r_type, address,
                                       unadjusted_branch_target,
                                       (thumb_bit != 0));

     if (stub_type != arm_stub_none)
       {
         Stub_table<big_endian>* stub_table =
           object->stub_table(relinfo->data_shndx);
         gold_assert(stub_table != NULL);

         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
         Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
         gold_assert(stub != NULL);
         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
         branch_target = stub_table->address() + stub->offset() + addend;
         if (thumb_bit == 0 && may_use_blx)
           branch_target = Bits<32>::bit_select32(branch_target, address, 0x2);
         branch_offset = branch_target - address;
       }
   }

 // At this point, if we still need to switch mode, the instruction
 // must either be a BLX or a BL that can be converted to a BLX.
 if (thumb_bit == 0)
   {
     gold_assert(may_use_blx
                 && (r_type == elfcpp::R_ARM_THM_CALL
                     || r_type == elfcpp::R_ARM_THM_XPC22));
     // Make sure this is a BLX.
     lower_insn &= ~0x1000U;
   }
 else
   {
     // Make sure this is a BL.
     lower_insn |= 0x1000U;
   }

 // For a BLX instruction, make sure that the relocation is rounded up
 // to a word boundary.  This follows the semantics of the instruction
 // which specifies that bit 1 of the target address will come from bit
 // 1 of the base address.
 if ((lower_insn & 0x5000U) == 0x4000U)
   gold_assert((branch_offset & 3) == 0);

 // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
 // We use the Thumb-2 encoding, which is safe even if dealing with
 // a Thumb-1 instruction by virtue of our overflow check above.  */
 upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
 lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);

 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);

 gold_assert(!Bits<25>::has_overflow32(branch_offset));

 return ((thumb2
          ? Bits<25>::has_overflow32(branch_offset)
          : Bits<23>::has_overflow32(branch_offset))
         ? This::STATUS_OVERFLOW
         : This::STATUS_OKAY);
}

// Relocate THUMB-2 long conditional branches.
// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
// undefined and we do not use PLT in this relocation.  In such a case,
// the branch is converted into an NOP.

template<bool big_endian>
typename Arm_relocate_functions<big_endian>::Status
Arm_relocate_functions<big_endian>::thm_jump19(
   unsigned char* view,
   const Arm_relobj<big_endian>* object,
   const Symbol_value<32>* psymval,
   Arm_address address,
   Arm_address thumb_bit)
{
 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
 Valtype* wv = reinterpret_cast<Valtype*>(view);
 uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
 uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
 int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);

 Arm_address branch_target = psymval->value(object, addend);
 int32_t branch_offset = branch_target - address;

 // ??? Should handle interworking?  GCC might someday try to
 // use this for tail calls.
 // FIXME: We do support thumb entry to PLT yet.
 if (thumb_bit == 0)
   {
     gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
     return This::STATUS_BAD_RELOC;
   }

 // Put RELOCATION back into the insn.
 upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
 lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);

 // Put the relocated value back in the object file:
 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);

 return (Bits<21>::has_overflow32(branch_offset)
         ? This::STATUS_OVERFLOW
         : This::STATUS_OKAY);
}

// Get the GOT section, creating it if necessary.

template<bool big_endian>
Arm_output_data_got<big_endian>*
Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
{
 if (this->got_ == NULL)
   {
     gold_assert(symtab != NULL && layout != NULL);

     // When using -z now, we can treat .got as a relro section.
     // Without -z now, it is modified after program startup by lazy
     // PLT relocations.
     bool is_got_relro = parameters->options().now();
     Output_section_order got_order = (is_got_relro
                                       ? ORDER_RELRO_LAST
                                       : ORDER_DATA);

     // Unlike some targets (.e.g x86), ARM does not use separate .got and
     // .got.plt sections in output.  The output .got section contains both
     // PLT and non-PLT GOT entries.
     this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);

     layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                     this->got_, got_order, is_got_relro);

     // The old GNU linker creates a .got.plt section.  We just
     // create another set of data in the .got section.  Note that we
     // always create a PLT if we create a GOT, although the PLT
     // might be empty.
     this->got_plt_ = new Output_data_space(4, "** GOT PLT");
     layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                     this->got_plt_, got_order, is_got_relro);

     // The first three entries are reserved.
     this->got_plt_->set_current_data_size(3 * 4);

     // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
     symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                   Symbol_table::PREDEFINED,
                                   this->got_plt_,
                                   0, 0, elfcpp::STT_OBJECT,
                                   elfcpp::STB_LOCAL,
                                   elfcpp::STV_HIDDEN, 0,
                                   false, false);

     // If there are any IRELATIVE relocations, they get GOT entries
     // in .got.plt after the jump slot entries.
     this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT");
     layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                     this->got_irelative_,
                                     got_order, is_got_relro);

   }
 return this->got_;
}

// Get the dynamic reloc section, creating it if necessary.

template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_dyn_section(Layout* layout)
{
 if (this->rel_dyn_ == NULL)
   {
     gold_assert(layout != NULL);
     // Create both relocation sections in the same place, so as to ensure
     // their relative order in the output section.
     this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
     this->rel_irelative_ = new Reloc_section(false);
     layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                     elfcpp::SHF_ALLOC, this->rel_dyn_,
                                     ORDER_DYNAMIC_RELOCS, false);
     layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
                                     elfcpp::SHF_ALLOC, this->rel_irelative_,
                                     ORDER_DYNAMIC_RELOCS, false);
   }
 return this->rel_dyn_;
}


// Get the section to use for IRELATIVE relocs, creating it if necessary.  These
// go in .rela.dyn, but only after all other dynamic relocations.  They need to
// follow the other dynamic relocations so that they can refer to global
// variables initialized by those relocs.

template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_irelative_section(Layout* layout)
{
 if (this->rel_irelative_ == NULL)
   {
     // Delegate the creation to rel_dyn_section so as to ensure their order in
     // the output section.
     this->rel_dyn_section(layout);
     gold_assert(this->rel_irelative_ != NULL
                 && (this->rel_dyn_->output_section()
                     == this->rel_irelative_->output_section()));
   }
 return this->rel_irelative_;
}


// Insn_template methods.

// Return byte size of an instruction template.

size_t
Insn_template::size() const
{
 switch (this->type())
   {
   case THUMB16_TYPE:
   case THUMB16_SPECIAL_TYPE:
     return 2;
   case ARM_TYPE:
   case THUMB32_TYPE:
   case DATA_TYPE:
     return 4;
   default:
     gold_unreachable();
   }
}

// Return alignment of an instruction template.

unsigned
Insn_template::alignment() const
{
 switch (this->type())
   {
   case THUMB16_TYPE:
   case THUMB16_SPECIAL_TYPE:
   case THUMB32_TYPE:
     return 2;
   case ARM_TYPE:
   case DATA_TYPE:
     return 4;
   default:
     gold_unreachable();
   }
}

// Stub_template methods.

Stub_template::Stub_template(
   Stub_type type, const Insn_template* insns,
    size_t insn_count)
 : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1),
   entry_in_thumb_mode_(false), relocs_()
{
 off_t offset = 0;

 // Compute byte size and alignment of stub template.
 for (size_t i = 0; i < insn_count; i++)
   {
     unsigned insn_alignment = insns[i].alignment();
     size_t insn_size = insns[i].size();
     gold_assert((offset & (insn_alignment - 1)) == 0);
     this->alignment_ = std::max(this->alignment_, insn_alignment);
     switch (insns[i].type())
       {
       case Insn_template::THUMB16_TYPE:
       case Insn_template::THUMB16_SPECIAL_TYPE:
         if (i == 0)
           this->entry_in_thumb_mode_ = true;
         break;

       case Insn_template::THUMB32_TYPE:
         if (insns[i].r_type() != elfcpp::R_ARM_NONE)
           this->relocs_.push_back(Reloc(i, offset));
         if (i == 0)
           this->entry_in_thumb_mode_ = true;
         break;

       case Insn_template::ARM_TYPE:
         // Handle cases where the target is encoded within the
         // instruction.
         if (insns[i].r_type() == elfcpp::R_ARM_JUMP24)
           this->relocs_.push_back(Reloc(i, offset));
         break;

       case Insn_template::DATA_TYPE:
         // Entry point cannot be data.
         gold_assert(i != 0);
         this->relocs_.push_back(Reloc(i, offset));
         break;

       default:
         gold_unreachable();
       }
     offset += insn_size;
   }
 this->size_ = offset;
}

// Stub methods.

// Template to implement do_write for a specific target endianness.

template<bool big_endian>
void inline
Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
{
 const Stub_template* stub_template = this->stub_template();
 const Insn_template* insns = stub_template->insns();
 const bool enable_be8 = parameters->options().be8();

 unsigned char* pov = view;
 for (size_t i = 0; i < stub_template->insn_count(); i++)
   {
     switch (insns[i].type())
       {
       case Insn_template::THUMB16_TYPE:
         if (enable_be8)
           elfcpp::Swap<16, false>::writeval(pov, insns[i].data() & 0xffff);
         else
           elfcpp::Swap<16, big_endian>::writeval(pov,
                                                  insns[i].data() & 0xffff);
         break;
       case Insn_template::THUMB16_SPECIAL_TYPE:
         if (enable_be8)
           elfcpp::Swap<16, false>::writeval(pov, this->thumb16_special(i));
         else
           elfcpp::Swap<16, big_endian>::writeval(pov,
                                                  this->thumb16_special(i));
         break;
       case Insn_template::THUMB32_TYPE:
         {
           uint32_t hi = (insns[i].data() >> 16) & 0xffff;
           uint32_t lo = insns[i].data() & 0xffff;
           if (enable_be8)
             {
               elfcpp::Swap<16, false>::writeval(pov, hi);
               elfcpp::Swap<16, false>::writeval(pov + 2, lo);
             }
           else
             {
               elfcpp::Swap<16, big_endian>::writeval(pov, hi);
               elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
             }
         }
         break;
       case Insn_template::ARM_TYPE:
         if (enable_be8)
           elfcpp::Swap<32, false>::writeval(pov, insns[i].data());
         else
           elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
         break;
       case Insn_template::DATA_TYPE:
         elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
         break;
       default:
         gold_unreachable();
       }
     pov += insns[i].size();
   }
 gold_assert(static_cast<section_size_type>(pov - view) == view_size);
}

// Reloc_stub::Key methods.

// Dump a Key as a string for debugging.

std::string
Reloc_stub::Key::name() const
{
 if (this->r_sym_ == invalid_index)
   {
     // Global symbol key name
     // <stub-type>:<symbol name>:<addend>.
     const std::string sym_name = this->u_.symbol->name();
     // We need to print two hex number and two colons.  So just add 100 bytes
     // to the symbol name size.
     size_t len = sym_name.size() + 100;
     char* buffer = new char[len];
     int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_,
                      sym_name.c_str(), this->addend_);
     gold_assert(c > 0 && c < static_cast<int>(len));
     delete[] buffer;
     return std::string(buffer);
   }
 else
   {
     // local symbol key name
     // <stub-type>:<object>:<r_sym>:<addend>.
     const size_t len = 200;
     char buffer[len];
     int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_,
                      this->u_.relobj, this->r_sym_, this->addend_);
     gold_assert(c > 0 && c < static_cast<int>(len));
     return std::string(buffer);
   }
}

// Reloc_stub methods.

// Determine the type of stub needed, if any, for a relocation of R_TYPE at
// LOCATION to DESTINATION.
// This code is based on the arm_type_of_stub function in
// bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub
// class simple.

Stub_type
Reloc_stub::stub_type_for_reloc(
  unsigned int r_type,
  Arm_address location,
  Arm_address destination,
  bool target_is_thumb)
{
 Stub_type stub_type = arm_stub_none;

 // This is a bit ugly but we want to avoid using a templated class for
 // big and little endianities.
 bool may_use_blx;
 bool should_force_pic_veneer = parameters->options().pic_veneer();
 bool thumb2;
 bool thumb_only;
 if (parameters->target().is_big_endian())
   {
     const Target_arm<true>* big_endian_target =
       Target_arm<true>::default_target();
     may_use_blx = big_endian_target->may_use_v5t_interworking();
     should_force_pic_veneer |= big_endian_target->should_force_pic_veneer();
     thumb2 = big_endian_target->using_thumb2();
     thumb_only = big_endian_target->using_thumb_only();
   }
 else
   {
     const Target_arm<false>* little_endian_target =
       Target_arm<false>::default_target();
     may_use_blx = little_endian_target->may_use_v5t_interworking();
     should_force_pic_veneer |=
       little_endian_target->should_force_pic_veneer();
     thumb2 = little_endian_target->using_thumb2();
     thumb_only = little_endian_target->using_thumb_only();
   }

 int64_t branch_offset;
 bool output_is_position_independent =
     parameters->options().output_is_position_independent();
 if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
   {
     // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
     // base address (instruction address + 4).
     if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
       destination = Bits<32>::bit_select32(destination, location, 0x2);
     branch_offset = static_cast<int64_t>(destination) - location;

     // Handle cases where:
     // - this call goes too far (different Thumb/Thumb2 max
     //   distance)
     // - it's a Thumb->Arm call and blx is not available, or it's a
     //   Thumb->Arm branch (not bl). A stub is needed in this case.
     if ((!thumb2
           && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
               || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
         || (thumb2
             && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
                 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
         || ((!target_is_thumb)
             && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
                 || (r_type == elfcpp::R_ARM_THM_JUMP24))))
       {
         if (target_is_thumb)
           {
             // Thumb to thumb.
             if (!thumb_only)
               {
                 stub_type = (output_is_position_independent
                              || should_force_pic_veneer)
                   // PIC stubs.
                   ? ((may_use_blx
                       && (r_type == elfcpp::R_ARM_THM_CALL))
                      // V5T and above. Stub starts with ARM code, so
                      // we must be able to switch mode before
                      // reaching it, which is only possible for 'bl'
                      // (ie R_ARM_THM_CALL relocation).
                      ? arm_stub_long_branch_any_thumb_pic
                      // On V4T, use Thumb code only.
                      : arm_stub_long_branch_v4t_thumb_thumb_pic)

                   // non-PIC stubs.
                   : ((may_use_blx
                       && (r_type == elfcpp::R_ARM_THM_CALL))
                      ? arm_stub_long_branch_any_any // V5T and above.
                      : arm_stub_long_branch_v4t_thumb_thumb); // V4T.
               }
             else
               {
                 stub_type = (output_is_position_independent
                              || should_force_pic_veneer)
                   ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
                   : arm_stub_long_branch_thumb_only;  // non-PIC stub.
               }
           }
         else
           {
             // Thumb to arm.

             // FIXME: We should check that the input section is from an
             // object that has interwork enabled.

             stub_type = (output_is_position_independent
                          || should_force_pic_veneer)
               // PIC stubs.
               ? ((may_use_blx
                   && (r_type == elfcpp::R_ARM_THM_CALL))
                  ? arm_stub_long_branch_any_arm_pic   // V5T and above.
                  : arm_stub_long_branch_v4t_thumb_arm_pic)    // V4T.

               // non-PIC stubs.
               : ((may_use_blx
                   && (r_type == elfcpp::R_ARM_THM_CALL))
                  ? arm_stub_long_branch_any_any       // V5T and above.
                  : arm_stub_long_branch_v4t_thumb_arm);       // V4T.

             // Handle v4t short branches.
             if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
                 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
                 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
               stub_type = arm_stub_short_branch_v4t_thumb_arm;
           }
       }
   }
 else if (r_type == elfcpp::R_ARM_CALL
          || r_type == elfcpp::R_ARM_JUMP24
          || r_type == elfcpp::R_ARM_PLT32)
   {
     branch_offset = static_cast<int64_t>(destination) - location;
     if (target_is_thumb)
       {
         // Arm to thumb.

         // FIXME: We should check that the input section is from an
         // object that has interwork enabled.

         // We have an extra 2-bytes reach because of
         // the mode change (bit 24 (H) of BLX encoding).
         if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
             || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
             || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx)
             || (r_type == elfcpp::R_ARM_JUMP24)
             || (r_type == elfcpp::R_ARM_PLT32))
           {
             stub_type = (output_is_position_independent
                          || should_force_pic_veneer)
               // PIC stubs.
               ? (may_use_blx
                  ? arm_stub_long_branch_any_thumb_pic// V5T and above.
                  : arm_stub_long_branch_v4t_arm_thumb_pic)    // V4T stub.

               // non-PIC stubs.
               : (may_use_blx
                  ? arm_stub_long_branch_any_any       // V5T and above.
                  : arm_stub_long_branch_v4t_arm_thumb);       // V4T.
           }
       }
     else
       {
         // Arm to arm.
         if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
             || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
           {
             stub_type = (output_is_position_independent
                          || should_force_pic_veneer)
               ? arm_stub_long_branch_any_arm_pic      // PIC stubs.
               : arm_stub_long_branch_any_any;         /// non-PIC.
           }
       }
   }

 return stub_type;
}

// Cortex_a8_stub methods.

// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
// I is the position of the instruction template in the stub template.

uint16_t
Cortex_a8_stub::do_thumb16_special(size_t i)
{
 // The only use of this is to copy condition code from a conditional
 // branch being worked around to the corresponding conditional branch in
 // to the stub.
 gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
             && i == 0);
 uint16_t data = this->stub_template()->insns()[i].data();
 gold_assert((data & 0xff00U) == 0xd000U);
 data |= ((this->original_insn_ >> 22) & 0xf) << 8;
 return data;
}

// Stub_factory methods.

Stub_factory::Stub_factory()
{
 // The instruction template sequences are declared as static
 // objects and initialized first time the constructor runs.

 // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
 // to reach the stub if necessary.
 static const Insn_template elf32_arm_stub_long_branch_any_any[] =
   {
     Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
     Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
                                               // dcd   R_ARM_ABS32(X)
   };

 // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
 // available.
 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] =
   {
     Insn_template::arm_insn(0xe59fc000),      // ldr   ip, [pc, #0]
     Insn_template::arm_insn(0xe12fff1c),      // bx    ip
     Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
                                               // dcd   R_ARM_ABS32(X)
   };

 // Thumb -> Thumb long branch stub. Used on M-profile architectures.
 static const Insn_template elf32_arm_stub_long_branch_thumb_only[] =
   {
     Insn_template::thumb16_insn(0xb401),      // push {r0}
     Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
     Insn_template::thumb16_insn(0x4684),      // mov  ip, r0
     Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
     Insn_template::thumb16_insn(0x4760),      // bx   ip
     Insn_template::thumb16_insn(0xbf00),      // nop
     Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
                                               // dcd  R_ARM_ABS32(X)
   };

 // V4T Thumb -> Thumb long branch stub. Using the stack is not
 // allowed.
 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
   {
     Insn_template::thumb16_insn(0x4778),      // bx   pc
     Insn_template::thumb16_insn(0x46c0),      // nop
     Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
     Insn_template::arm_insn(0xe12fff1c),      // bx   ip
     Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
                                               // dcd  R_ARM_ABS32(X)
   };

 // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
 // available.
 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] =
   {
     Insn_template::thumb16_insn(0x4778),      // bx   pc
     Insn_template::thumb16_insn(0x46c0),      // nop
     Insn_template::arm_insn(0xe51ff004),      // ldr   pc, [pc, #-4]
     Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0),
                                               // dcd   R_ARM_ABS32(X)
   };

 // V4T Thumb -> ARM short branch stub. Shorter variant of the above
 // one, when the destination is close enough.
 static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] =
   {
     Insn_template::thumb16_insn(0x4778),              // bx   pc
     Insn_template::thumb16_insn(0x46c0),              // nop
     Insn_template::arm_rel_insn(0xea000000, -8),      // b    (X-8)
   };

 // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use
 // blx to reach the stub if necessary.
 static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] =
   {
     Insn_template::arm_insn(0xe59fc000),      // ldr   r12, [pc]
     Insn_template::arm_insn(0xe08ff00c),      // add   pc, pc, ip
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
                                               // dcd   R_ARM_REL32(X-4)
   };

 // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use
 // blx to reach the stub if necessary.  We can not add into pc;
 // it is not guaranteed to mode switch (different in ARMv6 and
 // ARMv7).
 static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] =
   {
     Insn_template::arm_insn(0xe59fc004),      // ldr   r12, [pc, #4]
     Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
     Insn_template::arm_insn(0xe12fff1c),      // bx    ip
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
                                               // dcd   R_ARM_REL32(X)
   };

 // V4T ARM -> ARM long branch stub, PIC.
 static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
   {
     Insn_template::arm_insn(0xe59fc004),      // ldr   ip, [pc, #4]
     Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
     Insn_template::arm_insn(0xe12fff1c),      // bx    ip
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
                                               // dcd   R_ARM_REL32(X)
   };

 // V4T Thumb -> ARM long branch stub, PIC.
 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
   {
     Insn_template::thumb16_insn(0x4778),      // bx   pc
     Insn_template::thumb16_insn(0x46c0),      // nop
     Insn_template::arm_insn(0xe59fc000),      // ldr  ip, [pc, #0]
     Insn_template::arm_insn(0xe08cf00f),      // add  pc, ip, pc
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4),
                                               // dcd  R_ARM_REL32(X)
   };

 // Thumb -> Thumb long branch stub, PIC. Used on M-profile
 // architectures.
 static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] =
   {
     Insn_template::thumb16_insn(0xb401),      // push {r0}
     Insn_template::thumb16_insn(0x4802),      // ldr  r0, [pc, #8]
     Insn_template::thumb16_insn(0x46fc),      // mov  ip, pc
     Insn_template::thumb16_insn(0x4484),      // add  ip, r0
     Insn_template::thumb16_insn(0xbc01),      // pop  {r0}
     Insn_template::thumb16_insn(0x4760),      // bx   ip
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4),
                                               // dcd  R_ARM_REL32(X)
   };

 // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
 // allowed.
 static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
   {
     Insn_template::thumb16_insn(0x4778),      // bx   pc
     Insn_template::thumb16_insn(0x46c0),      // nop
     Insn_template::arm_insn(0xe59fc004),      // ldr  ip, [pc, #4]
     Insn_template::arm_insn(0xe08fc00c),      // add   ip, pc, ip
     Insn_template::arm_insn(0xe12fff1c),      // bx   ip
     Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0),
                                               // dcd  R_ARM_REL32(X)
   };

 // Cortex-A8 erratum-workaround stubs.

 // Stub used for conditional branches (which may be beyond +/-1MB away,
 // so we can't use a conditional branch to reach this stub).

 // original code:
 //
 //    b<cond> X
 // after:
 //
 static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] =
   {
     Insn_template::thumb16_bcond_insn(0xd001),        //      b<cond>.n true
     Insn_template::thumb32_b_insn(0xf000b800, -4),    //      b.w after
     Insn_template::thumb32_b_insn(0xf000b800, -4)     // true:
                                                       //      b.w X
   };

 // Stub used for b.w and bl.w instructions.

 static const Insn_template elf32_arm_stub_a8_veneer_b[] =
   {
     Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
   };

 static const Insn_template elf32_arm_stub_a8_veneer_bl[] =
   {
     Insn_template::thumb32_b_insn(0xf000b800, -4)     // b.w dest
   };

 // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
 // instruction (which switches to ARM mode) to point to this stub.  Jump to
 // the real destination using an ARM-mode branch.
 static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
   {
     Insn_template::arm_rel_insn(0xea000000, -8)       // b dest
   };

 // Stub used to provide an interworking for R_ARM_V4BX relocation
 // (bx r[n] instruction).
 static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
   {
     Insn_template::arm_insn(0xe3100001),              // tst   r<n>, #1
     Insn_template::arm_insn(0x01a0f000),              // moveq pc, r<n>
     Insn_template::arm_insn(0xe12fff10)               // bx    r<n>
   };

 // Fill in the stub template look-up table.  Stub templates are constructed
 // per instance of Stub_factory for fast look-up without locking
 // in a thread-enabled environment.

 this->stub_templates_[arm_stub_none] =
   new Stub_template(arm_stub_none, NULL, 0);

#define DEF_STUB(x)     \
 do \
   { \
     size_t array_size \
       = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \
     Stub_type type = arm_stub_##x; \
     this->stub_templates_[type] = \
       new Stub_template(type, elf32_arm_stub_##x, array_size); \
   } \
 while (0);

 DEF_STUBS
#undef DEF_STUB
}

// Stub_table methods.

// Remove all Cortex-A8 stub.

template<bool big_endian>
void
Stub_table<big_endian>::remove_all_cortex_a8_stubs()
{
 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
      p != this->cortex_a8_stubs_.end();
      ++p)
   delete p->second;
 this->cortex_a8_stubs_.clear();
}

// Relocate one stub.  This is a helper for Stub_table::relocate_stubs().

template<bool big_endian>
void
Stub_table<big_endian>::relocate_stub(
   Stub* stub,
   const Relocate_info<32, big_endian>* relinfo,
   Target_arm<big_endian>* arm_target,
   Output_section* output_section,
   unsigned char* view,
   Arm_address address,
   section_size_type view_size)
{
 const Stub_template* stub_template = stub->stub_template();
 if (stub_template->reloc_count() != 0)
   {
     // Adjust view to cover the stub only.
     section_size_type offset = stub->offset();
     section_size_type stub_size = stub_template->size();
     gold_assert(offset + stub_size <= view_size);

     arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
                               address + offset, stub_size);
   }
}

// Relocate all stubs in this stub table.

template<bool big_endian>
void
Stub_table<big_endian>::relocate_stubs(
   const Relocate_info<32, big_endian>* relinfo,
   Target_arm<big_endian>* arm_target,
   Output_section* output_section,
   unsigned char* view,
   Arm_address address,
   section_size_type view_size)
{
 // If we are passed a view bigger than the stub table's.  we need to
 // adjust the view.
 gold_assert(address == this->address()
             && (view_size
                 == static_cast<section_size_type>(this->data_size())));

 // Relocate all relocation stubs.
 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
     p != this->reloc_stubs_.end();
     ++p)
   this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
                       address, view_size);

 // Relocate all Cortex-A8 stubs.
 for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
      p != this->cortex_a8_stubs_.end();
      ++p)
   this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
                       address, view_size);

 // Relocate all ARM V4BX stubs.
 for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
      p != this->arm_v4bx_stubs_.end();
      ++p)
   {
     if (*p != NULL)
       this->relocate_stub(*p, relinfo, arm_target, output_section, view,
                           address, view_size);
   }
}

// Write out the stubs to file.

template<bool big_endian>
void
Stub_table<big_endian>::do_write(Output_file* of)
{
 off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 // Write relocation stubs.
 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
     p != this->reloc_stubs_.end();
     ++p)
   {
     Reloc_stub* stub = p->second;
     Arm_address address = this->address() + stub->offset();
     gold_assert(address
                 == align_address(address,
                                  stub->stub_template()->alignment()));
     stub->write(oview + stub->offset(), stub->stub_template()->size(),
                 big_endian);
   }

 // Write Cortex-A8 stubs.
 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
      p != this->cortex_a8_stubs_.end();
      ++p)
   {
     Cortex_a8_stub* stub = p->second;
     Arm_address address = this->address() + stub->offset();
     gold_assert(address
                 == align_address(address,
                                  stub->stub_template()->alignment()));
     stub->write(oview + stub->offset(), stub->stub_template()->size(),
                 big_endian);
   }

 // Write ARM V4BX relocation stubs.
 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
      p != this->arm_v4bx_stubs_.end();
      ++p)
   {
     if (*p == NULL)
       continue;

     Arm_address address = this->address() + (*p)->offset();
     gold_assert(address
                 == align_address(address,
                                  (*p)->stub_template()->alignment()));
     (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
                 big_endian);
   }

 of->write_output_view(this->offset(), oview_size, oview);
}

// Update the data size and address alignment of the stub table at the end
// of a relaxation pass.   Return true if either the data size or the
// alignment changed in this relaxation pass.

template<bool big_endian>
bool
Stub_table<big_endian>::update_data_size_and_addralign()
{
 // Go over all stubs in table to compute data size and address alignment.
 off_t size = this->reloc_stubs_size_;
 unsigned addralign = this->reloc_stubs_addralign_;

 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
      p != this->cortex_a8_stubs_.end();
      ++p)
   {
     const Stub_template* stub_template = p->second->stub_template();
     addralign = std::max(addralign, stub_template->alignment());
     size = (align_address(size, stub_template->alignment())
             + stub_template->size());
   }

 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
      p != this->arm_v4bx_stubs_.end();
      ++p)
   {
     if (*p == NULL)
       continue;

     const Stub_template* stub_template = (*p)->stub_template();
     addralign = std::max(addralign, stub_template->alignment());
     size = (align_address(size, stub_template->alignment())
             + stub_template->size());
   }

 // Check if either data size or alignment changed in this pass.
 // Update prev_data_size_ and prev_addralign_.  These will be used
 // as the current data size and address alignment for the next pass.
 bool changed = size != this->prev_data_size_;
 this->prev_data_size_ = size;

 if (addralign != this->prev_addralign_)
   changed = true;
 this->prev_addralign_ = addralign;

 return changed;
}

// Finalize the stubs.  This sets the offsets of the stubs within the stub
// table.  It also marks all input sections needing Cortex-A8 workaround.

template<bool big_endian>
void
Stub_table<big_endian>::finalize_stubs()
{
 off_t off = this->reloc_stubs_size_;
 for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
      p != this->cortex_a8_stubs_.end();
      ++p)
   {
     Cortex_a8_stub* stub = p->second;
     const Stub_template* stub_template = stub->stub_template();
     uint64_t stub_addralign = stub_template->alignment();
     off = align_address(off, stub_addralign);
     stub->set_offset(off);
     off += stub_template->size();

     // Mark input section so that we can determine later if a code section
     // needs the Cortex-A8 workaround quickly.
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
     arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
   }

 for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
     p != this->arm_v4bx_stubs_.end();
     ++p)
   {
     if (*p == NULL)
       continue;

     const Stub_template* stub_template = (*p)->stub_template();
     uint64_t stub_addralign = stub_template->alignment();
     off = align_address(off, stub_addralign);
     (*p)->set_offset(off);
     off += stub_template->size();
   }

 gold_assert(off <= this->prev_data_size_);
}

// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
// and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
// of the address range seen by the linker.

template<bool big_endian>
void
Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
   Target_arm<big_endian>* arm_target,
   unsigned char* view,
   Arm_address view_address,
   section_size_type view_size)
{
 // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
 for (Cortex_a8_stub_list::const_iterator p =
        this->cortex_a8_stubs_.lower_bound(view_address);
      ((p != this->cortex_a8_stubs_.end())
       && (p->first < (view_address + view_size)));
      ++p)
   {
     // We do not store the THUMB bit in the LSB of either the branch address
     // or the stub offset.  There is no need to strip the LSB.
     Arm_address branch_address = p->first;
     const Cortex_a8_stub* stub = p->second;
     Arm_address stub_address = this->address() + stub->offset();

     // Offset of the branch instruction relative to this view.
     section_size_type offset =
       convert_to_section_size_type(branch_address - view_address);
     gold_assert((offset + 4) <= view_size);

     arm_target->apply_cortex_a8_workaround(stub, stub_address,
                                            view + offset, branch_address);
   }
}

// Arm_input_section methods.

// Initialize an Arm_input_section.

template<bool big_endian>
void
Arm_input_section<big_endian>::init()
{
 Relobj* relobj = this->relobj();
 unsigned int shndx = this->shndx();

 // We have to cache original size, alignment and contents to avoid locking
 // the original file.
 this->original_addralign_ =
   convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));

 // This is not efficient but we expect only a small number of relaxed
 // input sections for stubs.
 section_size_type section_size;
 const unsigned char* section_contents =
   relobj->section_contents(shndx, &section_size, false);
 this->original_size_ =
   convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));

 gold_assert(this->original_contents_ == NULL);
 this->original_contents_ = new unsigned char[section_size];
 memcpy(this->original_contents_, section_contents, section_size);

 // We want to make this look like the original input section after
 // output sections are finalized.
 Output_section* os = relobj->output_section(shndx);
 off_t offset = relobj->output_section_offset(shndx);
 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
 this->set_address(os->address() + offset);
 this->set_file_offset(os->offset() + offset);

 this->set_current_data_size(this->original_size_);
 this->finalize_data_size();
}

template<bool big_endian>
void
Arm_input_section<big_endian>::do_write(Output_file* of)
{
 // We have to write out the original section content.
 gold_assert(this->original_contents_ != NULL);
 of->write(this->offset(), this->original_contents_,
           this->original_size_);

 // If this owns a stub table and it is not empty, write it.
 if (this->is_stub_table_owner() && !this->stub_table_->empty())
   this->stub_table_->write(of);
}

// Finalize data size.

template<bool big_endian>
void
Arm_input_section<big_endian>::set_final_data_size()
{
 off_t off = convert_types<off_t, uint64_t>(this->original_size_);

 if (this->is_stub_table_owner())
   {
     this->stub_table_->finalize_data_size();
     off = align_address(off, this->stub_table_->addralign());
     off += this->stub_table_->data_size();
   }
 this->set_data_size(off);
}

// Reset address and file offset.

template<bool big_endian>
void
Arm_input_section<big_endian>::do_reset_address_and_file_offset()
{
 // Size of the original input section contents.
 off_t off = convert_types<off_t, uint64_t>(this->original_size_);

 // If this is a stub table owner, account for the stub table size.
 if (this->is_stub_table_owner())
   {
     Stub_table<big_endian>* stub_table = this->stub_table_;

     // Reset the stub table's address and file offset.  The
     // current data size for child will be updated after that.
     stub_table_->reset_address_and_file_offset();
     off = align_address(off, stub_table_->addralign());
     off += stub_table->current_data_size();
   }

 this->set_current_data_size(off);
}

// Arm_exidx_cantunwind methods.

// Write this to Output file OF for a fixed endianness.

template<bool big_endian>
void
Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
{
 off_t offset = this->offset();
 const section_size_type oview_size = 8;
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 Output_section* os = this->relobj_->output_section(this->shndx_);
 gold_assert(os != NULL);

 Arm_relobj<big_endian>* arm_relobj =
   Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
 Arm_address output_offset =
   arm_relobj->get_output_section_offset(this->shndx_);
 Arm_address section_start;
 section_size_type section_size;

 // Find out the end of the text section referred by this.
 if (output_offset != Arm_relobj<big_endian>::invalid_address)
   {
     section_start = os->address() + output_offset;
     const Arm_exidx_input_section* exidx_input_section =
       arm_relobj->exidx_input_section_by_link(this->shndx_);
     gold_assert(exidx_input_section != NULL);
     section_size =
       convert_to_section_size_type(exidx_input_section->text_size());
   }
 else
   {
     // Currently this only happens for a relaxed section.
     const Output_relaxed_input_section* poris =
       os->find_relaxed_input_section(this->relobj_, this->shndx_);
     gold_assert(poris != NULL);
     section_start = poris->address();
     section_size = convert_to_section_size_type(poris->data_size());
   }

 // We always append this to the end of an EXIDX section.
 Arm_address output_address = section_start + section_size;

 // Write out the entry.  The first word either points to the beginning
 // or after the end of a text section.  The second word is the special
 // EXIDX_CANTUNWIND value.
 uint32_t prel31_offset = output_address - this->address();
 if (Bits<31>::has_overflow32(offset))
   gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview,
                                                  prel31_offset & 0x7fffffffU);
 elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4,
                                                  elfcpp::EXIDX_CANTUNWIND);

 of->write_output_view(this->offset(), oview_size, oview);
}

// Arm_exidx_merged_section methods.

// Constructor for Arm_exidx_merged_section.
// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
// SECTION_OFFSET_MAP points to a section offset map describing how
// parts of the input section are mapped to output.  DELETED_BYTES is
// the number of bytes deleted from the EXIDX input section.

Arm_exidx_merged_section::Arm_exidx_merged_section(
   const Arm_exidx_input_section& exidx_input_section,
   const Arm_exidx_section_offset_map& section_offset_map,
   uint32_t deleted_bytes)
 : Output_relaxed_input_section(exidx_input_section.relobj(),
                                exidx_input_section.shndx(),
                                exidx_input_section.addralign()),
   exidx_input_section_(exidx_input_section),
   section_offset_map_(section_offset_map)
{
 // If we retain or discard the whole EXIDX input section,  we would
 // not be here.
 gold_assert(deleted_bytes != 0
             && deleted_bytes != this->exidx_input_section_.size());

 // Fix size here so that we do not need to implement set_final_data_size.
 uint32_t size = exidx_input_section.size() - deleted_bytes;
 this->set_data_size(size);
 this->fix_data_size();

 // Allocate buffer for section contents and build contents.
 this->section_contents_ = new unsigned char[size];
}

// Build the contents of a merged EXIDX output section.

void
Arm_exidx_merged_section::build_contents(
   const unsigned char* original_contents,
   section_size_type original_size)
{
 // Go over spans of input offsets and write only those that are not
 // discarded.
 section_offset_type in_start = 0;
 section_offset_type out_start = 0;
 section_offset_type in_max =
   convert_types<section_offset_type>(original_size);
 section_offset_type out_max =
   convert_types<section_offset_type>(this->data_size());
 for (Arm_exidx_section_offset_map::const_iterator p =
       this->section_offset_map_.begin();
     p != this->section_offset_map_.end();
     ++p)
   {
     section_offset_type in_end = p->first;
     gold_assert(in_end >= in_start);
     section_offset_type out_end = p->second;
     size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
     if (out_end != -1)
       {
         size_t out_chunk_size =
           convert_types<size_t>(out_end - out_start + 1);

         gold_assert(out_chunk_size == in_chunk_size
                     && in_end < in_max && out_end < out_max);

         memcpy(this->section_contents_ + out_start,
                original_contents + in_start,
                out_chunk_size);
         out_start += out_chunk_size;
       }
     in_start += in_chunk_size;
   }
}

// Given an input OBJECT, an input section index SHNDX within that
// object, and an OFFSET relative to the start of that input
// section, return whether or not the corresponding offset within
// the output section is known.  If this function returns true, it
// sets *POUTPUT to the output offset.  The value -1 indicates that
// this input offset is being discarded.

bool
Arm_exidx_merged_section::do_output_offset(
   const Relobj* relobj,
   unsigned int shndx,
   section_offset_type offset,
   section_offset_type* poutput) const
{
 // We only handle offsets for the original EXIDX input section.
 if (relobj != this->exidx_input_section_.relobj()
     || shndx != this->exidx_input_section_.shndx())
   return false;

 section_offset_type section_size =
   convert_types<section_offset_type>(this->exidx_input_section_.size());
 if (offset < 0 || offset >= section_size)
   // Input offset is out of valid range.
   *poutput = -1;
 else
   {
     // We need to look up the section offset map to determine the output
     // offset.  Find the reference point in map that is first offset
     // bigger than or equal to this offset.
     Arm_exidx_section_offset_map::const_iterator p =
       this->section_offset_map_.lower_bound(offset);

     // The section offset maps are build such that this should not happen if
     // input offset is in the valid range.
     gold_assert(p != this->section_offset_map_.end());

     // We need to check if this is dropped.
    section_offset_type ref = p->first;
    section_offset_type mapped_ref = p->second;

     if (mapped_ref != Arm_exidx_input_section::invalid_offset)
       // Offset is present in output.
       *poutput = mapped_ref + (offset - ref);
     else
       // Offset is discarded owing to EXIDX entry merging.
       *poutput = -1;
   }

 return true;
}

// Write this to output file OF.

void
Arm_exidx_merged_section::do_write(Output_file* of)
{
 off_t offset = this->offset();
 const section_size_type oview_size = this->data_size();
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 Output_section* os = this->relobj()->output_section(this->shndx());
 gold_assert(os != NULL);

 memcpy(oview, this->section_contents_, oview_size);
 of->write_output_view(this->offset(), oview_size, oview);
}

// Arm_exidx_fixup methods.

// Append an EXIDX_CANTUNWIND in the current output section if the last entry
// is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
// points to the end of the last seen EXIDX section.

void
Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
{
 if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
     && this->last_input_section_ != NULL)
   {
     Relobj* relobj = this->last_input_section_->relobj();
     unsigned int text_shndx = this->last_input_section_->link();
     Arm_exidx_cantunwind* cantunwind =
       new Arm_exidx_cantunwind(relobj, text_shndx);
     this->exidx_output_section_->add_output_section_data(cantunwind);
     this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
   }
}

// Process an EXIDX section entry in input.  Return whether this entry
// can be deleted in the output.  SECOND_WORD in the second word of the
// EXIDX entry.

bool
Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
{
 bool delete_entry;
 if (second_word == elfcpp::EXIDX_CANTUNWIND)
   {
     // Merge if previous entry is also an EXIDX_CANTUNWIND.
     delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
     this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
   }
 else if ((second_word & 0x80000000) != 0)
   {
     // Inlined unwinding data.  Merge if equal to previous.
     delete_entry = (merge_exidx_entries_
                     && this->last_unwind_type_ == UT_INLINED_ENTRY
                     && this->last_inlined_entry_ == second_word);
     this->last_unwind_type_ = UT_INLINED_ENTRY;
     this->last_inlined_entry_ = second_word;
   }
 else
   {
     // Normal table entry.  In theory we could merge these too,
     // but duplicate entries are likely to be much less common.
     delete_entry = false;
     this->last_unwind_type_ = UT_NORMAL_ENTRY;
   }
 return delete_entry;
}

// Update the current section offset map during EXIDX section fix-up.
// If there is no map, create one.  INPUT_OFFSET is the offset of a
// reference point, DELETED_BYTES is the number of deleted by in the
// section so far.  If DELETE_ENTRY is true, the reference point and
// all offsets after the previous reference point are discarded.

void
Arm_exidx_fixup::update_offset_map(
   section_offset_type input_offset,
   section_size_type deleted_bytes,
   bool delete_entry)
{
 if (this->section_offset_map_ == NULL)
   this->section_offset_map_ = new Arm_exidx_section_offset_map();
 section_offset_type output_offset;
 if (delete_entry)
   output_offset = Arm_exidx_input_section::invalid_offset;
 else
   output_offset = input_offset - deleted_bytes;
 (*this->section_offset_map_)[input_offset] = output_offset;
}

// Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
// bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX
// section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS.
// If some entries are merged, also store a pointer to a newly created
// Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller
// owns the map and is responsible for releasing it after use.

template<bool big_endian>
uint32_t
Arm_exidx_fixup::process_exidx_section(
   const Arm_exidx_input_section* exidx_input_section,
   const unsigned char* section_contents,
   section_size_type section_size,
   Arm_exidx_section_offset_map** psection_offset_map)
{
 Relobj* relobj = exidx_input_section->relobj();
 unsigned shndx = exidx_input_section->shndx();

 if ((section_size % 8) != 0)
   {
     // Something is wrong with this section.  Better not touch it.
     gold_error(_("uneven .ARM.exidx section size in %s section %u"),
                relobj->name().c_str(), shndx);
     this->last_input_section_ = exidx_input_section;
     this->last_unwind_type_ = UT_NONE;
     return 0;
   }

 uint32_t deleted_bytes = 0;
 bool prev_delete_entry = false;
 gold_assert(this->section_offset_map_ == NULL);

 for (section_size_type i = 0; i < section_size; i += 8)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     const Valtype* wv =
         reinterpret_cast<const Valtype*>(section_contents + i + 4);
     uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);

     bool delete_entry = this->process_exidx_entry(second_word);

     // Entry deletion causes changes in output offsets.  We use a std::map
     // to record these.  And entry (x, y) means input offset x
     // is mapped to output offset y.  If y is invalid_offset, then x is
     // dropped in the output.  Because of the way std::map::lower_bound
     // works, we record the last offset in a region w.r.t to keeping or
     // dropping.  If there is no entry (x0, y0) for an input offset x0,
     // the output offset y0 of it is determined by the output offset y1 of
     // the smallest input offset x1 > x0 that there is an (x1, y1) entry
     // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1
     // y0 is also -1.
     if (delete_entry != prev_delete_entry && i != 0)
       this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);

     // Update total deleted bytes for this entry.
     if (delete_entry)
       deleted_bytes += 8;

     prev_delete_entry = delete_entry;
   }

 // If section offset map is not NULL, make an entry for the end of
 // section.
 if (this->section_offset_map_ != NULL)
   update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);

 *psection_offset_map = this->section_offset_map_;
 this->section_offset_map_ = NULL;
 this->last_input_section_ = exidx_input_section;

 // Set the first output text section so that we can link the EXIDX output
 // section to it.  Ignore any EXIDX input section that is completely merged.
 if (this->first_output_text_section_ == NULL
     && deleted_bytes != section_size)
   {
     unsigned int link = exidx_input_section->link();
     Output_section* os = relobj->output_section(link);
     gold_assert(os != NULL);
     this->first_output_text_section_ = os;
   }

 return deleted_bytes;
}

// Arm_output_section methods.

// Create a stub group for input sections from BEGIN to END.  OWNER
// points to the input section to be the owner a new stub table.

template<bool big_endian>
void
Arm_output_section<big_endian>::create_stub_group(
 Input_section_list::const_iterator begin,
 Input_section_list::const_iterator end,
 Input_section_list::const_iterator owner,
 Target_arm<big_endian>* target,
 std::vector<Output_relaxed_input_section*>* new_relaxed_sections,
 const Task* task)
{
 // We use a different kind of relaxed section in an EXIDX section.
 // The static casting from Output_relaxed_input_section to
 // Arm_input_section is invalid in an EXIDX section.  We are okay
 // because we should not be calling this for an EXIDX section.
 gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);

 // Currently we convert ordinary input sections into relaxed sections only
 // at this point but we may want to support creating relaxed input section
 // very early.  So we check here to see if owner is already a relaxed
 // section.

 Arm_input_section<big_endian>* arm_input_section;
 if (owner->is_relaxed_input_section())
   {
     arm_input_section =
       Arm_input_section<big_endian>::as_arm_input_section(
         owner->relaxed_input_section());
   }
 else
   {
     gold_assert(owner->is_input_section());
     // Create a new relaxed input section.  We need to lock the original
     // file.
     Task_lock_obj<Object> tl(task, owner->relobj());
     arm_input_section =
       target->new_arm_input_section(owner->relobj(), owner->shndx());
     new_relaxed_sections->push_back(arm_input_section);
   }

 // Create a stub table.
 Stub_table<big_endian>* stub_table =
   target->new_stub_table(arm_input_section);

 arm_input_section->set_stub_table(stub_table);

 Input_section_list::const_iterator p = begin;
 Input_section_list::const_iterator prev_p;

 // Look for input sections or relaxed input sections in [begin ... end].
 do
   {
     if (p->is_input_section() || p->is_relaxed_input_section())
       {
         // The stub table information for input sections live
         // in their objects.
         Arm_relobj<big_endian>* arm_relobj =
           Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
         arm_relobj->set_stub_table(p->shndx(), stub_table);
       }
     prev_p = p++;
   }
 while (prev_p != end);
}

// Group input sections for stub generation.  GROUP_SIZE is roughly the limit
// of stub groups.  We grow a stub group by adding input section until the
// size is just below GROUP_SIZE.  The last input section will be converted
// into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add
// input section after the stub table, effectively double the group size.
//
// This is similar to the group_sections() function in elf32-arm.c but is
// implemented differently.

template<bool big_endian>
void
Arm_output_section<big_endian>::group_sections(
   section_size_type group_size,
   bool stubs_always_after_branch,
   Target_arm<big_endian>* target,
   const Task* task)
{
 // States for grouping.
 typedef enum
 {
   // No group is being built.
   NO_GROUP,
   // A group is being built but the stub table is not found yet.
   // We keep group a stub group until the size is just under GROUP_SIZE.
   // The last input section in the group will be used as the stub table.
   FINDING_STUB_SECTION,
   // A group is being built and we have already found a stub table.
   // We enter this state to grow a stub group by adding input section
   // after the stub table.  This effectively doubles the group size.
   HAS_STUB_SECTION
 } State;

 // Any newly created relaxed sections are stored here.
 std::vector<Output_relaxed_input_section*> new_relaxed_sections;

 State state = NO_GROUP;
 section_size_type off = 0;
 section_size_type group_begin_offset = 0;
 section_size_type group_end_offset = 0;
 section_size_type stub_table_end_offset = 0;
 Input_section_list::const_iterator group_begin =
   this->input_sections().end();
 Input_section_list::const_iterator stub_table =
   this->input_sections().end();
 Input_section_list::const_iterator group_end = this->input_sections().end();
 for (Input_section_list::const_iterator p = this->input_sections().begin();
      p != this->input_sections().end();
      ++p)
   {
     section_size_type section_begin_offset =
       align_address(off, p->addralign());
     section_size_type section_end_offset =
       section_begin_offset + p->data_size();

     // Check to see if we should group the previously seen sections.
     switch (state)
       {
       case NO_GROUP:
         break;

       case FINDING_STUB_SECTION:
         // Adding this section makes the group larger than GROUP_SIZE.
         if (section_end_offset - group_begin_offset >= group_size)
           {
             if (stubs_always_after_branch)
               {
                 gold_assert(group_end != this->input_sections().end());
                 this->create_stub_group(group_begin, group_end, group_end,
                                         target, &new_relaxed_sections,
                                         task);
                 state = NO_GROUP;
               }
             else
               {
                 // But wait, there's more!  Input sections up to
                 // stub_group_size bytes after the stub table can be
                 // handled by it too.
                 state = HAS_STUB_SECTION;
                 stub_table = group_end;
                 stub_table_end_offset = group_end_offset;
               }
           }
           break;

       case HAS_STUB_SECTION:
         // Adding this section makes the post stub-section group larger
         // than GROUP_SIZE.
         if (section_end_offset - stub_table_end_offset >= group_size)
          {
            gold_assert(group_end != this->input_sections().end());
            this->create_stub_group(group_begin, group_end, stub_table,
                                    target, &new_relaxed_sections, task);
            state = NO_GROUP;
          }
          break;

         default:
           gold_unreachable();
       }

     // If we see an input section and currently there is no group, start
     // a new one.  Skip any empty sections.  We look at the data size
     // instead of calling p->relobj()->section_size() to avoid locking.
     if ((p->is_input_section() || p->is_relaxed_input_section())
         && (p->data_size() != 0))
       {
         if (state == NO_GROUP)
           {
             state = FINDING_STUB_SECTION;
             group_begin = p;
             group_begin_offset = section_begin_offset;
           }

         // Keep track of the last input section seen.
         group_end = p;
         group_end_offset = section_end_offset;
       }

     off = section_end_offset;
   }

 // Create a stub group for any ungrouped sections.
 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
   {
     gold_assert(group_end != this->input_sections().end());
     this->create_stub_group(group_begin, group_end,
                             (state == FINDING_STUB_SECTION
                              ? group_end
                              : stub_table),
                              target, &new_relaxed_sections, task);
   }

 // Convert input section into relaxed input section in a batch.
 if (!new_relaxed_sections.empty())
   this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);

 // Update the section offsets
 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
   {
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(
         new_relaxed_sections[i]->relobj());
     unsigned int shndx = new_relaxed_sections[i]->shndx();
     // Tell Arm_relobj that this input section is converted.
     arm_relobj->convert_input_section_to_relaxed_section(shndx);
   }
}

// Append non empty text sections in this to LIST in ascending
// order of their position in this.

template<bool big_endian>
void
Arm_output_section<big_endian>::append_text_sections_to_list(
   Text_section_list* list)
{
 gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);

 for (Input_section_list::const_iterator p = this->input_sections().begin();
      p != this->input_sections().end();
      ++p)
   {
     // We only care about plain or relaxed input sections.  We also
     // ignore any merged sections.
     if (p->is_input_section() || p->is_relaxed_input_section())
       list->push_back(Text_section_list::value_type(p->relobj(),
                                                     p->shndx()));
   }
}

template<bool big_endian>
void
Arm_output_section<big_endian>::fix_exidx_coverage(
   Layout* layout,
   const Text_section_list& sorted_text_sections,
   Symbol_table* symtab,
   bool merge_exidx_entries,
   const Task* task)
{
 // We should only do this for the EXIDX output section.
 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);

 // We don't want the relaxation loop to undo these changes, so we discard
 // the current saved states and take another one after the fix-up.
 this->discard_states();

 // Remove all input sections.
 uint64_t address = this->address();
 typedef std::list<Output_section::Input_section> Input_section_list;
 Input_section_list input_sections;
 this->reset_address_and_file_offset();
 this->get_input_sections(address, std::string(""), &input_sections);

 if (!this->input_sections().empty())
   gold_error(_("Found non-EXIDX input sections in EXIDX output section"));

 // Go through all the known input sections and record them.
 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
 typedef Unordered_map<Section_id, const Output_section::Input_section*,
                       Section_id_hash> Text_to_exidx_map;
 Text_to_exidx_map text_to_exidx_map;
 for (Input_section_list::const_iterator p = input_sections.begin();
      p != input_sections.end();
      ++p)
   {
     // This should never happen.  At this point, we should only see
     // plain EXIDX input sections.
     gold_assert(!p->is_relaxed_input_section());
     text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
   }

 Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);

 // Go over the sorted text sections.
 typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
 Section_id_set processed_input_sections;
 for (Text_section_list::const_iterator p = sorted_text_sections.begin();
      p != sorted_text_sections.end();
      ++p)
   {
     Relobj* relobj = p->first;
     unsigned int shndx = p->second;

     Arm_relobj<big_endian>* arm_relobj =
        Arm_relobj<big_endian>::as_arm_relobj(relobj);
     const Arm_exidx_input_section* exidx_input_section =
        arm_relobj->exidx_input_section_by_link(shndx);

     // If this text section has no EXIDX section or if the EXIDX section
     // has errors, force an EXIDX_CANTUNWIND entry pointing to the end
     // of the last seen EXIDX section.
     if (exidx_input_section == NULL || exidx_input_section->has_errors())
       {
         exidx_fixup.add_exidx_cantunwind_as_needed();
         continue;
       }

     Relobj* exidx_relobj = exidx_input_section->relobj();
     unsigned int exidx_shndx = exidx_input_section->shndx();
     Section_id sid(exidx_relobj, exidx_shndx);
     Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
     if (iter == text_to_exidx_map.end())
       {
         // This is odd.  We have not seen this EXIDX input section before.
         // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
         // issue a warning instead.  We assume the user knows what he
         // or she is doing.  Otherwise, this is an error.
         if (layout->script_options()->saw_sections_clause())
           gold_warning(_("unwinding may not work because EXIDX input section"
                          " %u of %s is not in EXIDX output section"),
                        exidx_shndx, exidx_relobj->name().c_str());
         else
           gold_error(_("unwinding may not work because EXIDX input section"
                        " %u of %s is not in EXIDX output section"),
                      exidx_shndx, exidx_relobj->name().c_str());

         exidx_fixup.add_exidx_cantunwind_as_needed();
         continue;
       }

     // We need to access the contents of the EXIDX section, lock the
     // object here.
     Task_lock_obj<Object> tl(task, exidx_relobj);
     section_size_type exidx_size;
     const unsigned char* exidx_contents =
       exidx_relobj->section_contents(exidx_shndx, &exidx_size, false);

     // Fix up coverage and append input section to output data list.
     Arm_exidx_section_offset_map* section_offset_map = NULL;
     uint32_t deleted_bytes =
       exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
                                                     exidx_contents,
                                                     exidx_size,
                                                     &section_offset_map);

     if (deleted_bytes == exidx_input_section->size())
       {
         // The whole EXIDX section got merged.  Remove it from output.
         gold_assert(section_offset_map == NULL);
         exidx_relobj->set_output_section(exidx_shndx, NULL);

         // All local symbols defined in this input section will be dropped.
         // We need to adjust output local symbol count.
         arm_relobj->set_output_local_symbol_count_needs_update();
       }
     else if (deleted_bytes > 0)
       {
         // Some entries are merged.  We need to convert this EXIDX input
         // section into a relaxed section.
         gold_assert(section_offset_map != NULL);

         Arm_exidx_merged_section* merged_section =
           new Arm_exidx_merged_section(*exidx_input_section,
                                        *section_offset_map, deleted_bytes);
         merged_section->build_contents(exidx_contents, exidx_size);

         const std::string secname = exidx_relobj->section_name(exidx_shndx);
         this->add_relaxed_input_section(layout, merged_section, secname);
         arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);

         // All local symbols defined in discarded portions of this input
         // section will be dropped.  We need to adjust output local symbol
         // count.
         arm_relobj->set_output_local_symbol_count_needs_update();
       }
     else
       {
         // Just add back the EXIDX input section.
         gold_assert(section_offset_map == NULL);
         const Output_section::Input_section* pis = iter->second;
         gold_assert(pis->is_input_section());
         this->add_script_input_section(*pis);
       }

     processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx));
   }

 // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
 exidx_fixup.add_exidx_cantunwind_as_needed();

 // Remove any known EXIDX input sections that are not processed.
 for (Input_section_list::const_iterator p = input_sections.begin();
      p != input_sections.end();
      ++p)
   {
     if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
         == processed_input_sections.end())
       {
         // We discard a known EXIDX section because its linked
         // text section has been folded by ICF.  We also discard an
         // EXIDX section with error, the output does not matter in this
         // case.  We do this to avoid triggering asserts.
         Arm_relobj<big_endian>* arm_relobj =
           Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
         const Arm_exidx_input_section* exidx_input_section =
           arm_relobj->exidx_input_section_by_shndx(p->shndx());
         gold_assert(exidx_input_section != NULL);
         if (!exidx_input_section->has_errors())
           {
             unsigned int text_shndx = exidx_input_section->link();
             gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
           }

         // Remove this from link.  We also need to recount the
         // local symbols.
         p->relobj()->set_output_section(p->shndx(), NULL);
         arm_relobj->set_output_local_symbol_count_needs_update();
       }
   }

 // Link exidx output section to the first seen output section and
 // set correct entry size.
 this->set_link_section(exidx_fixup.first_output_text_section());
 this->set_entsize(8);

 // Make changes permanent.
 this->save_states();
 this->set_section_offsets_need_adjustment();
}

// Link EXIDX output sections to text output sections.

template<bool big_endian>
void
Arm_output_section<big_endian>::set_exidx_section_link()
{
 gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
 if (!this->input_sections().empty())
   {
     Input_section_list::const_iterator p = this->input_sections().begin();
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
     unsigned exidx_shndx = p->shndx();
     const Arm_exidx_input_section* exidx_input_section =
       arm_relobj->exidx_input_section_by_shndx(exidx_shndx);
     gold_assert(exidx_input_section != NULL);
     unsigned int text_shndx = exidx_input_section->link();
     Output_section* os = arm_relobj->output_section(text_shndx);
     this->set_link_section(os);
   }
}

// Arm_relobj methods.

// Determine if an input section is scannable for stub processing.  SHDR is
// the header of the section and SHNDX is the section index.  OS is the output
// section for the input section and SYMTAB is the global symbol table used to
// look up ICF information.

template<bool big_endian>
bool
Arm_relobj<big_endian>::section_is_scannable(
   const elfcpp::Shdr<32, big_endian>& shdr,
   unsigned int shndx,
   const Output_section* os,
   const Symbol_table* symtab)
{
 // Skip any empty sections, unallocated sections or sections whose
 // type are not SHT_PROGBITS.
 if (shdr.get_sh_size() == 0
     || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
     || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
   return false;

 // Skip any discarded or ICF'ed sections.
 if (os == NULL || symtab->is_section_folded(this, shndx))
   return false;

 // If this requires special offset handling, check to see if it is
 // a relaxed section.  If this is not, then it is a merged section that
 // we cannot handle.
 if (this->is_output_section_offset_invalid(shndx))
   {
     const Output_relaxed_input_section* poris =
       os->find_relaxed_input_section(this, shndx);
     if (poris == NULL)
       return false;
   }

 return true;
}

// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.

template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
   const elfcpp::Shdr<32, big_endian>& shdr,
   const Relobj::Output_sections& out_sections,
   const Symbol_table* symtab,
   const unsigned char* pshdrs)
{
 unsigned int sh_type = shdr.get_sh_type();
 if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
   return false;

 // Ignore empty section.
 off_t sh_size = shdr.get_sh_size();
 if (sh_size == 0)
   return false;

 // Ignore reloc section with unexpected symbol table.  The
 // error will be reported in the final link.
 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
   return false;

 unsigned int reloc_size;
 if (sh_type == elfcpp::SHT_REL)
   reloc_size = elfcpp::Elf_sizes<32>::rel_size;
 else
   reloc_size = elfcpp::Elf_sizes<32>::rela_size;

 // Ignore reloc section with unexpected entsize or uneven size.
 // The error will be reported in the final link.
 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
   return false;

 // Ignore reloc section with bad info.  This error will be
 // reported in the final link.
 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
 if (index >= this->shnum())
   return false;

 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
 const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
 return this->section_is_scannable(text_shdr, index,
                                  out_sections[index], symtab);
}

// Return the output address of either a plain input section or a relaxed
// input section.  SHNDX is the section index.  We define and use this
// instead of calling Output_section::output_address because that is slow
// for large output.

template<bool big_endian>
Arm_address
Arm_relobj<big_endian>::simple_input_section_output_address(
   unsigned int shndx,
   Output_section* os)
{
 if (this->is_output_section_offset_invalid(shndx))
   {
     const Output_relaxed_input_section* poris =
       os->find_relaxed_input_section(this, shndx);
     // We do not handle merged sections here.
     gold_assert(poris != NULL);
     return poris->address();
   }
 else
   return os->address() + this->get_output_section_offset(shndx);
}

// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
// This is a helper for Arm_relobj::scan_sections_for_stubs() below.

template<bool big_endian>
bool
Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
   const elfcpp::Shdr<32, big_endian>& shdr,
   unsigned int shndx,
   Output_section* os,
   const Symbol_table* symtab)
{
 if (!this->section_is_scannable(shdr, shndx, os, symtab))
   return false;

 // If the section does not cross any 4K-boundaries, it does not need to
 // be scanned.
 Arm_address address = this->simple_input_section_output_address(shndx, os);
 if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
   return false;

 return true;
}

// Scan a section for Cortex-A8 workaround.

template<bool big_endian>
void
Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
   const elfcpp::Shdr<32, big_endian>& shdr,
   unsigned int shndx,
   Output_section* os,
   Target_arm<big_endian>* arm_target)
{
 // Look for the first mapping symbol in this section.  It should be
 // at (shndx, 0).
 Mapping_symbol_position section_start(shndx, 0);
 typename Mapping_symbols_info::const_iterator p =
   this->mapping_symbols_info_.lower_bound(section_start);

 // There are no mapping symbols for this section.  Treat it as a data-only
 // section.
 if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
   return;

 Arm_address output_address =
   this->simple_input_section_output_address(shndx, os);

 // Get the section contents.
 section_size_type input_view_size = 0;
 const unsigned char* input_view =
   this->section_contents(shndx, &input_view_size, false);

 // We need to go through the mapping symbols to determine what to
 // scan.  There are two reasons.  First, we should look at THUMB code and
 // THUMB code only.  Second, we only want to look at the 4K-page boundary
 // to speed up the scanning.

 while (p != this->mapping_symbols_info_.end()
       && p->first.first == shndx)
   {
     typename Mapping_symbols_info::const_iterator next =
       this->mapping_symbols_info_.upper_bound(p->first);

     // Only scan part of a section with THUMB code.
     if (p->second == 't')
       {
         // Determine the end of this range.
         section_size_type span_start =
           convert_to_section_size_type(p->first.second);
         section_size_type span_end;
         if (next != this->mapping_symbols_info_.end()
             && next->first.first == shndx)
           span_end = convert_to_section_size_type(next->first.second);
         else
           span_end = convert_to_section_size_type(shdr.get_sh_size());

         if (((span_start + output_address) & ~0xfffUL)
             != ((span_end + output_address - 1) & ~0xfffUL))
           {
             arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
                                                         span_start, span_end,
                                                         input_view,
                                                         output_address);
           }
       }

     p = next;
   }
}

// Scan relocations for stub generation.

template<bool big_endian>
void
Arm_relobj<big_endian>::scan_sections_for_stubs(
   Target_arm<big_endian>* arm_target,
   const Symbol_table* symtab,
   const Layout* layout)
{
 unsigned int shnum = this->shnum();
 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;

 // Read the section headers.
 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
                                              shnum * shdr_size,
                                              true, true);

 // To speed up processing, we set up hash tables for fast lookup of
 // input offsets to output addresses.
 this->initialize_input_to_output_maps();

 const Relobj::Output_sections& out_sections(this->output_sections());

 Relocate_info<32, big_endian> relinfo;
 relinfo.symtab = symtab;
 relinfo.layout = layout;
 relinfo.object = this;

 // Do relocation stubs scanning.
 const unsigned char* p = pshdrs + shdr_size;
 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
   {
     const elfcpp::Shdr<32, big_endian> shdr(p);
     if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
                                                 pshdrs))
       {
         unsigned int index = this->adjust_shndx(shdr.get_sh_info());
         Arm_address output_offset = this->get_output_section_offset(index);
         Arm_address output_address;
         if (output_offset != invalid_address)
           output_address = out_sections[index]->address() + output_offset;
         else
           {
             // Currently this only happens for a relaxed section.
             const Output_relaxed_input_section* poris =
             out_sections[index]->find_relaxed_input_section(this, index);
             gold_assert(poris != NULL);
             output_address = poris->address();
           }

         // Get the relocations.
         const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
                                                       shdr.get_sh_size(),
                                                       true, false);

         // Get the section contents.  This does work for the case in which
         // we modify the contents of an input section.  We need to pass the
         // output view under such circumstances.
         section_size_type input_view_size = 0;
         const unsigned char* input_view =
           this->section_contents(index, &input_view_size, false);

         relinfo.reloc_shndx = i;
         relinfo.data_shndx = index;
         unsigned int sh_type = shdr.get_sh_type();
         unsigned int reloc_size;
         if (sh_type == elfcpp::SHT_REL)
           reloc_size = elfcpp::Elf_sizes<32>::rel_size;
         else
           reloc_size = elfcpp::Elf_sizes<32>::rela_size;

         Output_section* os = out_sections[index];
         arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
                                            shdr.get_sh_size() / reloc_size,
                                            os,
                                            output_offset == invalid_address,
                                            input_view, output_address,
                                            input_view_size);
       }
   }

 // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
 // after its relocation section, if there is one, is processed for
 // relocation stubs.  Merging this loop with the one above would have been
 // complicated since we would have had to make sure that relocation stub
 // scanning is done first.
 if (arm_target->fix_cortex_a8())
   {
     const unsigned char* p = pshdrs + shdr_size;
     for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
       {
         const elfcpp::Shdr<32, big_endian> shdr(p);
         if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
                                                         out_sections[i],
                                                         symtab))
           this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
                                                    arm_target);
       }
   }

 // After we've done the relocations, we release the hash tables,
 // since we no longer need them.
 this->free_input_to_output_maps();
}

// Count the local symbols.  The ARM backend needs to know if a symbol
// is a THUMB function or not.  For global symbols, it is easy because
// the Symbol object keeps the ELF symbol type.  For local symbol it is
// harder because we cannot access this information.   So we override the
// do_count_local_symbol in parent and scan local symbols to mark
// THUMB functions.  This is not the most efficient way but I do not want to
// slow down other ports by calling a per symbol target hook inside
// Sized_relobj_file<size, big_endian>::do_count_local_symbols.

template<bool big_endian>
void
Arm_relobj<big_endian>::do_count_local_symbols(
   Stringpool_template<char>* pool,
   Stringpool_template<char>* dynpool)
{
 // We need to fix-up the values of any local symbols whose type are
 // STT_ARM_TFUNC.

 // Ask parent to count the local symbols.
 Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool);
 const unsigned int loccount = this->local_symbol_count();
 if (loccount == 0)
   return;

 // Initialize the thumb function bit-vector.
 std::vector<bool> empty_vector(loccount, false);
 this->local_symbol_is_thumb_function_.swap(empty_vector);

 // Read the symbol table section header.
 const unsigned int symtab_shndx = this->symtab_shndx();
 elfcpp::Shdr<32, big_endian>
     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

 // Read the local symbols.
 const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
 gold_assert(loccount == symtabshdr.get_sh_info());
 off_t locsize = loccount * sym_size;
 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                             locsize, true, true);

 // For mapping symbol processing, we need to read the symbol names.
 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
 if (strtab_shndx >= this->shnum())
   {
     this->error(_("invalid symbol table name index: %u"), strtab_shndx);
     return;
   }

 elfcpp::Shdr<32, big_endian>
   strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
   {
     this->error(_("symbol table name section has wrong type: %u"),
                 static_cast<unsigned int>(strtabshdr.get_sh_type()));
     return;
   }
 const char* pnames =
   reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
                                                strtabshdr.get_sh_size(),
                                                false, false));

 // Loop over the local symbols and mark any local symbols pointing
 // to THUMB functions.

 // Skip the first dummy symbol.
 psyms += sym_size;
 typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values =
   this->local_values();
 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   {
     elfcpp::Sym<32, big_endian> sym(psyms);
     elfcpp::STT st_type = sym.get_st_type();
     Symbol_value<32>& lv((*plocal_values)[i]);
     Arm_address input_value = lv.input_value();

     // Check to see if this is a mapping symbol.
     const char* sym_name = pnames + sym.get_st_name();
     if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
       {
         bool is_ordinary;
         unsigned int input_shndx =
           this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
         gold_assert(is_ordinary);

         // Strip of LSB in case this is a THUMB symbol.
         Mapping_symbol_position msp(input_shndx, input_value & ~1U);
         this->mapping_symbols_info_[msp] = sym_name[1];
       }

     if (st_type == elfcpp::STT_ARM_TFUNC
         || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
       {
         // This is a THUMB function.  Mark this and canonicalize the
         // symbol value by setting LSB.
         this->local_symbol_is_thumb_function_[i] = true;
         if ((input_value & 1) == 0)
           lv.set_input_value(input_value | 1);
       }
   }
}

// Relocate sections.
template<bool big_endian>
void
Arm_relobj<big_endian>::do_relocate_sections(
   const Symbol_table* symtab,
   const Layout* layout,
   const unsigned char* pshdrs,
   Output_file* of,
   typename Sized_relobj_file<32, big_endian>::Views* pviews)
{
 // Relocate the section data.
 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
                              1, this->shnum() - 1);

 // We do not generate stubs if doing a relocatable link.
 if (parameters->options().relocatable())
   return;

 // Relocate stub tables.
 unsigned int shnum = this->shnum();

 Target_arm<big_endian>* arm_target =
   Target_arm<big_endian>::default_target();

 Relocate_info<32, big_endian> relinfo;
 relinfo.symtab = symtab;
 relinfo.layout = layout;
 relinfo.object = this;

 for (unsigned int i = 1; i < shnum; ++i)
   {
     Arm_input_section<big_endian>* arm_input_section =
       arm_target->find_arm_input_section(this, i);

     if (arm_input_section != NULL
         && arm_input_section->is_stub_table_owner()
         && !arm_input_section->stub_table()->empty())
       {
         // We cannot discard a section if it owns a stub table.
         Output_section* os = this->output_section(i);
         gold_assert(os != NULL);

         relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
         relinfo.reloc_shdr = NULL;
         relinfo.data_shndx = i;
         relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;

         gold_assert((*pviews)[i].view != NULL);

         // We are passed the output section view.  Adjust it to cover the
         // stub table only.
         Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
         gold_assert((stub_table->address() >= (*pviews)[i].address)
                     && ((stub_table->address() + stub_table->data_size())
                         <= (*pviews)[i].address + (*pviews)[i].view_size));

         off_t offset = stub_table->address() - (*pviews)[i].address;
         unsigned char* view = (*pviews)[i].view + offset;
         Arm_address address = stub_table->address();
         section_size_type view_size = stub_table->data_size();

         stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
                                    view_size);
       }

     // Apply Cortex A8 workaround if applicable.
     if (this->section_has_cortex_a8_workaround(i))
       {
         unsigned char* view = (*pviews)[i].view;
         Arm_address view_address = (*pviews)[i].address;
         section_size_type view_size = (*pviews)[i].view_size;
         Stub_table<big_endian>* stub_table = this->stub_tables_[i];

         // Adjust view to cover section.
         Output_section* os = this->output_section(i);
         gold_assert(os != NULL);
         Arm_address section_address =
           this->simple_input_section_output_address(i, os);
         uint64_t section_size = this->section_size(i);

         gold_assert(section_address >= view_address
                     && ((section_address + section_size)
                         <= (view_address + view_size)));

         unsigned char* section_view = view + (section_address - view_address);

         // Apply the Cortex-A8 workaround to the output address range
         // corresponding to this input section.
         stub_table->apply_cortex_a8_workaround_to_address_range(
             arm_target,
             section_view,
             section_address,
             section_size);
       }
       // BE8 swapping
       if (parameters->options().be8())
         {
           section_size_type  span_start, span_end;
           elfcpp::Shdr<32, big_endian>
             shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size);
           Mapping_symbol_position section_start(i, 0);
           typename Mapping_symbols_info::const_iterator p =
             this->mapping_symbols_info_.lower_bound(section_start);
           unsigned char* view = (*pviews)[i].view;
           Arm_address view_address = (*pviews)[i].address;
           section_size_type view_size = (*pviews)[i].view_size;
           while (p != this->mapping_symbols_info_.end()
                  && p->first.first == i)
             {
               typename Mapping_symbols_info::const_iterator next =
                 this->mapping_symbols_info_.upper_bound(p->first);

               // Only swap arm or thumb code.
               if ((p->second == 'a') || (p->second == 't'))
                 {
                   Output_section* os = this->output_section(i);
                   gold_assert(os != NULL);
                   Arm_address section_address =
                     this->simple_input_section_output_address(i, os);
                   span_start = convert_to_section_size_type(p->first.second);
                   if (next != this->mapping_symbols_info_.end()
                       && next->first.first == i)
                     span_end =
                       convert_to_section_size_type(next->first.second);
                   else
                     span_end =
                       convert_to_section_size_type(shdr.get_sh_size());
                   unsigned char* section_view =
                     view + (section_address - view_address);
                   uint64_t section_size = this->section_size(i);

                   gold_assert(section_address >= view_address
                               && ((section_address + section_size)
                                   <= (view_address + view_size)));

                   // Set Output view for swapping
                   unsigned char *oview = section_view + span_start;
                   unsigned int index = 0;
                   if (p->second == 'a')
                     {
                       while (index + 3 < (span_end - span_start))
                         {
                           typedef typename elfcpp::Swap<32, big_endian>
                                                    ::Valtype Valtype;
                           Valtype* wv =
                             reinterpret_cast<Valtype*>(oview+index);
                           uint32_t val = elfcpp::Swap<32, false>::readval(wv);
                           elfcpp::Swap<32, true>::writeval(wv, val);
                           index += 4;
                         }
                     }
                   else if (p->second == 't')
                     {
                       while (index + 1 < (span_end - span_start))
                         {
                           typedef typename elfcpp::Swap<16, big_endian>
                                                    ::Valtype Valtype;
                           Valtype* wv =
                             reinterpret_cast<Valtype*>(oview+index);
                           uint16_t val = elfcpp::Swap<16, false>::readval(wv);
                           elfcpp::Swap<16, true>::writeval(wv, val);
                           index += 2;
                          }
                     }
                 }
               p = next;
             }
         }
   }
}

// Find the linked text section of an EXIDX section by looking at the first
// relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
// must be linked to its associated code section via the sh_link field of
// its section header.  However, some tools are broken and the link is not
// always set.  LD just drops such an EXIDX section silently, causing the
// associated code not unwindabled.   Here we try a little bit harder to
// discover the linked code section.
//
// PSHDR points to the section header of a relocation section of an EXIDX
// section.  If we can find a linked text section, return true and
// store the text section index in the location PSHNDX.  Otherwise
// return false.

template<bool big_endian>
bool
Arm_relobj<big_endian>::find_linked_text_section(
   const unsigned char* pshdr,
   const unsigned char* psyms,
   unsigned int* pshndx)
{
 elfcpp::Shdr<32, big_endian> shdr(pshdr);

 // If there is no relocation, we cannot find the linked text section.
 size_t reloc_size;
 if (shdr.get_sh_type() == elfcpp::SHT_REL)
     reloc_size = elfcpp::Elf_sizes<32>::rel_size;
 else
     reloc_size = elfcpp::Elf_sizes<32>::rela_size;
 size_t reloc_count = shdr.get_sh_size() / reloc_size;

 // Get the relocations.
 const unsigned char* prelocs =
     this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false);

 // Find the REL31 relocation for the first word of the first EXIDX entry.
 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
   {
     Arm_address r_offset;
     typename elfcpp::Elf_types<32>::Elf_WXword r_info;
     if (shdr.get_sh_type() == elfcpp::SHT_REL)
       {
         typename elfcpp::Rel<32, big_endian> reloc(prelocs);
         r_info = reloc.get_r_info();
         r_offset = reloc.get_r_offset();
       }
     else
       {
         typename elfcpp::Rela<32, big_endian> reloc(prelocs);
         r_info = reloc.get_r_info();
         r_offset = reloc.get_r_offset();
       }

     unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
     if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
       continue;

     unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
     if (r_sym == 0
         || r_sym >= this->local_symbol_count()
         || r_offset != 0)
       continue;

     // This is the relocation for the first word of the first EXIDX entry.
     // We expect to see a local section symbol.
     const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
     elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
     if (sym.get_st_type() == elfcpp::STT_SECTION)
       {
         bool is_ordinary;
         *pshndx =
           this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
         gold_assert(is_ordinary);
         return true;
       }
     else
       return false;
   }

 return false;
}

// Make an EXIDX input section object for an EXIDX section whose index is
// SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
// is the section index of the linked text section.

template<bool big_endian>
void
Arm_relobj<big_endian>::make_exidx_input_section(
   unsigned int shndx,
   const elfcpp::Shdr<32, big_endian>& shdr,
   unsigned int text_shndx,
   const elfcpp::Shdr<32, big_endian>& text_shdr)
{
 // Create an Arm_exidx_input_section object for this EXIDX section.
 Arm_exidx_input_section* exidx_input_section =
   new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
                               shdr.get_sh_addralign(),
                               text_shdr.get_sh_size());

 gold_assert(this->exidx_section_map_[shndx] == NULL);
 this->exidx_section_map_[shndx] = exidx_input_section;

 if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum())
   {
     gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"),
                this->section_name(shndx).c_str(), shndx, text_shndx,
                this->name().c_str());
     exidx_input_section->set_has_errors();
   }
 else if (this->exidx_section_map_[text_shndx] != NULL)
   {
     unsigned other_exidx_shndx =
       this->exidx_section_map_[text_shndx]->shndx();
     gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section"
                  "%s(%u) in %s"),
                this->section_name(shndx).c_str(), shndx,
                this->section_name(other_exidx_shndx).c_str(),
                other_exidx_shndx, this->section_name(text_shndx).c_str(),
                text_shndx, this->name().c_str());
     exidx_input_section->set_has_errors();
   }
 else
    this->exidx_section_map_[text_shndx] = exidx_input_section;

 // Check section flags of text section.
 if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
   {
     gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) "
                  " in %s"),
                this->section_name(shndx).c_str(), shndx,
                this->section_name(text_shndx).c_str(), text_shndx,
                this->name().c_str());
     exidx_input_section->set_has_errors();
   }
 else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0)
   // I would like to make this an error but currently ld just ignores
   // this.
   gold_warning(_("EXIDX section %s(%u) links to non-executable section "
                  "%s(%u) in %s"),
                this->section_name(shndx).c_str(), shndx,
                this->section_name(text_shndx).c_str(), text_shndx,
                this->name().c_str());
}

// Read the symbol information.

template<bool big_endian>
void
Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
 // Call parent class to read symbol information.
 this->base_read_symbols(sd);

 // If this input file is a binary file, it has no processor
 // specific flags and attributes section.
 Input_file::Format format = this->input_file()->format();
 if (format != Input_file::FORMAT_ELF)
   {
     gold_assert(format == Input_file::FORMAT_BINARY);
     this->merge_flags_and_attributes_ = false;
     return;
   }

 // Read processor-specific flags in ELF file header.
 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
                                             elfcpp::Elf_sizes<32>::ehdr_size,
                                             true, false);
 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
 this->processor_specific_flags_ = ehdr.get_e_flags();

 // Go over the section headers and look for .ARM.attributes and .ARM.exidx
 // sections.
 std::vector<unsigned int> deferred_exidx_sections;
 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
 const unsigned char* pshdrs = sd->section_headers->data();
 const unsigned char* ps = pshdrs + shdr_size;
 bool must_merge_flags_and_attributes = false;
 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
   {
     elfcpp::Shdr<32, big_endian> shdr(ps);

     // Sometimes an object has no contents except the section name string
     // table and an empty symbol table with the undefined symbol.  We
     // don't want to merge processor-specific flags from such an object.
     if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
       {
         // Symbol table is not empty.
         const elfcpp::Elf_types<32>::Elf_WXword sym_size =
            elfcpp::Elf_sizes<32>::sym_size;
         if (shdr.get_sh_size() > sym_size)
           must_merge_flags_and_attributes = true;
       }
     else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
       // If this is neither an empty symbol table nor a string table,
       // be conservative.
       must_merge_flags_and_attributes = true;

     if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
       {
         gold_assert(this->attributes_section_data_ == NULL);
         section_offset_type section_offset = shdr.get_sh_offset();
         section_size_type section_size =
           convert_to_section_size_type(shdr.get_sh_size());
         const unsigned char* view =
            this->get_view(section_offset, section_size, true, false);
         this->attributes_section_data_ =
           new Attributes_section_data(view, section_size);
       }
     else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
       {
         unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
         if (text_shndx == elfcpp::SHN_UNDEF)
           deferred_exidx_sections.push_back(i);
         else
           {
             elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
                                                    + text_shndx * shdr_size);
             this->make_exidx_input_section(i, shdr, text_shndx, text_shdr);
           }
         // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set.
         if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0)
           gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"),
                        this->section_name(i).c_str(), this->name().c_str());
       }
   }

 // This is rare.
 if (!must_merge_flags_and_attributes)
   {
     gold_assert(deferred_exidx_sections.empty());
     this->merge_flags_and_attributes_ = false;
     return;
   }

 // Some tools are broken and they do not set the link of EXIDX sections.
 // We look at the first relocation to figure out the linked sections.
 if (!deferred_exidx_sections.empty())
   {
     // We need to go over the section headers again to find the mapping
     // from sections being relocated to their relocation sections.  This is
     // a bit inefficient as we could do that in the loop above.  However,
     // we do not expect any deferred EXIDX sections normally.  So we do not
     // want to slow down the most common path.
     typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
     Reloc_map reloc_map;
     ps = pshdrs + shdr_size;
     for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
       {
         elfcpp::Shdr<32, big_endian> shdr(ps);
         elfcpp::Elf_Word sh_type = shdr.get_sh_type();
         if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
           {
             unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
             if (info_shndx >= this->shnum())
               gold_error(_("relocation section %u has invalid info %u"),
                          i, info_shndx);
             Reloc_map::value_type value(info_shndx, i);
             std::pair<Reloc_map::iterator, bool> result =
               reloc_map.insert(value);
             if (!result.second)
               gold_error(_("section %u has multiple relocation sections "
                            "%u and %u"),
                          info_shndx, i, reloc_map[info_shndx]);
           }
       }

     // Read the symbol table section header.
     const unsigned int symtab_shndx = this->symtab_shndx();
     elfcpp::Shdr<32, big_endian>
         symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
     gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

     // Read the local symbols.
     const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
     const unsigned int loccount = this->local_symbol_count();
     gold_assert(loccount == symtabshdr.get_sh_info());
     off_t locsize = loccount * sym_size;
     const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                                 locsize, true, true);

     // Process the deferred EXIDX sections.
     for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
       {
         unsigned int shndx = deferred_exidx_sections[i];
         elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
         unsigned int text_shndx = elfcpp::SHN_UNDEF;
         Reloc_map::const_iterator it = reloc_map.find(shndx);
         if (it != reloc_map.end())
           find_linked_text_section(pshdrs + it->second * shdr_size,
                                    psyms, &text_shndx);
         elfcpp::Shdr<32, big_endian> text_shdr(pshdrs
                                                + text_shndx * shdr_size);
         this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr);
       }
   }
}

// Process relocations for garbage collection.  The ARM target uses .ARM.exidx
// sections for unwinding.  These sections are referenced implicitly by
// text sections linked in the section headers.  If we ignore these implicit
// references, the .ARM.exidx sections and any .ARM.extab sections they use
// will be garbage-collected incorrectly.  Hence we override the same function
// in the base class to handle these implicit references.

template<bool big_endian>
void
Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
                                            Layout* layout,
                                            Read_relocs_data* rd)
{
 // First, call base class method to process relocations in this object.
 Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);

 // If --gc-sections is not specified, there is nothing more to do.
 // This happens when --icf is used but --gc-sections is not.
 if (!parameters->options().gc_sections())
   return;

 unsigned int shnum = this->shnum();
 const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
                                              shnum * shdr_size,
                                              true, true);

 // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
 // to these from the linked text sections.
 const unsigned char* ps = pshdrs + shdr_size;
 for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
   {
     elfcpp::Shdr<32, big_endian> shdr(ps);
     if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
       {
         // Found an .ARM.exidx section, add it to the set of reachable
         // sections from its linked text section.
         unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
         symtab->gc()->add_reference(this, text_shndx, this, i);
       }
   }
}

// Update output local symbol count.  Owing to EXIDX entry merging, some local
// symbols  will be removed in output.  Adjust output local symbol count
// accordingly.  We can only changed the static output local symbol count.  It
// is too late to change the dynamic symbols.

template<bool big_endian>
void
Arm_relobj<big_endian>::update_output_local_symbol_count()
{
 // Caller should check that this needs updating.  We want caller checking
 // because output_local_symbol_count_needs_update() is most likely inlined.
 gold_assert(this->output_local_symbol_count_needs_update_);

 gold_assert(this->symtab_shndx() != -1U);
 if (this->symtab_shndx() == 0)
   {
     // This object has no symbols.  Weird but legal.
     return;
   }

 // Read the symbol table section header.
 const unsigned int symtab_shndx = this->symtab_shndx();
 elfcpp::Shdr<32, big_endian>
   symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

 // Read the local symbols.
 const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
 const unsigned int loccount = this->local_symbol_count();
 gold_assert(loccount == symtabshdr.get_sh_info());
 off_t locsize = loccount * sym_size;
 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                             locsize, true, true);

 // Loop over the local symbols.

 typedef typename Sized_relobj_file<32, big_endian>::Output_sections
    Output_sections;
 const Output_sections& out_sections(this->output_sections());
 unsigned int shnum = this->shnum();
 unsigned int count = 0;
 // Skip the first, dummy, symbol.
 psyms += sym_size;
 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   {
     elfcpp::Sym<32, big_endian> sym(psyms);

     Symbol_value<32>& lv((*this->local_values())[i]);

     // This local symbol was already discarded by do_count_local_symbols.
     if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
       continue;

     bool is_ordinary;
     unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
                                                 &is_ordinary);

     if (shndx < shnum)
       {
         Output_section* os = out_sections[shndx];

         // This local symbol no longer has an output section.  Discard it.
         if (os == NULL)
           {
             lv.set_no_output_symtab_entry();
             continue;
           }

         // Currently we only discard parts of EXIDX input sections.
         // We explicitly check for a merged EXIDX input section to avoid
         // calling Output_section_data::output_offset unless necessary.
         if ((this->get_output_section_offset(shndx) == invalid_address)
             && (this->exidx_input_section_by_shndx(shndx) != NULL))
           {
             section_offset_type output_offset =
               os->output_offset(this, shndx, lv.input_value());
             if (output_offset == -1)
               {
                 // This symbol is defined in a part of an EXIDX input section
                 // that is discarded due to entry merging.
                 lv.set_no_output_symtab_entry();
                 continue;
               }
           }
       }

     ++count;
   }

 this->set_output_local_symbol_count(count);
 this->output_local_symbol_count_needs_update_ = false;
}

// Arm_dynobj methods.

// Read the symbol information.

template<bool big_endian>
void
Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
{
 // Call parent class to read symbol information.
 this->base_read_symbols(sd);

 // Read processor-specific flags in ELF file header.
 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
                                             elfcpp::Elf_sizes<32>::ehdr_size,
                                             true, false);
 elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
 this->processor_specific_flags_ = ehdr.get_e_flags();

 // Read the attributes section if there is one.
 // We read from the end because gas seems to put it near the end of
 // the section headers.
 const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
 const unsigned char* ps =
   sd->section_headers->data() + shdr_size * (this->shnum() - 1);
 for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
   {
     elfcpp::Shdr<32, big_endian> shdr(ps);
     if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
       {
         section_offset_type section_offset = shdr.get_sh_offset();
         section_size_type section_size =
           convert_to_section_size_type(shdr.get_sh_size());
         const unsigned char* view =
           this->get_view(section_offset, section_size, true, false);
         this->attributes_section_data_ =
           new Attributes_section_data(view, section_size);
         break;
       }
   }
}

// Stub_addend_reader methods.

// Read the addend of a REL relocation of type R_TYPE at VIEW.

template<bool big_endian>
elfcpp::Elf_types<32>::Elf_Swxword
Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
   unsigned int r_type,
   const unsigned char* view,
   const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
{
 typedef class Arm_relocate_functions<big_endian> RelocFuncs;

 switch (r_type)
   {
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_PLT32:
     {
       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
       Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
       return Bits<26>::sign_extend32(val << 2);
     }

   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_THM_XPC22:
     {
       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
       Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
       Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
       return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
     }

   case elfcpp::R_ARM_THM_JUMP19:
     {
       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
       const Valtype* wv = reinterpret_cast<const Valtype*>(view);
       Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
       Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
       return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
     }

   default:
     gold_unreachable();
   }
}

// Arm_output_data_got methods.

// Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
// The first one is initialized to be 1, which is the module index for
// the main executable and the second one 0.  A reloc of the type
// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
// be applied by gold.  GSYM is a global symbol.
//
template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
   unsigned int got_type,
   Symbol* gsym)
{
 if (gsym->has_got_offset(got_type))
   return;

 // We are doing a static link.  Just mark it as belong to module 1,
 // the executable.
 unsigned int got_offset = this->add_constant(1);
 gsym->set_got_offset(got_type, got_offset);
 got_offset = this->add_constant(0);
 this->static_relocs_.push_back(Static_reloc(got_offset,
                                             elfcpp::R_ARM_TLS_DTPOFF32,
                                             gsym));
}

// Same as the above but for a local symbol.

template<bool big_endian>
void
Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
 unsigned int got_type,
 Sized_relobj_file<32, big_endian>* object,
 unsigned int index)
{
 if (object->local_has_got_offset(index, got_type))
   return;

 // We are doing a static link.  Just mark it as belong to module 1,
 // the executable.
 unsigned int got_offset = this->add_constant(1);
 object->set_local_got_offset(index, got_type, got_offset);
 got_offset = this->add_constant(0);
 this->static_relocs_.push_back(Static_reloc(got_offset,
                                             elfcpp::R_ARM_TLS_DTPOFF32,
                                             object, index));
}

template<bool big_endian>
void
Arm_output_data_got<big_endian>::do_write(Output_file* of)
{
 // Call parent to write out GOT.
 Output_data_got<32, big_endian>::do_write(of);

 // We are done if there is no fix up.
 if (this->static_relocs_.empty())
   return;

 gold_assert(parameters->doing_static_link());

 const off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 Output_segment* tls_segment = this->layout_->tls_segment();
 gold_assert(tls_segment != NULL);

 // The thread pointer $tp points to the TCB, which is followed by the
 // TLS.  So we need to adjust $tp relative addressing by this amount.
 Arm_address aligned_tcb_size =
   align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());

 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
   {
     Static_reloc& reloc(this->static_relocs_[i]);

     Arm_address value;
     if (!reloc.symbol_is_global())
       {
         Sized_relobj_file<32, big_endian>* object = reloc.relobj();
         const Symbol_value<32>* psymval =
           reloc.relobj()->local_symbol(reloc.index());

         // We are doing static linking.  Issue an error and skip this
         // relocation if the symbol is undefined or in a discarded_section.
         bool is_ordinary;
         unsigned int shndx = psymval->input_shndx(&is_ordinary);
         if ((shndx == elfcpp::SHN_UNDEF)
             || (is_ordinary
                 && shndx != elfcpp::SHN_UNDEF
                 && !object->is_section_included(shndx)
                 && !this->symbol_table_->is_section_folded(object, shndx)))
           {
             gold_error(_("undefined or discarded local symbol %u from "
                          " object %s in GOT"),
                        reloc.index(), reloc.relobj()->name().c_str());
             continue;
           }

         value = psymval->value(object, 0);
       }
     else
       {
         const Symbol* gsym = reloc.symbol();
         gold_assert(gsym != NULL);
         if (gsym->is_forwarder())
           gsym = this->symbol_table_->resolve_forwards(gsym);

         // We are doing static linking.  Issue an error and skip this
         // relocation if the symbol is undefined or in a discarded_section
         // unless it is a weakly_undefined symbol.
         if ((gsym->is_defined_in_discarded_section()
              || gsym->is_undefined())
             && !gsym->is_weak_undefined())
           {
             gold_error(_("undefined or discarded symbol %s in GOT"),
                        gsym->name());
             continue;
           }

         if (!gsym->is_weak_undefined())
           {
             const Sized_symbol<32>* sym =
               static_cast<const Sized_symbol<32>*>(gsym);
             value = sym->value();
           }
         else
             value = 0;
       }

     unsigned got_offset = reloc.got_offset();
     gold_assert(got_offset < oview_size);

     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
     Valtype x;
     switch (reloc.r_type())
       {
       case elfcpp::R_ARM_TLS_DTPOFF32:
         x = value;
         break;
       case elfcpp::R_ARM_TLS_TPOFF32:
         x = value + aligned_tcb_size;
         break;
       default:
         gold_unreachable();
       }
     elfcpp::Swap<32, big_endian>::writeval(wv, x);
   }

 of->write_output_view(offset, oview_size, oview);
}

// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries.  The derived
// classes below fill in those details.

template<bool big_endian>
class Output_data_plt_arm : public Output_section_data
{
public:
 // Unlike aarch64, which records symbol value in "addend" field of relocations
 // and could be done at the same time an IRelative reloc is created for the
 // symbol, arm puts the symbol value into "GOT" table, which, however, is
 // issued later in Output_data_plt_arm::do_write(). So we have a struct here
 // to keep necessary symbol information for later use in do_write. We usually
 // have only a very limited number of ifuncs, so the extra data required here
 // is also limited.

 struct IRelative_data
 {
   IRelative_data(Sized_symbol<32>* sized_symbol)
     : symbol_is_global_(true)
   {
     u_.global = sized_symbol;
   }

   IRelative_data(Sized_relobj_file<32, big_endian>* relobj,
                  unsigned int index)
     : symbol_is_global_(false)
   {
     u_.local.relobj = relobj;
     u_.local.index = index;
   }

   union
   {
     Sized_symbol<32>* global;

     struct
     {
       Sized_relobj_file<32, big_endian>* relobj;
       unsigned int index;
     } local;
   } u_;

   bool symbol_is_global_;
 };

 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
   Reloc_section;

 Output_data_plt_arm(Layout* layout, uint64_t addralign,
                     Arm_output_data_got<big_endian>* got,
                     Output_data_space* got_plt,
                     Output_data_space* got_irelative);

 // Add an entry to the PLT.
 void
 add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym);

 // Add the relocation for a plt entry.
 void
 add_relocation(Symbol_table* symtab, Layout* layout,
                Symbol* gsym, unsigned int got_offset);

 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
 unsigned int
 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
                       Sized_relobj_file<32, big_endian>* relobj,
                       unsigned int local_sym_index);

 // Return the .rel.plt section data.
 const Reloc_section*
 rel_plt() const
 { return this->rel_; }

 // Return the PLT relocation container for IRELATIVE.
 Reloc_section*
 rel_irelative(Symbol_table*, Layout*);

 // Return the number of PLT entries.
 unsigned int
 entry_count() const
 { return this->count_ + this->irelative_count_; }

 // Return the offset of the first non-reserved PLT entry.
 unsigned int
 first_plt_entry_offset() const
 { return this->do_first_plt_entry_offset(); }

 // Return the size of a PLT entry.
 unsigned int
 get_plt_entry_size() const
 { return this->do_get_plt_entry_size(); }

 // Return the PLT address for globals.
 uint32_t
 address_for_global(const Symbol*) const;

 // Return the PLT address for locals.
 uint32_t
 address_for_local(const Relobj*, unsigned int symndx) const;

protected:
 // Fill in the first PLT entry.
 void
 fill_first_plt_entry(unsigned char* pov,
                      Arm_address got_address,
                      Arm_address plt_address)
 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }

 void
 fill_plt_entry(unsigned char* pov,
                Arm_address got_address,
                Arm_address plt_address,
                unsigned int got_offset,
                unsigned int plt_offset)
 { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); }

 virtual unsigned int
 do_first_plt_entry_offset() const = 0;

 virtual unsigned int
 do_get_plt_entry_size() const = 0;

 virtual void
 do_fill_first_plt_entry(unsigned char* pov,
                         Arm_address got_address,
                         Arm_address plt_address) = 0;

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Arm_address got_address,
                   Arm_address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset) = 0;

 void
 do_adjust_output_section(Output_section* os);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** PLT")); }

private:
 // Set the final size.
 void
 set_final_data_size()
 {
   this->set_data_size(this->first_plt_entry_offset()
                       + ((this->count_ + this->irelative_count_)
                          * this->get_plt_entry_size()));
 }

 // Write out the PLT data.
 void
 do_write(Output_file*);

 // Record irelative symbol data.
 void insert_irelative_data(const IRelative_data& idata)
 { irelative_data_vec_.push_back(idata); }

 // The reloc section.
 Reloc_section* rel_;
 // The IRELATIVE relocs, if necessary.  These must follow the
 // regular PLT relocations.
 Reloc_section* irelative_rel_;
 // The .got section.
 Arm_output_data_got<big_endian>* got_;
 // The .got.plt section.
 Output_data_space* got_plt_;
 // The part of the .got.plt section used for IRELATIVE relocs.
 Output_data_space* got_irelative_;
 // The number of PLT entries.
 unsigned int count_;
 // Number of PLT entries with R_ARM_IRELATIVE relocs.  These
 // follow the regular PLT entries.
 unsigned int irelative_count_;
 // Vector for irelative data.
 typedef std::vector<IRelative_data> IRelative_data_vec;
 IRelative_data_vec irelative_data_vec_;
};

// Create the PLT section.  The ordinary .got section is an argument,
// since we need to refer to the start.  We also create our own .got
// section just for PLT entries.

template<bool big_endian>
Output_data_plt_arm<big_endian>::Output_data_plt_arm(
   Layout* layout, uint64_t addralign,
   Arm_output_data_got<big_endian>* got,
   Output_data_space* got_plt,
   Output_data_space* got_irelative)
 : Output_section_data(addralign), irelative_rel_(NULL),
   got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
   count_(0), irelative_count_(0)
{
 this->rel_ = new Reloc_section(false);
 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
                                 elfcpp::SHF_ALLOC, this->rel_,
                                 ORDER_DYNAMIC_PLT_RELOCS, false);
}

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os)
{
 os->set_entsize(0);
}

// Add an entry to the PLT.

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab,
                                          Layout* layout,
                                          Symbol* gsym)
{
 gold_assert(!gsym->has_plt_offset());

 unsigned int* entry_count;
 Output_section_data_build* got;

 // We have 2 different types of plt entry here, normal and ifunc.

 // For normal plt, the offset begins with first_plt_entry_offset(20), and the
 // 1st entry offset would be 20, the second 32, third 44 ... etc.

 // For ifunc plt, the offset begins with 0. So the first offset would 0,
 // second 12, third 24 ... etc.

 // IFunc plt entries *always* come after *normal* plt entries.

 // Notice, when computing the plt address of a certain symbol, "plt_address +
 // plt_offset" is no longer correct. Use target->plt_address_for_global() or
 // target->plt_address_for_local() instead.

 int begin_offset = 0;
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     entry_count = &this->irelative_count_;
     got = this->got_irelative_;
     // For irelative plt entries, offset is relative to the end of normal plt
     // entries, so it starts from 0.
     begin_offset = 0;
     // Record symbol information.
     this->insert_irelative_data(
         IRelative_data(symtab->get_sized_symbol<32>(gsym)));
   }
 else
   {
     entry_count = &this->count_;
     got = this->got_plt_;
     // Note that for normal plt entries, when setting the PLT offset we skip
     // the initial reserved PLT entry.
     begin_offset = this->first_plt_entry_offset();
   }

 gsym->set_plt_offset(begin_offset
                      + (*entry_count) * this->get_plt_entry_size());

 ++(*entry_count);

 section_offset_type got_offset = got->current_data_size();

 // Every PLT entry needs a GOT entry which points back to the PLT
 // entry (this will be changed by the dynamic linker, normally
 // lazily when the function is called).
 got->set_current_data_size(got_offset + 4);

 // Every PLT entry needs a reloc.
 this->add_relocation(symtab, layout, gsym, got_offset);

 // Note that we don't need to save the symbol.  The contents of the
 // PLT are independent of which symbols are used.  The symbols only
 // appear in the relocations.
}

// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.

template<bool big_endian>
unsigned int
Output_data_plt_arm<big_endian>::add_local_ifunc_entry(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<32, big_endian>* relobj,
   unsigned int local_sym_index)
{
 this->insert_irelative_data(IRelative_data(relobj, local_sym_index));

 // Notice, when computingthe plt entry address, "plt_address + plt_offset" is
 // no longer correct. Use target->plt_address_for_local() instead.
 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
 ++this->irelative_count_;

 section_offset_type got_offset = this->got_irelative_->current_data_size();

 // Every PLT entry needs a GOT entry which points back to the PLT
 // entry.
 this->got_irelative_->set_current_data_size(got_offset + 4);


 // Every PLT entry needs a reloc.
 Reloc_section* rel = this->rel_irelative(symtab, layout);
 rel->add_symbolless_local_addend(relobj, local_sym_index,
                                  elfcpp::R_ARM_IRELATIVE,
                                  this->got_irelative_, got_offset);
 return plt_offset;
}


// Add the relocation for a PLT entry.

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::add_relocation(
   Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
{
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     Reloc_section* rel = this->rel_irelative(symtab, layout);
     rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE,
                                       this->got_irelative_, got_offset);
   }
 else
   {
     gsym->set_needs_dynsym_entry();
     this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_,
                            got_offset);
   }
}


// Create the irelative relocation data.

template<bool big_endian>
typename Output_data_plt_arm<big_endian>::Reloc_section*
Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab,
                                               Layout* layout)
{
 if (this->irelative_rel_ == NULL)
   {
     // Since irelative relocations goes into 'rel.dyn', we delegate the
     // creation of irelative_rel_ to where rel_dyn section gets created.
     Target_arm<big_endian>* arm_target =
         Target_arm<big_endian>::default_target();
     this->irelative_rel_ = arm_target->rel_irelative_section(layout);

     // Make sure we have a place for the TLSDESC relocations, in
     // case we see any later on.
     // this->rel_tlsdesc(layout);
     if (parameters->doing_static_link())
       {
         // A statically linked executable will only have a .rel.plt section to
         // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols.  The library
         // will use these symbols to locate the IRELATIVE relocs at program
         // startup time.
         symtab->define_in_output_data("__rel_iplt_start", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->irelative_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, false, true);
         symtab->define_in_output_data("__rel_iplt_end", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->irelative_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, true, true);
       }
   }
 return this->irelative_rel_;
}


// Return the PLT address for a global symbol.

template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const
{
 uint64_t begin_offset = 0;
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     begin_offset = (this->first_plt_entry_offset() +
                     this->count_ * this->get_plt_entry_size());
   }
 return this->address() + begin_offset + gsym->plt_offset();
}


// Return the PLT address for a local symbol.  These are always
// IRELATIVE relocs.

template<bool big_endian>
uint32_t
Output_data_plt_arm<big_endian>::address_for_local(
   const Relobj* object,
   unsigned int r_sym) const
{
 return (this->address()
         + this->first_plt_entry_offset()
         + this->count_ * this->get_plt_entry_size()
         + object->local_plt_offset(r_sym));
}


template<bool big_endian>
class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian>
{
public:
 Output_data_plt_arm_standard(Layout* layout,
                              Arm_output_data_got<big_endian>* got,
                              Output_data_space* got_plt,
                              Output_data_space* got_irelative)
   : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative)
 { }

protected:
 // Return the offset of the first non-reserved PLT entry.
 virtual unsigned int
 do_first_plt_entry_offset() const
 { return sizeof(first_plt_entry); }

 virtual void
 do_fill_first_plt_entry(unsigned char* pov,
                         Arm_address got_address,
                         Arm_address plt_address);

private:
 // Template for the first PLT entry.
 static const uint32_t first_plt_entry[5];
};

// ARM PLTs.
// FIXME:  This is not very flexible.  Right now this has only been tested
// on armv5te.  If we are to support additional architecture features like
// Thumb-2 or BE8, we need to make this more flexible like GNU ld.

// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] =
{
 0xe52de004,   // str   lr, [sp, #-4]!
 0xe59fe004,   // ldr   lr, [pc, #4]
 0xe08fe00e,   // add   lr, pc, lr
 0xe5bef008,   // ldr   pc, [lr, #8]!
 0x00000000,   // &GOT[0] - .
};

template<bool big_endian>
void
Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry(
   unsigned char* pov,
   Arm_address got_address,
   Arm_address plt_address)
{
 // Write first PLT entry.  All but the last word are constants.
 const size_t num_first_plt_words = (sizeof(first_plt_entry)
                                     / sizeof(first_plt_entry[0]));
 for (size_t i = 0; i < num_first_plt_words - 1; i++)
   {
     if (parameters->options().be8())
       {
         elfcpp::Swap<32, false>::writeval(pov + i * 4,
                                           first_plt_entry[i]);
       }
     else
       {
         elfcpp::Swap<32, big_endian>::writeval(pov + i * 4,
                                                first_plt_entry[i]);
       }
   }
 // Last word in first PLT entry is &GOT[0] - .
 elfcpp::Swap<32, big_endian>::writeval(pov + 16,
                                        got_address - (plt_address + 16));
}

// Subsequent entries in the PLT.
// This class generates short (12-byte) entries, for displacements up to 2^28.

template<bool big_endian>
class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian>
{
public:
 Output_data_plt_arm_short(Layout* layout,
                           Arm_output_data_got<big_endian>* got,
                           Output_data_space* got_plt,
                           Output_data_space* got_irelative)
   : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
 { }

protected:
 // Return the size of a PLT entry.
 virtual unsigned int
 do_get_plt_entry_size() const
 { return sizeof(plt_entry); }

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Arm_address got_address,
                   Arm_address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset);

private:
 // Template for subsequent PLT entries.
 static const uint32_t plt_entry[3];
};

template<bool big_endian>
const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] =
{
 0xe28fc600,   // add   ip, pc, #0xNN00000
 0xe28cca00,   // add   ip, ip, #0xNN000
 0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
};

template<bool big_endian>
void
Output_data_plt_arm_short<big_endian>::do_fill_plt_entry(
   unsigned char* pov,
   Arm_address got_address,
   Arm_address plt_address,
   unsigned int got_offset,
   unsigned int plt_offset)
{
 int32_t offset = ((got_address + got_offset)
                   - (plt_address + plt_offset + 8));
 if (offset < 0 || offset > 0x0fffffff)
   gold_error(_("PLT offset too large, try linking with --long-plt"));

 uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff);
 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff);
 uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff);

 if (parameters->options().be8())
   {
     elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
     elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
     elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
   }
 else
   {
     elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
     elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
     elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
   }
}

// This class generates long (16-byte) entries, for arbitrary displacements.

template<bool big_endian>
class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian>
{
public:
 Output_data_plt_arm_long(Layout* layout,
                          Arm_output_data_got<big_endian>* got,
                          Output_data_space* got_plt,
                          Output_data_space* got_irelative)
   : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative)
 { }

protected:
 // Return the size of a PLT entry.
 virtual unsigned int
 do_get_plt_entry_size() const
 { return sizeof(plt_entry); }

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Arm_address got_address,
                   Arm_address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset);

private:
 // Template for subsequent PLT entries.
 static const uint32_t plt_entry[4];
};

template<bool big_endian>
const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] =
{
 0xe28fc200,   // add   ip, pc, #0xN0000000
 0xe28cc600,   // add   ip, ip, #0xNN00000
 0xe28cca00,   // add   ip, ip, #0xNN000
 0xe5bcf000,   // ldr   pc, [ip, #0xNNN]!
};

template<bool big_endian>
void
Output_data_plt_arm_long<big_endian>::do_fill_plt_entry(
   unsigned char* pov,
   Arm_address got_address,
   Arm_address plt_address,
   unsigned int got_offset,
   unsigned int plt_offset)
{
 int32_t offset = ((got_address + got_offset)
                   - (plt_address + plt_offset + 8));

 uint32_t plt_insn0 = plt_entry[0] | (offset >> 28);
 uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff);
 uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff);
 uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff);

 if (parameters->options().be8())
   {
     elfcpp::Swap<32, false>::writeval(pov, plt_insn0);
     elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1);
     elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2);
     elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3);
   }
 else
   {
     elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0);
     elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1);
     elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2);
     elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3);
   }
}

// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is all specified by the arm ELF
// Processor Supplement.

template<bool big_endian>
void
Output_data_plt_arm<big_endian>::do_write(Output_file* of)
{
 const off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 const off_t got_file_offset = this->got_plt_->offset();
 gold_assert(got_file_offset + this->got_plt_->data_size()
             == this->got_irelative_->offset());
 const section_size_type got_size =
   convert_to_section_size_type(this->got_plt_->data_size()
                                + this->got_irelative_->data_size());
 unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                     got_size);
 unsigned char* pov = oview;

 Arm_address plt_address = this->address();
 Arm_address got_address = this->got_plt_->address();

 // Write first PLT entry.
 this->fill_first_plt_entry(pov, got_address, plt_address);
 pov += this->first_plt_entry_offset();

 unsigned char* got_pov = got_view;

 memset(got_pov, 0, 12);
 got_pov += 12;

 unsigned int plt_offset = this->first_plt_entry_offset();
 unsigned int got_offset = 12;
 const unsigned int count = this->count_ + this->irelative_count_;
 gold_assert(this->irelative_count_ == this->irelative_data_vec_.size());
 for (unsigned int i = 0;
      i < count;
      ++i,
        pov += this->get_plt_entry_size(),
        got_pov += 4,
        plt_offset += this->get_plt_entry_size(),
        got_offset += 4)
   {
     // Set and adjust the PLT entry itself.
     this->fill_plt_entry(pov, got_address, plt_address,
                          got_offset, plt_offset);

     Arm_address value;
     if (i < this->count_)
       {
         // For non-irelative got entries, the value is the beginning of plt.
         value = plt_address;
       }
     else
       {
         // For irelative got entries, the value is the (global/local) symbol
         // address.
         const IRelative_data& idata =
             this->irelative_data_vec_[i - this->count_];
         if (idata.symbol_is_global_)
           {
             // Set the entry in the GOT for irelative symbols.  The content is
             // the address of the ifunc, not the address of plt start.
             const Sized_symbol<32>* sized_symbol = idata.u_.global;
             gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC);
             value = sized_symbol->value();
           }
         else
           {
             value = idata.u_.local.relobj->local_symbol_value(
                 idata.u_.local.index, 0);
           }
       }
     elfcpp::Swap<32, big_endian>::writeval(got_pov, value);
   }

 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

 of->write_output_view(offset, oview_size, oview);
 of->write_output_view(got_file_offset, got_size, got_view);
}


// Create a PLT entry for a global symbol.

template<bool big_endian>
void
Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
                                      Symbol* gsym)
{
 if (gsym->has_plt_offset())
   return;

 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);

 this->plt_->add_entry(symtab, layout, gsym);
}


// Create the PLT section.
template<bool big_endian>
void
Target_arm<big_endian>::make_plt_section(
 Symbol_table* symtab, Layout* layout)
{
 if (this->plt_ == NULL)
   {
     // Create the GOT section first.
     this->got_section(symtab, layout);

     // GOT for irelatives is create along with got.plt.
     gold_assert(this->got_ != NULL
                 && this->got_plt_ != NULL
                 && this->got_irelative_ != NULL);
     this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
                                      this->got_irelative_);

     layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_EXECINSTR),
                                     this->plt_, ORDER_PLT, false);
     symtab->define_in_output_data("$a", NULL,
                                   Symbol_table::PREDEFINED,
                                   this->plt_,
                                   0, 0, elfcpp::STT_NOTYPE,
                                   elfcpp::STB_LOCAL,
                                   elfcpp::STV_DEFAULT, 0,
                                   false, false);
   }
}


// Make a PLT entry for a local STT_GNU_IFUNC symbol.

template<bool big_endian>
void
Target_arm<big_endian>::make_local_ifunc_plt_entry(
   Symbol_table* symtab, Layout* layout,
   Sized_relobj_file<32, big_endian>* relobj,
   unsigned int local_sym_index)
{
 if (relobj->local_has_plt_offset(local_sym_index))
   return;
 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);
 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
                                                             relobj,
                                                             local_sym_index);
 relobj->set_local_plt_offset(local_sym_index, plt_offset);
}


// Return the number of entries in the PLT.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_count() const
{
 if (this->plt_ == NULL)
   return 0;
 return this->plt_->entry_count();
}

// Return the offset of the first non-reserved PLT entry.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::first_plt_entry_offset() const
{
 return this->plt_->first_plt_entry_offset();
}

// Return the size of each PLT entry.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::plt_entry_size() const
{
 return this->plt_->get_plt_entry_size();
}

// Get the section to use for TLS_DESC relocations.

template<bool big_endian>
typename Target_arm<big_endian>::Reloc_section*
Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
{
 return this->plt_section()->rel_tls_desc(layout);
}

// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.

template<bool big_endian>
void
Target_arm<big_endian>::define_tls_base_symbol(
   Symbol_table* symtab,
   Layout* layout)
{
 if (this->tls_base_symbol_defined_)
   return;

 Output_segment* tls_segment = layout->tls_segment();
 if (tls_segment != NULL)
   {
     bool is_exec = parameters->options().output_is_executable();
     symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
                                      Symbol_table::PREDEFINED,
                                      tls_segment, 0, 0,
                                      elfcpp::STT_TLS,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_HIDDEN, 0,
                                      (is_exec
                                       ? Symbol::SEGMENT_END
                                       : Symbol::SEGMENT_START),
                                      true);
   }
 this->tls_base_symbol_defined_ = true;
}

// Create a GOT entry for the TLS module index.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::got_mod_index_entry(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<32, big_endian>* object)
{
 if (this->got_mod_index_offset_ == -1U)
   {
     gold_assert(symtab != NULL && layout != NULL && object != NULL);
     Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
     unsigned int got_offset;
     if (!parameters->doing_static_link())
       {
         got_offset = got->add_constant(0);
         Reloc_section* rel_dyn = this->rel_dyn_section(layout);
         rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
                            got_offset);
       }
     else
       {
         // We are doing a static link.  Just mark it as belong to module 1,
         // the executable.
         got_offset = got->add_constant(1);
       }

     got->add_constant(0);
     this->got_mod_index_offset_ = got_offset;
   }
 return this->got_mod_index_offset_;
}

// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.

template<bool big_endian>
tls::Tls_optimization
Target_arm<big_endian>::optimize_tls_reloc(bool, int)
{
 // FIXME: Currently we do not do any TLS optimization.
 return tls::TLSOPT_NONE;
}

// Get the Reference_flags for a particular relocation.

template<bool big_endian>
int
Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type)
{
 switch (r_type)
   {
   case elfcpp::R_ARM_NONE:
   case elfcpp::R_ARM_V4BX:
   case elfcpp::R_ARM_GNU_VTENTRY:
   case elfcpp::R_ARM_GNU_VTINHERIT:
     // No symbol reference.
     return 0;

   case elfcpp::R_ARM_ABS32:
   case elfcpp::R_ARM_ABS16:
   case elfcpp::R_ARM_ABS12:
   case elfcpp::R_ARM_THM_ABS5:
   case elfcpp::R_ARM_ABS8:
   case elfcpp::R_ARM_BASE_ABS:
   case elfcpp::R_ARM_MOVW_ABS_NC:
   case elfcpp::R_ARM_MOVT_ABS:
   case elfcpp::R_ARM_THM_MOVW_ABS_NC:
   case elfcpp::R_ARM_THM_MOVT_ABS:
   case elfcpp::R_ARM_ABS32_NOI:
     return Symbol::ABSOLUTE_REF;

   case elfcpp::R_ARM_REL32:
   case elfcpp::R_ARM_LDR_PC_G0:
   case elfcpp::R_ARM_SBREL32:
   case elfcpp::R_ARM_THM_PC8:
   case elfcpp::R_ARM_BASE_PREL:
   case elfcpp::R_ARM_MOVW_PREL_NC:
   case elfcpp::R_ARM_MOVT_PREL:
   case elfcpp::R_ARM_THM_MOVW_PREL_NC:
   case elfcpp::R_ARM_THM_MOVT_PREL:
   case elfcpp::R_ARM_THM_ALU_PREL_11_0:
   case elfcpp::R_ARM_THM_PC12:
   case elfcpp::R_ARM_REL32_NOI:
   case elfcpp::R_ARM_ALU_PC_G0_NC:
   case elfcpp::R_ARM_ALU_PC_G0:
   case elfcpp::R_ARM_ALU_PC_G1_NC:
   case elfcpp::R_ARM_ALU_PC_G1:
   case elfcpp::R_ARM_ALU_PC_G2:
   case elfcpp::R_ARM_LDR_PC_G1:
   case elfcpp::R_ARM_LDR_PC_G2:
   case elfcpp::R_ARM_LDRS_PC_G0:
   case elfcpp::R_ARM_LDRS_PC_G1:
   case elfcpp::R_ARM_LDRS_PC_G2:
   case elfcpp::R_ARM_LDC_PC_G0:
   case elfcpp::R_ARM_LDC_PC_G1:
   case elfcpp::R_ARM_LDC_PC_G2:
   case elfcpp::R_ARM_ALU_SB_G0_NC:
   case elfcpp::R_ARM_ALU_SB_G0:
   case elfcpp::R_ARM_ALU_SB_G1_NC:
   case elfcpp::R_ARM_ALU_SB_G1:
   case elfcpp::R_ARM_ALU_SB_G2:
   case elfcpp::R_ARM_LDR_SB_G0:
   case elfcpp::R_ARM_LDR_SB_G1:
   case elfcpp::R_ARM_LDR_SB_G2:
   case elfcpp::R_ARM_LDRS_SB_G0:
   case elfcpp::R_ARM_LDRS_SB_G1:
   case elfcpp::R_ARM_LDRS_SB_G2:
   case elfcpp::R_ARM_LDC_SB_G0:
   case elfcpp::R_ARM_LDC_SB_G1:
   case elfcpp::R_ARM_LDC_SB_G2:
   case elfcpp::R_ARM_MOVW_BREL_NC:
   case elfcpp::R_ARM_MOVT_BREL:
   case elfcpp::R_ARM_MOVW_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL_NC:
   case elfcpp::R_ARM_THM_MOVT_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL:
   case elfcpp::R_ARM_GOTOFF32:
   case elfcpp::R_ARM_GOTOFF12:
   case elfcpp::R_ARM_SBREL31:
     return Symbol::RELATIVE_REF;

   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_THM_JUMP19:
   case elfcpp::R_ARM_THM_JUMP6:
   case elfcpp::R_ARM_THM_JUMP11:
   case elfcpp::R_ARM_THM_JUMP8:
   // R_ARM_PREL31 is not used to relocate call/jump instructions but
   // in unwind tables. It may point to functions via PLTs.
   // So we treat it like call/jump relocations above.
   case elfcpp::R_ARM_PREL31:
     return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;

   case elfcpp::R_ARM_GOT_BREL:
   case elfcpp::R_ARM_GOT_ABS:
   case elfcpp::R_ARM_GOT_PREL:
     // Absolute in GOT.
     return Symbol::ABSOLUTE_REF;

   case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
   case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
   case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
   case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
   case elfcpp::R_ARM_TLS_LE32:        // Local-exec
     return Symbol::TLS_REF;

   case elfcpp::R_ARM_TARGET1:
   case elfcpp::R_ARM_TARGET2:
   case elfcpp::R_ARM_COPY:
   case elfcpp::R_ARM_GLOB_DAT:
   case elfcpp::R_ARM_JUMP_SLOT:
   case elfcpp::R_ARM_RELATIVE:
   case elfcpp::R_ARM_PC24:
   case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
   case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
   case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
   default:
     // Not expected.  We will give an error later.
     return 0;
   }
}

// Report an unsupported relocation against a local symbol.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_local(
   Sized_relobj_file<32, big_endian>* object,
   unsigned int r_type)
{
 gold_error(_("%s: unsupported reloc %u against local symbol"),
            object->name().c_str(), r_type);
}

// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.  The GNU linker
// only issues a non-PIC error for an allocated read-only section.
// Here we know the section is allocated, but we don't know that it is
// read-only.  But we check for all the relocation types which the
// glibc dynamic linker supports, so it seems appropriate to issue an
// error even if the section is not read-only.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
                                           unsigned int r_type)
{
 switch (r_type)
   {
   // These are the relocation types supported by glibc for ARM.
   case elfcpp::R_ARM_RELATIVE:
   case elfcpp::R_ARM_COPY:
   case elfcpp::R_ARM_GLOB_DAT:
   case elfcpp::R_ARM_JUMP_SLOT:
   case elfcpp::R_ARM_ABS32:
   case elfcpp::R_ARM_ABS32_NOI:
   case elfcpp::R_ARM_IRELATIVE:
   case elfcpp::R_ARM_PC24:
   // FIXME: The following 3 types are not supported by Android's dynamic
   // linker.
   case elfcpp::R_ARM_TLS_DTPMOD32:
   case elfcpp::R_ARM_TLS_DTPOFF32:
   case elfcpp::R_ARM_TLS_TPOFF32:
     return;

   default:
     {
       // This prevents us from issuing more than one error per reloc
       // section.  But we can still wind up issuing more than one
       // error per object file.
       if (this->issued_non_pic_error_)
         return;
       const Arm_reloc_property* reloc_property =
         arm_reloc_property_table->get_reloc_property(r_type);
       gold_assert(reloc_property != NULL);
       object->error(_("requires unsupported dynamic reloc %s; "
                     "recompile with -fPIC"),
                     reloc_property->name().c_str());
       this->issued_non_pic_error_ = true;
       return;
     }

   case elfcpp::R_ARM_NONE:
     gold_unreachable();
   }
}


// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.

template<bool big_endian>
bool
Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc(
   Sized_relobj_file<32, big_endian>* object,
   unsigned int r_type)
{
 int flags = Scan::get_reference_flags(r_type);
 if (flags & Symbol::TLS_REF)
   {
     gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
                object->name().c_str(), r_type);
     return false;
   }
 return flags != 0;
}


// Scan a relocation for a local symbol.
// FIXME: This only handles a subset of relocation types used by Android
// on ARM v5te devices.

template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
                                   Layout* layout,
                                   Target_arm* target,
                                   Sized_relobj_file<32, big_endian>* object,
                                   unsigned int data_shndx,
                                   Output_section* output_section,
                                   const elfcpp::Rel<32, big_endian>& reloc,
                                   unsigned int r_type,
                                   const elfcpp::Sym<32, big_endian>& lsym,
                                   bool is_discarded)
{
 if (is_discarded)
   return;

 r_type = target->get_real_reloc_type(r_type);

 // A local STT_GNU_IFUNC symbol may require a PLT entry.
 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
   {
     unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
     target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
   }

 switch (r_type)
   {
   case elfcpp::R_ARM_NONE:
   case elfcpp::R_ARM_V4BX:
   case elfcpp::R_ARM_GNU_VTENTRY:
   case elfcpp::R_ARM_GNU_VTINHERIT:
     break;

   case elfcpp::R_ARM_ABS32:
   case elfcpp::R_ARM_ABS32_NOI:
     // If building a shared library (or a position-independent
     // executable), we need to create a dynamic relocation for
     // this location. The relocation applied at link time will
     // apply the link-time value, so we flag the location with
     // an R_ARM_RELATIVE relocation so the dynamic loader can
     // relocate it easily.
     if (parameters->options().output_is_position_independent())
       {
         Reloc_section* rel_dyn = target->rel_dyn_section(layout);
         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
         // If we are to add more other reloc types than R_ARM_ABS32,
         // we need to add check_non_pic(object, r_type) here.
         rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE,
                                     output_section, data_shndx,
                                     reloc.get_r_offset(), is_ifunc);
       }
     break;

   case elfcpp::R_ARM_ABS16:
   case elfcpp::R_ARM_ABS12:
   case elfcpp::R_ARM_THM_ABS5:
   case elfcpp::R_ARM_ABS8:
   case elfcpp::R_ARM_BASE_ABS:
   case elfcpp::R_ARM_MOVW_ABS_NC:
   case elfcpp::R_ARM_MOVT_ABS:
   case elfcpp::R_ARM_THM_MOVW_ABS_NC:
   case elfcpp::R_ARM_THM_MOVT_ABS:
     // If building a shared library (or a position-independent
     // executable), we need to create a dynamic relocation for
     // this location. Because the addend needs to remain in the
     // data section, we need to be careful not to apply this
     // relocation statically.
     if (parameters->options().output_is_position_independent())
       {
         check_non_pic(object, r_type);
         Reloc_section* rel_dyn = target->rel_dyn_section(layout);
         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
         if (lsym.get_st_type() != elfcpp::STT_SECTION)
           rel_dyn->add_local(object, r_sym, r_type, output_section,
                              data_shndx, reloc.get_r_offset());
         else
           {
             gold_assert(lsym.get_st_value() == 0);
             unsigned int shndx = lsym.get_st_shndx();
             bool is_ordinary;
             shndx = object->adjust_sym_shndx(r_sym, shndx,
                                              &is_ordinary);
             if (!is_ordinary)
               object->error(_("section symbol %u has bad shndx %u"),
                             r_sym, shndx);
             else
               rel_dyn->add_local_section(object, shndx,
                                          r_type, output_section,
                                          data_shndx, reloc.get_r_offset());
           }
       }
     break;

   case elfcpp::R_ARM_REL32:
   case elfcpp::R_ARM_LDR_PC_G0:
   case elfcpp::R_ARM_SBREL32:
   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_PC8:
   case elfcpp::R_ARM_BASE_PREL:
   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_SBREL31:
   case elfcpp::R_ARM_PREL31:
   case elfcpp::R_ARM_MOVW_PREL_NC:
   case elfcpp::R_ARM_MOVT_PREL:
   case elfcpp::R_ARM_THM_MOVW_PREL_NC:
   case elfcpp::R_ARM_THM_MOVT_PREL:
   case elfcpp::R_ARM_THM_JUMP19:
   case elfcpp::R_ARM_THM_JUMP6:
   case elfcpp::R_ARM_THM_ALU_PREL_11_0:
   case elfcpp::R_ARM_THM_PC12:
   case elfcpp::R_ARM_REL32_NOI:
   case elfcpp::R_ARM_ALU_PC_G0_NC:
   case elfcpp::R_ARM_ALU_PC_G0:
   case elfcpp::R_ARM_ALU_PC_G1_NC:
   case elfcpp::R_ARM_ALU_PC_G1:
   case elfcpp::R_ARM_ALU_PC_G2:
   case elfcpp::R_ARM_LDR_PC_G1:
   case elfcpp::R_ARM_LDR_PC_G2:
   case elfcpp::R_ARM_LDRS_PC_G0:
   case elfcpp::R_ARM_LDRS_PC_G1:
   case elfcpp::R_ARM_LDRS_PC_G2:
   case elfcpp::R_ARM_LDC_PC_G0:
   case elfcpp::R_ARM_LDC_PC_G1:
   case elfcpp::R_ARM_LDC_PC_G2:
   case elfcpp::R_ARM_ALU_SB_G0_NC:
   case elfcpp::R_ARM_ALU_SB_G0:
   case elfcpp::R_ARM_ALU_SB_G1_NC:
   case elfcpp::R_ARM_ALU_SB_G1:
   case elfcpp::R_ARM_ALU_SB_G2:
   case elfcpp::R_ARM_LDR_SB_G0:
   case elfcpp::R_ARM_LDR_SB_G1:
   case elfcpp::R_ARM_LDR_SB_G2:
   case elfcpp::R_ARM_LDRS_SB_G0:
   case elfcpp::R_ARM_LDRS_SB_G1:
   case elfcpp::R_ARM_LDRS_SB_G2:
   case elfcpp::R_ARM_LDC_SB_G0:
   case elfcpp::R_ARM_LDC_SB_G1:
   case elfcpp::R_ARM_LDC_SB_G2:
   case elfcpp::R_ARM_MOVW_BREL_NC:
   case elfcpp::R_ARM_MOVT_BREL:
   case elfcpp::R_ARM_MOVW_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL_NC:
   case elfcpp::R_ARM_THM_MOVT_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL:
   case elfcpp::R_ARM_THM_JUMP11:
   case elfcpp::R_ARM_THM_JUMP8:
     // We don't need to do anything for a relative addressing relocation
     // against a local symbol if it does not reference the GOT.
     break;

   case elfcpp::R_ARM_GOTOFF32:
   case elfcpp::R_ARM_GOTOFF12:
     // We need a GOT section:
     target->got_section(symtab, layout);
     break;

   case elfcpp::R_ARM_GOT_BREL:
   case elfcpp::R_ARM_GOT_PREL:
     {
       // The symbol requires a GOT entry.
       Arm_output_data_got<big_endian>* got =
         target->got_section(symtab, layout);
       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
       if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
         {
           // If we are generating a shared object, we need to add a
           // dynamic RELATIVE relocation for this symbol's GOT entry.
           if (parameters->options().output_is_position_independent())
             {
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
               rel_dyn->add_local_relative(
                   object, r_sym, elfcpp::R_ARM_RELATIVE, got,
                   object->local_got_offset(r_sym, GOT_TYPE_STANDARD));
             }
         }
     }
     break;

   case elfcpp::R_ARM_TARGET1:
   case elfcpp::R_ARM_TARGET2:
     // This should have been mapped to another type already.
     // Fall through.
   case elfcpp::R_ARM_COPY:
   case elfcpp::R_ARM_GLOB_DAT:
   case elfcpp::R_ARM_JUMP_SLOT:
   case elfcpp::R_ARM_RELATIVE:
     // These are relocations which should only be seen by the
     // dynamic linker, and should never be seen here.
     gold_error(_("%s: unexpected reloc %u in object file"),
                object->name().c_str(), r_type);
     break;


     // These are initial TLS relocs, which are expected when
     // linking.
   case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
   case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
   case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
   case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
   case elfcpp::R_ARM_TLS_LE32:        // Local-exec
     {
       bool output_is_shared = parameters->options().shared();
       const tls::Tls_optimization optimized_type
           = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
                                                        r_type);
       switch (r_type)
         {
         case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a pair of GOT entries for the module index and
               // dtv-relative offset.
               Arm_output_data_got<big_endian>* got
                   = target->got_section(symtab, layout);
               unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
               unsigned int shndx = lsym.get_st_shndx();
               bool is_ordinary;
               shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
               if (!is_ordinary)
                 {
                   object->error(_("local symbol %u has bad shndx %u"),
                                 r_sym, shndx);
                   break;
                 }

               if (!parameters->doing_static_link())
                 got->add_local_pair_with_rel(object, r_sym, shndx,
                                              GOT_TYPE_TLS_PAIR,
                                              target->rel_dyn_section(layout),
                                              elfcpp::R_ARM_TLS_DTPMOD32);
               else
                 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
                                                     object, r_sym);
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the module index.
               target->got_mod_index_entry(symtab, layout, object);
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
           break;

         case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
           layout->set_has_static_tls();
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the tp-relative offset.
               Arm_output_data_got<big_endian>* got
                 = target->got_section(symtab, layout);
               unsigned int r_sym =
                  elfcpp::elf_r_sym<32>(reloc.get_r_info());
               if (!parameters->doing_static_link())
                   got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
                                           target->rel_dyn_section(layout),
                                           elfcpp::R_ARM_TLS_TPOFF32);
               else if (!object->local_has_got_offset(r_sym,
                                                      GOT_TYPE_TLS_OFFSET))
                 {
                   got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
                   unsigned int got_offset =
                     object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
                   got->add_static_reloc(got_offset,
                                         elfcpp::R_ARM_TLS_TPOFF32, object,
                                         r_sym);
                 }
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LE32:          // Local-exec
           layout->set_has_static_tls();
           if (output_is_shared)
             {
               // We need to create a dynamic relocation.
               gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
               unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
                                  output_section, data_shndx,
                                  reloc.get_r_offset());
             }
           break;

         default:
           gold_unreachable();
         }
     }
     break;

   case elfcpp::R_ARM_PC24:
   case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
   case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
   case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
   default:
     unsupported_reloc_local(object, r_type);
     break;
   }
}

// Report an unsupported relocation against a global symbol.

template<bool big_endian>
void
Target_arm<big_endian>::Scan::unsupported_reloc_global(
   Sized_relobj_file<32, big_endian>* object,
   unsigned int r_type,
   Symbol* gsym)
{
 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
            object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
   unsigned int r_type)
{
 switch (r_type)
   {
   case elfcpp::R_ARM_PC24:
   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_SBREL31:
   case elfcpp::R_ARM_PREL31:
   case elfcpp::R_ARM_THM_JUMP19:
   case elfcpp::R_ARM_THM_JUMP6:
   case elfcpp::R_ARM_THM_JUMP11:
   case elfcpp::R_ARM_THM_JUMP8:
     // All the relocations above are branches except SBREL31 and PREL31.
     return false;

   default:
     // Be conservative and assume this is a function pointer.
     return true;
   }
}

template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
 Symbol_table*,
 Layout*,
 Target_arm<big_endian>* target,
 Sized_relobj_file<32, big_endian>*,
 unsigned int,
 Output_section*,
 const elfcpp::Rel<32, big_endian>&,
 unsigned int r_type,
 const elfcpp::Sym<32, big_endian>&)
{
 r_type = target->get_real_reloc_type(r_type);
 return possible_function_pointer_reloc(r_type);
}

template<bool big_endian>
inline bool
Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
 Symbol_table*,
 Layout*,
 Target_arm<big_endian>* target,
 Sized_relobj_file<32, big_endian>*,
 unsigned int,
 Output_section*,
 const elfcpp::Rel<32, big_endian>&,
 unsigned int r_type,
 Symbol* gsym)
{
 // GOT is not a function.
 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
   return false;

 r_type = target->get_real_reloc_type(r_type);
 return possible_function_pointer_reloc(r_type);
}

// Scan a relocation for a global symbol.

template<bool big_endian>
inline void
Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
                                    Layout* layout,
                                    Target_arm* target,
                                    Sized_relobj_file<32, big_endian>* object,
                                    unsigned int data_shndx,
                                    Output_section* output_section,
                                    const elfcpp::Rel<32, big_endian>& reloc,
                                    unsigned int r_type,
                                    Symbol* gsym)
{
 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
 // section.  We check here to avoid creating a dynamic reloc against
 // _GLOBAL_OFFSET_TABLE_.
 if (!target->has_got_section()
     && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
   target->got_section(symtab, layout);

 // A STT_GNU_IFUNC symbol may require a PLT entry.
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && this->reloc_needs_plt_for_ifunc(object, r_type))
   target->make_plt_entry(symtab, layout, gsym);

 r_type = target->get_real_reloc_type(r_type);
 switch (r_type)
   {
   case elfcpp::R_ARM_NONE:
   case elfcpp::R_ARM_V4BX:
   case elfcpp::R_ARM_GNU_VTENTRY:
   case elfcpp::R_ARM_GNU_VTINHERIT:
     break;

   case elfcpp::R_ARM_ABS32:
   case elfcpp::R_ARM_ABS16:
   case elfcpp::R_ARM_ABS12:
   case elfcpp::R_ARM_THM_ABS5:
   case elfcpp::R_ARM_ABS8:
   case elfcpp::R_ARM_BASE_ABS:
   case elfcpp::R_ARM_MOVW_ABS_NC:
   case elfcpp::R_ARM_MOVT_ABS:
   case elfcpp::R_ARM_THM_MOVW_ABS_NC:
   case elfcpp::R_ARM_THM_MOVT_ABS:
   case elfcpp::R_ARM_ABS32_NOI:
     // Absolute addressing relocations.
     {
       // Make a PLT entry if necessary.
       if (this->symbol_needs_plt_entry(gsym))
         {
           target->make_plt_entry(symtab, layout, gsym);
           // Since this is not a PC-relative relocation, we may be
           // taking the address of a function. In that case we need to
           // set the entry in the dynamic symbol table to the address of
           // the PLT entry.
           if (gsym->is_from_dynobj() && !parameters->options().shared())
             gsym->set_needs_dynsym_value();
         }
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
         {
           if (!parameters->options().output_is_position_independent()
               && gsym->may_need_copy_reloc())
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym, reloc);
             }
           else if ((r_type == elfcpp::R_ARM_ABS32
                     || r_type == elfcpp::R_ARM_ABS32_NOI)
                    && gsym->type() == elfcpp::STT_GNU_IFUNC
                    && gsym->can_use_relative_reloc(false)
                    && !gsym->is_from_dynobj()
                    && !gsym->is_undefined()
                    && !gsym->is_preemptible())
             {
               // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
               // symbol. This makes a function address in a PIE executable
               // match the address in a shared library that it links against.
               Reloc_section* rel_irelative =
                   target->rel_irelative_section(layout);
               unsigned int r_type = elfcpp::R_ARM_IRELATIVE;
               rel_irelative->add_symbolless_global_addend(
                   gsym, r_type, output_section, object,
                   data_shndx, reloc.get_r_offset());
             }
           else if ((r_type == elfcpp::R_ARM_ABS32
                     || r_type == elfcpp::R_ARM_ABS32_NOI)
                    && gsym->can_use_relative_reloc(false))
             {
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
                                            output_section, object,
                                            data_shndx, reloc.get_r_offset());
             }
           else
             {
               check_non_pic(object, r_type);
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               rel_dyn->add_global(gsym, r_type, output_section, object,
                                   data_shndx, reloc.get_r_offset());
             }
         }
     }
     break;

   case elfcpp::R_ARM_GOTOFF32:
   case elfcpp::R_ARM_GOTOFF12:
     // We need a GOT section.
     target->got_section(symtab, layout);
     break;

   case elfcpp::R_ARM_REL32:
   case elfcpp::R_ARM_LDR_PC_G0:
   case elfcpp::R_ARM_SBREL32:
   case elfcpp::R_ARM_THM_PC8:
   case elfcpp::R_ARM_BASE_PREL:
   case elfcpp::R_ARM_MOVW_PREL_NC:
   case elfcpp::R_ARM_MOVT_PREL:
   case elfcpp::R_ARM_THM_MOVW_PREL_NC:
   case elfcpp::R_ARM_THM_MOVT_PREL:
   case elfcpp::R_ARM_THM_ALU_PREL_11_0:
   case elfcpp::R_ARM_THM_PC12:
   case elfcpp::R_ARM_REL32_NOI:
   case elfcpp::R_ARM_ALU_PC_G0_NC:
   case elfcpp::R_ARM_ALU_PC_G0:
   case elfcpp::R_ARM_ALU_PC_G1_NC:
   case elfcpp::R_ARM_ALU_PC_G1:
   case elfcpp::R_ARM_ALU_PC_G2:
   case elfcpp::R_ARM_LDR_PC_G1:
   case elfcpp::R_ARM_LDR_PC_G2:
   case elfcpp::R_ARM_LDRS_PC_G0:
   case elfcpp::R_ARM_LDRS_PC_G1:
   case elfcpp::R_ARM_LDRS_PC_G2:
   case elfcpp::R_ARM_LDC_PC_G0:
   case elfcpp::R_ARM_LDC_PC_G1:
   case elfcpp::R_ARM_LDC_PC_G2:
   case elfcpp::R_ARM_ALU_SB_G0_NC:
   case elfcpp::R_ARM_ALU_SB_G0:
   case elfcpp::R_ARM_ALU_SB_G1_NC:
   case elfcpp::R_ARM_ALU_SB_G1:
   case elfcpp::R_ARM_ALU_SB_G2:
   case elfcpp::R_ARM_LDR_SB_G0:
   case elfcpp::R_ARM_LDR_SB_G1:
   case elfcpp::R_ARM_LDR_SB_G2:
   case elfcpp::R_ARM_LDRS_SB_G0:
   case elfcpp::R_ARM_LDRS_SB_G1:
   case elfcpp::R_ARM_LDRS_SB_G2:
   case elfcpp::R_ARM_LDC_SB_G0:
   case elfcpp::R_ARM_LDC_SB_G1:
   case elfcpp::R_ARM_LDC_SB_G2:
   case elfcpp::R_ARM_MOVW_BREL_NC:
   case elfcpp::R_ARM_MOVT_BREL:
   case elfcpp::R_ARM_MOVW_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL_NC:
   case elfcpp::R_ARM_THM_MOVT_BREL:
   case elfcpp::R_ARM_THM_MOVW_BREL:
     // Relative addressing relocations.
     {
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
         {
           if (parameters->options().output_is_executable()
               && target->may_need_copy_reloc(gsym))
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym, reloc);
             }
           else
             {
               check_non_pic(object, r_type);
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               rel_dyn->add_global(gsym, r_type, output_section, object,
                                   data_shndx, reloc.get_r_offset());
             }
         }
     }
     break;

   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_SBREL31:
   case elfcpp::R_ARM_PREL31:
   case elfcpp::R_ARM_THM_JUMP19:
   case elfcpp::R_ARM_THM_JUMP6:
   case elfcpp::R_ARM_THM_JUMP11:
   case elfcpp::R_ARM_THM_JUMP8:
     // All the relocation above are branches except for the PREL31 ones.
     // A PREL31 relocation can point to a personality function in a shared
     // library.  In that case we want to use a PLT because we want to
     // call the personality routine and the dynamic linkers we care about
     // do not support dynamic PREL31 relocations. An REL31 relocation may
     // point to a function whose unwinding behaviour is being described but
     // we will not mistakenly generate a PLT for that because we should use
     // a local section symbol.

     // If the symbol is fully resolved, this is just a relative
     // local reloc.  Otherwise we need a PLT entry.
     if (gsym->final_value_is_known())
       break;
     // If building a shared library, we can also skip the PLT entry
     // if the symbol is defined in the output file and is protected
     // or hidden.
     if (gsym->is_defined()
         && !gsym->is_from_dynobj()
         && !gsym->is_preemptible())
       break;
     target->make_plt_entry(symtab, layout, gsym);
     break;

   case elfcpp::R_ARM_GOT_BREL:
   case elfcpp::R_ARM_GOT_ABS:
   case elfcpp::R_ARM_GOT_PREL:
     {
       // The symbol requires a GOT entry.
       Arm_output_data_got<big_endian>* got =
         target->got_section(symtab, layout);
       if (gsym->final_value_is_known())
         {
           // For a STT_GNU_IFUNC symbol we want the PLT address.
           if (gsym->type() == elfcpp::STT_GNU_IFUNC)
             got->add_global_plt(gsym, GOT_TYPE_STANDARD);
           else
             got->add_global(gsym, GOT_TYPE_STANDARD);
         }
       else
         {
           // If this symbol is not fully resolved, we need to add a
           // GOT entry with a dynamic relocation.
           Reloc_section* rel_dyn = target->rel_dyn_section(layout);
           if (gsym->is_from_dynobj()
               || gsym->is_undefined()
               || gsym->is_preemptible()
               || (gsym->visibility() == elfcpp::STV_PROTECTED
                   && parameters->options().shared())
               || (gsym->type() == elfcpp::STT_GNU_IFUNC
                   && parameters->options().output_is_position_independent()))
             got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
                                      rel_dyn, elfcpp::R_ARM_GLOB_DAT);
           else
             {
               // For a STT_GNU_IFUNC symbol we want to write the PLT
               // offset into the GOT, so that function pointer
               // comparisons work correctly.
               bool is_new;
               if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
               else
                 {
                   is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                   // Tell the dynamic linker to use the PLT address
                   // when resolving relocations.
                   if (gsym->is_from_dynobj()
                       && !parameters->options().shared())
                     gsym->set_needs_dynsym_value();
                 }
               if (is_new)
                 rel_dyn->add_global_relative(
                     gsym, elfcpp::R_ARM_RELATIVE, got,
                     gsym->got_offset(GOT_TYPE_STANDARD));
             }
         }
     }
     break;

   case elfcpp::R_ARM_TARGET1:
   case elfcpp::R_ARM_TARGET2:
     // These should have been mapped to other types already.
     // Fall through.
   case elfcpp::R_ARM_COPY:
   case elfcpp::R_ARM_GLOB_DAT:
   case elfcpp::R_ARM_JUMP_SLOT:
   case elfcpp::R_ARM_RELATIVE:
     // These are relocations which should only be seen by the
     // dynamic linker, and should never be seen here.
     gold_error(_("%s: unexpected reloc %u in object file"),
                object->name().c_str(), r_type);
     break;

     // These are initial tls relocs, which are expected when
     // linking.
   case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
   case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
   case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
   case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
   case elfcpp::R_ARM_TLS_LE32:        // Local-exec
     {
       const bool is_final = gsym->final_value_is_known();
       const tls::Tls_optimization optimized_type
           = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
       switch (r_type)
         {
         case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a pair of GOT entries for the module index and
               // dtv-relative offset.
               Arm_output_data_got<big_endian>* got
                   = target->got_section(symtab, layout);
               if (!parameters->doing_static_link())
                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
                                               target->rel_dyn_section(layout),
                                               elfcpp::R_ARM_TLS_DTPMOD32,
                                               elfcpp::R_ARM_TLS_DTPOFF32);
               else
                 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the module index.
               target->got_mod_index_entry(symtab, layout, object);
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
           break;

         case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
           layout->set_has_static_tls();
           if (optimized_type == tls::TLSOPT_NONE)
             {
               // Create a GOT entry for the tp-relative offset.
               Arm_output_data_got<big_endian>* got
                 = target->got_section(symtab, layout);
               if (!parameters->doing_static_link())
                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
                                          target->rel_dyn_section(layout),
                                          elfcpp::R_ARM_TLS_TPOFF32);
               else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
                 {
                   got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
                   unsigned int got_offset =
                      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
                   got->add_static_reloc(got_offset,
                                         elfcpp::R_ARM_TLS_TPOFF32, gsym);
                 }
             }
           else
             // FIXME: TLS optimization not supported yet.
             gold_unreachable();
           break;

         case elfcpp::R_ARM_TLS_LE32:  // Local-exec
           layout->set_has_static_tls();
           if (parameters->options().shared())
             {
               // We need to create a dynamic relocation.
               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
               rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
                                   output_section, object,
                                   data_shndx, reloc.get_r_offset());
             }
           break;

         default:
           gold_unreachable();
         }
     }
     break;

   case elfcpp::R_ARM_PC24:
   case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
   case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
   case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
   default:
     unsupported_reloc_global(object, r_type, gsym);
     break;
   }
}

// Process relocations for gc.

template<bool big_endian>
void
Target_arm<big_endian>::gc_process_relocs(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<32, big_endian>* object,
   unsigned int data_shndx,
   unsigned int,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_symbols)
{
 typedef Target_arm<big_endian> Arm;
 typedef typename Target_arm<big_endian>::Scan Scan;

 gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Scan relocations for a section.

template<bool big_endian>
void
Target_arm<big_endian>::scan_relocs(Symbol_table* symtab,
                                   Layout* layout,
                                   Sized_relobj_file<32, big_endian>* object,
                                   unsigned int data_shndx,
                                   unsigned int sh_type,
                                   const unsigned char* prelocs,
                                   size_t reloc_count,
                                   Output_section* output_section,
                                   bool needs_special_offset_handling,
                                   size_t local_symbol_count,
                                   const unsigned char* plocal_symbols)
{
 if (sh_type == elfcpp::SHT_RELA)
   {
     gold_error(_("%s: unsupported RELA reloc section"),
                object->name().c_str());
     return;
   }

 gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Finalize the sections.

template<bool big_endian>
void
Target_arm<big_endian>::do_finalize_sections(
   Layout* layout,
   const Input_objects* input_objects,
   Symbol_table*)
{
 bool merged_any_attributes = false;
 // Merge processor-specific flags.
 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(*p);
     if (arm_relobj->merge_flags_and_attributes())
       {
         this->merge_processor_specific_flags(
             arm_relobj->name(),
             arm_relobj->processor_specific_flags());
         this->merge_object_attributes(arm_relobj->name().c_str(),
                                       arm_relobj->attributes_section_data());
         merged_any_attributes = true;
       }
   }

 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
      p != input_objects->dynobj_end();
      ++p)
   {
     Arm_dynobj<big_endian>* arm_dynobj =
       Arm_dynobj<big_endian>::as_arm_dynobj(*p);
     this->merge_processor_specific_flags(
         arm_dynobj->name(),
         arm_dynobj->processor_specific_flags());
     this->merge_object_attributes(arm_dynobj->name().c_str(),
                                   arm_dynobj->attributes_section_data());
     merged_any_attributes = true;
   }

 // Create an empty uninitialized attribute section if we still don't have it
 // at this moment.  This happens if there is no attributes sections in all
 // inputs.
 if (this->attributes_section_data_ == NULL)
   this->attributes_section_data_ = new Attributes_section_data(NULL, 0);

 const Object_attribute* cpu_arch_attr =
   this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
 // Check if we need to use Cortex-A8 workaround.
 if (parameters->options().user_set_fix_cortex_a8())
   this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
 else
   {
     // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
     // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
     // profile.
     const Object_attribute* cpu_arch_profile_attr =
       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
     this->fix_cortex_a8_ =
       (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
        && (cpu_arch_profile_attr->int_value() == 'A'
            || cpu_arch_profile_attr->int_value() == 0));
   }

 // Check if we can use V4BX interworking.
 // The V4BX interworking stub contains BX instruction,
 // which is not specified for some profiles.
 if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
     && !this->may_use_v4t_interworking())
   gold_error(_("unable to provide V4BX reloc interworking fix up; "
                "the target profile does not support BX instruction"));

 // Fill in some more dynamic tags.
 const Reloc_section* rel_plt = (this->plt_ == NULL
                                 ? NULL
                                 : this->plt_->rel_plt());
 layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
                                 this->rel_dyn_, true, false, false);

 // Emit any relocs we saved in an attempt to avoid generating COPY
 // relocs.
 if (this->copy_relocs_.any_saved_relocs())
   this->copy_relocs_.emit(this->rel_dyn_section(layout));

 // Handle the .ARM.exidx section.
 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");

 if (!parameters->options().relocatable())
   {
     if (exidx_section != NULL
         && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
       {
         // For the ARM target, we need to add a PT_ARM_EXIDX segment for
         // the .ARM.exidx section.
         if (!layout->script_options()->saw_phdrs_clause())
           {
             gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0,
                                                     0)
                         == NULL);
             Output_segment*  exidx_segment =
               layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
             exidx_segment->add_output_section_to_nonload(exidx_section,
                                                          elfcpp::PF_R);
           }
       }
   }

 // Create an .ARM.attributes section if we have merged any attributes
 // from inputs.
 if (merged_any_attributes)
   {
     Output_attributes_section_data* attributes_section =
     new Output_attributes_section_data(*this->attributes_section_data_);
     layout->add_output_section_data(".ARM.attributes",
                                     elfcpp::SHT_ARM_ATTRIBUTES, 0,
                                     attributes_section, ORDER_INVALID,
                                     false);
   }

 // Fix up links in section EXIDX headers.
 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
      p != layout->section_list().end();
      ++p)
   if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
     {
       Arm_output_section<big_endian>* os =
         Arm_output_section<big_endian>::as_arm_output_section(*p);
       os->set_exidx_section_link();
     }
}

// Return whether a direct absolute static relocation needs to be applied.
// In cases where Scan::local() or Scan::global() has created
// a dynamic relocation other than R_ARM_RELATIVE, the addend
// of the relocation is carried in the data, and we must not
// apply the static relocation.

template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::should_apply_static_reloc(
   const Sized_symbol<32>* gsym,
   unsigned int r_type,
   bool is_32bit,
   Output_section* output_section)
{
 // If the output section is not allocated, then we didn't call
 // scan_relocs, we didn't create a dynamic reloc, and we must apply
 // the reloc here.
 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
     return true;

 int ref_flags = Scan::get_reference_flags(r_type);

 // For local symbols, we will have created a non-RELATIVE dynamic
 // relocation only if (a) the output is position independent,
 // (b) the relocation is absolute (not pc- or segment-relative), and
 // (c) the relocation is not 32 bits wide.
 if (gsym == NULL)
   return !(parameters->options().output_is_position_independent()
            && (ref_flags & Symbol::ABSOLUTE_REF)
            && !is_32bit);

 // For global symbols, we use the same helper routines used in the
 // scan pass.  If we did not create a dynamic relocation, or if we
 // created a RELATIVE dynamic relocation, we should apply the static
 // relocation.
 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
                && gsym->can_use_relative_reloc(ref_flags
                                                & Symbol::FUNCTION_CALL);
 return !has_dyn || is_rel;
}

// Perform a relocation.

template<bool big_endian>
inline bool
Target_arm<big_endian>::Relocate::relocate(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int,
   Target_arm* target,
   Output_section* output_section,
   size_t relnum,
   const unsigned char* preloc,
   const Sized_symbol<32>* gsym,
   const Symbol_value<32>* psymval,
   unsigned char* view,
   Arm_address address,
   section_size_type view_size)
{
 if (view == NULL)
   return true;

 typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;

 const elfcpp::Rel<32, big_endian> rel(preloc);
 unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info());
 r_type = target->get_real_reloc_type(r_type);
 const Arm_reloc_property* reloc_property =
   arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
 if (reloc_property == NULL)
   {
     std::string reloc_name =
       arm_reloc_property_table->reloc_name_in_error_message(r_type);
     gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                            _("cannot relocate %s in object file"),
                            reloc_name.c_str());
     return true;
   }

 const Arm_relobj<big_endian>* object =
   Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);

 // If the final branch target of a relocation is THUMB instruction, this
 // is 1.  Otherwise it is 0.
 Arm_address thumb_bit = 0;
 Symbol_value<32> symval;
 bool is_weakly_undefined_without_plt = false;
 bool have_got_offset = false;
 unsigned int got_offset = 0;

 // If the relocation uses the GOT entry of a symbol instead of the symbol
 // itself, we don't care about whether the symbol is defined or what kind
 // of symbol it is.
 if (reloc_property->uses_got_entry())
   {
     // Get the GOT offset.
     // The GOT pointer points to the end of the GOT section.
     // We need to subtract the size of the GOT section to get
     // the actual offset to use in the relocation.
     // TODO: We should move GOT offset computing code in TLS relocations
     // to here.
     switch (r_type)
       {
       case elfcpp::R_ARM_GOT_BREL:
       case elfcpp::R_ARM_GOT_PREL:
         if (gsym != NULL)
           {
             gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
             got_offset = (gsym->got_offset(GOT_TYPE_STANDARD)
                           - target->got_size());
           }
         else
           {
             unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
             gold_assert(object->local_has_got_offset(r_sym,
                                                      GOT_TYPE_STANDARD));
             got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
                           - target->got_size());
           }
         have_got_offset = true;
         break;

       default:
         break;
       }
   }
 else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
   {
     if (gsym != NULL)
       {
         // This is a global symbol.  Determine if we use PLT and if the
         // final target is THUMB.
         if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
           {
             // This uses a PLT, change the symbol value.
             symval.set_output_value(target->plt_address_for_global(gsym));
             psymval = &symval;
           }
         else if (gsym->is_weak_undefined())
           {
             // This is a weakly undefined symbol and we do not use PLT
             // for this relocation.  A branch targeting this symbol will
             // be converted into an NOP.
             is_weakly_undefined_without_plt = true;
           }
         else if (gsym->is_undefined() && reloc_property->uses_symbol())
           {
             // This relocation uses the symbol value but the symbol is
             // undefined.  Exit early and have the caller reporting an
             // error.
             return true;
           }
         else
           {
             // Set thumb bit if symbol:
             // -Has type STT_ARM_TFUNC or
             // -Has type STT_FUNC, is defined and with LSB in value set.
             thumb_bit =
               (((gsym->type() == elfcpp::STT_ARM_TFUNC)
                || (gsym->type() == elfcpp::STT_FUNC
                    && !gsym->is_undefined()
                    && ((psymval->value(object, 0) & 1) != 0)))
               ? 1
               : 0);
           }
       }
     else
       {
         // This is a local symbol.  Determine if the final target is THUMB.
         // We saved this information when all the local symbols were read.
         elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
         unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
         thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;

         if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym))
           {
             symval.set_output_value(
                 target->plt_address_for_local(object, r_sym));
             psymval = &symval;
           }
       }
   }
 else
   {
     // This is a fake relocation synthesized for a stub.  It does not have
     // a real symbol.  We just look at the LSB of the symbol value to
     // determine if the target is THUMB or not.
     thumb_bit = ((psymval->value(object, 0) & 1) != 0);
   }

 // Strip LSB if this points to a THUMB target.
 if (thumb_bit != 0
     && reloc_property->uses_thumb_bit()
     && ((psymval->value(object, 0) & 1) != 0))
   {
     Arm_address stripped_value =
       psymval->value(object, 0) & ~static_cast<Arm_address>(1);
     symval.set_output_value(stripped_value);
     psymval = &symval;
   }

 // To look up relocation stubs, we need to pass the symbol table index of
 // a local symbol.
 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());

 // Get the addressing origin of the output segment defining the
 // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
 Arm_address sym_origin = 0;
 if (reloc_property->uses_symbol_base())
   {
     if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
       // R_ARM_BASE_ABS with the NULL symbol will give the
       // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
       // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
       sym_origin = target->got_plt_section()->address();
     else if (gsym == NULL)
       sym_origin = 0;
     else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
       sym_origin = gsym->output_segment()->vaddr();
     else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
       sym_origin = gsym->output_data()->address();

     // TODO: Assumes the segment base to be zero for the global symbols
     // till the proper support for the segment-base-relative addressing
     // will be implemented.  This is consistent with GNU ld.
   }

 // For relative addressing relocation, find out the relative address base.
 Arm_address relative_address_base = 0;
 switch(reloc_property->relative_address_base())
   {
   case Arm_reloc_property::RAB_NONE:
   // Relocations with relative address bases RAB_TLS and RAB_tp are
   // handled by relocate_tls.  So we do not need to do anything here.
   case Arm_reloc_property::RAB_TLS:
   case Arm_reloc_property::RAB_tp:
     break;
   case Arm_reloc_property::RAB_B_S:
     relative_address_base = sym_origin;
     break;
   case Arm_reloc_property::RAB_GOT_ORG:
     relative_address_base = target->got_plt_section()->address();
     break;
   case Arm_reloc_property::RAB_P:
     relative_address_base = address;
     break;
   case Arm_reloc_property::RAB_Pa:
     relative_address_base = address & 0xfffffffcU;
     break;
   default:
     gold_unreachable();
   }

 typename Arm_relocate_functions::Status reloc_status =
       Arm_relocate_functions::STATUS_OKAY;
 bool check_overflow = reloc_property->checks_overflow();
 switch (r_type)
   {
   case elfcpp::R_ARM_NONE:
     break;

   case elfcpp::R_ARM_ABS8:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::abs8(view, object, psymval);
     break;

   case elfcpp::R_ARM_ABS12:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::abs12(view, object, psymval);
     break;

   case elfcpp::R_ARM_ABS16:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::abs16(view, object, psymval);
     break;

   case elfcpp::R_ARM_ABS32:
     if (should_apply_static_reloc(gsym, r_type, true, output_section))
       reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
                                                    thumb_bit);
     break;

   case elfcpp::R_ARM_ABS32_NOI:
     if (should_apply_static_reloc(gsym, r_type, true, output_section))
       // No thumb bit for this relocation: (S + A)
       reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
                                                    0);
     break;

   case elfcpp::R_ARM_MOVW_ABS_NC:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::movw(view, object, psymval,
                                                   0, thumb_bit,
                                                   check_overflow);
     break;

   case elfcpp::R_ARM_MOVT_ABS:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
     break;

   case elfcpp::R_ARM_THM_MOVW_ABS_NC:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
                                                       0, thumb_bit, false);
     break;

   case elfcpp::R_ARM_THM_MOVT_ABS:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::thm_movt(view, object,
                                                       psymval, 0);
     break;

   case elfcpp::R_ARM_MOVW_PREL_NC:
   case elfcpp::R_ARM_MOVW_BREL_NC:
   case elfcpp::R_ARM_MOVW_BREL:
     reloc_status =
       Arm_relocate_functions::movw(view, object, psymval,
                                    relative_address_base, thumb_bit,
                                    check_overflow);
     break;

   case elfcpp::R_ARM_MOVT_PREL:
   case elfcpp::R_ARM_MOVT_BREL:
     reloc_status =
       Arm_relocate_functions::movt(view, object, psymval,
                                    relative_address_base);
     break;

   case elfcpp::R_ARM_THM_MOVW_PREL_NC:
   case elfcpp::R_ARM_THM_MOVW_BREL_NC:
   case elfcpp::R_ARM_THM_MOVW_BREL:
     reloc_status =
       Arm_relocate_functions::thm_movw(view, object, psymval,
                                        relative_address_base,
                                        thumb_bit, check_overflow);
     break;

   case elfcpp::R_ARM_THM_MOVT_PREL:
   case elfcpp::R_ARM_THM_MOVT_BREL:
     reloc_status =
       Arm_relocate_functions::thm_movt(view, object, psymval,
                                        relative_address_base);
     break;

   case elfcpp::R_ARM_REL32:
     reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
                                                  address, thumb_bit);
     break;

   case elfcpp::R_ARM_THM_ABS5:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
     break;

   // Thumb long branches.
   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_XPC22:
   case elfcpp::R_ARM_THM_JUMP24:
     reloc_status =
       Arm_relocate_functions::thumb_branch_common(
           r_type, relinfo, view, gsym, object, r_sym, psymval, address,
           thumb_bit, is_weakly_undefined_without_plt);
     break;

   case elfcpp::R_ARM_GOTOFF32:
     {
       Arm_address got_origin;
       got_origin = target->got_plt_section()->address();
       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
                                                    got_origin, thumb_bit);
     }
     break;

   case elfcpp::R_ARM_BASE_PREL:
     gold_assert(gsym != NULL);
     reloc_status =
         Arm_relocate_functions::base_prel(view, sym_origin, address);
     break;

   case elfcpp::R_ARM_BASE_ABS:
     if (should_apply_static_reloc(gsym, r_type, false, output_section))
       reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
     break;

   case elfcpp::R_ARM_GOT_BREL:
     gold_assert(have_got_offset);
     reloc_status = Arm_relocate_functions::got_brel(view, got_offset);
     break;

   case elfcpp::R_ARM_GOT_PREL:
     gold_assert(have_got_offset);
     // Get the address origin for GOT PLT, which is allocated right
     // after the GOT section, to calculate an absolute address of
     // the symbol GOT entry (got_origin + got_offset).
     Arm_address got_origin;
     got_origin = target->got_plt_section()->address();
     reloc_status = Arm_relocate_functions::got_prel(view,
                                                     got_origin + got_offset,
                                                     address);
     break;

   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_XPC25:
     gold_assert(gsym == NULL
                 || gsym->has_plt_offset()
                 || gsym->final_value_is_known()
                 || (gsym->is_defined()
                     && !gsym->is_from_dynobj()
                     && !gsym->is_preemptible()));
     reloc_status =
       Arm_relocate_functions::arm_branch_common(
           r_type, relinfo, view, gsym, object, r_sym, psymval, address,
           thumb_bit, is_weakly_undefined_without_plt);
     break;

   case elfcpp::R_ARM_THM_JUMP19:
     reloc_status =
       Arm_relocate_functions::thm_jump19(view, object, psymval, address,
                                          thumb_bit);
     break;

   case elfcpp::R_ARM_THM_JUMP6:
     reloc_status =
       Arm_relocate_functions::thm_jump6(view, object, psymval, address);
     break;

   case elfcpp::R_ARM_THM_JUMP8:
     reloc_status =
       Arm_relocate_functions::thm_jump8(view, object, psymval, address);
     break;

   case elfcpp::R_ARM_THM_JUMP11:
     reloc_status =
       Arm_relocate_functions::thm_jump11(view, object, psymval, address);
     break;

   case elfcpp::R_ARM_PREL31:
     reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
                                                   address, thumb_bit);
     break;

   case elfcpp::R_ARM_V4BX:
     if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
       {
         const bool is_v4bx_interworking =
             (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
         reloc_status =
           Arm_relocate_functions::v4bx(relinfo, view, object, address,
                                        is_v4bx_interworking);
       }
     break;

   case elfcpp::R_ARM_THM_PC8:
     reloc_status =
       Arm_relocate_functions::thm_pc8(view, object, psymval, address);
     break;

   case elfcpp::R_ARM_THM_PC12:
     reloc_status =
       Arm_relocate_functions::thm_pc12(view, object, psymval, address);
     break;

   case elfcpp::R_ARM_THM_ALU_PREL_11_0:
     reloc_status =
       Arm_relocate_functions::thm_alu11(view, object, psymval, address,
                                         thumb_bit);
     break;

   case elfcpp::R_ARM_ALU_PC_G0_NC:
   case elfcpp::R_ARM_ALU_PC_G0:
   case elfcpp::R_ARM_ALU_PC_G1_NC:
   case elfcpp::R_ARM_ALU_PC_G1:
   case elfcpp::R_ARM_ALU_PC_G2:
   case elfcpp::R_ARM_ALU_SB_G0_NC:
   case elfcpp::R_ARM_ALU_SB_G0:
   case elfcpp::R_ARM_ALU_SB_G1_NC:
   case elfcpp::R_ARM_ALU_SB_G1:
   case elfcpp::R_ARM_ALU_SB_G2:
     reloc_status =
       Arm_relocate_functions::arm_grp_alu(view, object, psymval,
                                           reloc_property->group_index(),
                                           relative_address_base,
                                           thumb_bit, check_overflow);
     break;

   case elfcpp::R_ARM_LDR_PC_G0:
   case elfcpp::R_ARM_LDR_PC_G1:
   case elfcpp::R_ARM_LDR_PC_G2:
   case elfcpp::R_ARM_LDR_SB_G0:
   case elfcpp::R_ARM_LDR_SB_G1:
   case elfcpp::R_ARM_LDR_SB_G2:
     reloc_status =
         Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
                                             reloc_property->group_index(),
                                             relative_address_base);
     break;

   case elfcpp::R_ARM_LDRS_PC_G0:
   case elfcpp::R_ARM_LDRS_PC_G1:
   case elfcpp::R_ARM_LDRS_PC_G2:
   case elfcpp::R_ARM_LDRS_SB_G0:
   case elfcpp::R_ARM_LDRS_SB_G1:
   case elfcpp::R_ARM_LDRS_SB_G2:
     reloc_status =
         Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
                                              reloc_property->group_index(),
                                              relative_address_base);
     break;

   case elfcpp::R_ARM_LDC_PC_G0:
   case elfcpp::R_ARM_LDC_PC_G1:
   case elfcpp::R_ARM_LDC_PC_G2:
   case elfcpp::R_ARM_LDC_SB_G0:
   case elfcpp::R_ARM_LDC_SB_G1:
   case elfcpp::R_ARM_LDC_SB_G2:
     reloc_status =
         Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
                                             reloc_property->group_index(),
                                             relative_address_base);
     break;

     // These are initial tls relocs, which are expected when
     // linking.
   case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
   case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
   case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
   case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
   case elfcpp::R_ARM_TLS_LE32:        // Local-exec
     reloc_status =
       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
                          view, address, view_size);
     break;

   // The known and unknown unsupported and/or deprecated relocations.
   case elfcpp::R_ARM_PC24:
   case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
   case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
   case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
   default:
     // Just silently leave the method. We should get an appropriate error
     // message in the scan methods.
     break;
   }

 // Report any errors.
 switch (reloc_status)
   {
   case Arm_relocate_functions::STATUS_OKAY:
     break;
   case Arm_relocate_functions::STATUS_OVERFLOW:
     gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                            _("relocation overflow in %s"),
                            reloc_property->name().c_str());
     break;
   case Arm_relocate_functions::STATUS_BAD_RELOC:
     gold_error_at_location(
       relinfo,
       relnum,
       rel.get_r_offset(),
       _("unexpected opcode while processing relocation %s"),
       reloc_property->name().c_str());
     break;
   default:
     gold_unreachable();
   }

 return true;
}

// Perform a TLS relocation.

template<bool big_endian>
inline typename Arm_relocate_functions<big_endian>::Status
Target_arm<big_endian>::Relocate::relocate_tls(
   const Relocate_info<32, big_endian>* relinfo,
   Target_arm<big_endian>* target,
   size_t relnum,
   const elfcpp::Rel<32, big_endian>& rel,
   unsigned int r_type,
   const Sized_symbol<32>* gsym,
   const Symbol_value<32>* psymval,
   unsigned char* view,
   elfcpp::Elf_types<32>::Elf_Addr address,
   section_size_type /*view_size*/ )
{
 typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
 typedef Relocate_functions<32, big_endian> RelocFuncs;
 Output_segment* tls_segment = relinfo->layout->tls_segment();

 const Sized_relobj_file<32, big_endian>* object = relinfo->object;

 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);

 const bool is_final = (gsym == NULL
                        ? !parameters->options().shared()
                        : gsym->final_value_is_known());
 const tls::Tls_optimization optimized_type
     = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
 switch (r_type)
   {
   case elfcpp::R_ARM_TLS_GD32:        // Global-dynamic
       {
         unsigned int got_type = GOT_TYPE_TLS_PAIR;
         unsigned int got_offset;
         if (gsym != NULL)
           {
             gold_assert(gsym->has_got_offset(got_type));
             got_offset = gsym->got_offset(got_type) - target->got_size();
           }
         else
           {
             unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
             gold_assert(object->local_has_got_offset(r_sym, got_type));
             got_offset = (object->local_got_offset(r_sym, got_type)
                           - target->got_size());
           }
         if (optimized_type == tls::TLSOPT_NONE)
           {
             Arm_address got_entry =
               target->got_plt_section()->address() + got_offset;

             // Relocate the field with the PC relative offset of the pair of
             // GOT entries.
             RelocFuncs::pcrel32_unaligned(view, got_entry, address);
             return ArmRelocFuncs::STATUS_OKAY;
           }
       }
     break;

   case elfcpp::R_ARM_TLS_LDM32:       // Local-dynamic
     if (optimized_type == tls::TLSOPT_NONE)
       {
         // Relocate the field with the offset of the GOT entry for
         // the module index.
         unsigned int got_offset;
         got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
                       - target->got_size());
         Arm_address got_entry =
           target->got_plt_section()->address() + got_offset;

         // Relocate the field with the PC relative offset of the pair of
         // GOT entries.
         RelocFuncs::pcrel32_unaligned(view, got_entry, address);
         return ArmRelocFuncs::STATUS_OKAY;
       }
     break;

   case elfcpp::R_ARM_TLS_LDO32:       // Alternate local-dynamic
     RelocFuncs::rel32_unaligned(view, value);
     return ArmRelocFuncs::STATUS_OKAY;

   case elfcpp::R_ARM_TLS_IE32:        // Initial-exec
     if (optimized_type == tls::TLSOPT_NONE)
       {
         // Relocate the field with the offset of the GOT entry for
         // the tp-relative offset of the symbol.
         unsigned int got_type = GOT_TYPE_TLS_OFFSET;
         unsigned int got_offset;
         if (gsym != NULL)
           {
             gold_assert(gsym->has_got_offset(got_type));
             got_offset = gsym->got_offset(got_type);
           }
         else
           {
             unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
             gold_assert(object->local_has_got_offset(r_sym, got_type));
             got_offset = object->local_got_offset(r_sym, got_type);
           }

         // All GOT offsets are relative to the end of the GOT.
         got_offset -= target->got_size();

         Arm_address got_entry =
           target->got_plt_section()->address() + got_offset;

         // Relocate the field with the PC relative offset of the GOT entry.
         RelocFuncs::pcrel32_unaligned(view, got_entry, address);
         return ArmRelocFuncs::STATUS_OKAY;
       }
     break;

   case elfcpp::R_ARM_TLS_LE32:        // Local-exec
     // If we're creating a shared library, a dynamic relocation will
     // have been created for this location, so do not apply it now.
     if (!parameters->options().shared())
       {
         gold_assert(tls_segment != NULL);

         // $tp points to the TCB, which is followed by the TLS, so we
         // need to add TCB size to the offset.
         Arm_address aligned_tcb_size =
           align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
         RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size);

       }
     return ArmRelocFuncs::STATUS_OKAY;

   default:
     gold_unreachable();
   }

 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
                        _("unsupported reloc %u"),
                        r_type);
 return ArmRelocFuncs::STATUS_BAD_RELOC;
}

// Relocate section data.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_section(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   unsigned char* view,
   Arm_address address,
   section_size_type view_size,
   const Reloc_symbol_changes* reloc_symbol_changes)
{
 typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
 gold_assert(sh_type == elfcpp::SHT_REL);

 // See if we are relocating a relaxed input section.  If so, the view
 // covers the whole output section and we need to adjust accordingly.
 if (needs_special_offset_handling)
   {
     const Output_relaxed_input_section* poris =
       output_section->find_relaxed_input_section(relinfo->object,
                                                  relinfo->data_shndx);
     if (poris != NULL)
       {
         Arm_address section_address = poris->address();
         section_size_type section_size = poris->data_size();

         gold_assert((section_address >= address)
                     && ((section_address + section_size)
                         <= (address + view_size)));

         off_t offset = section_address - address;
         view += offset;
         address += offset;
         view_size = section_size;
       }
   }

 gold::relocate_section<32, big_endian, Target_arm, Arm_relocate,
                        gold::Default_comdat_behavior, Classify_reloc>(
   relinfo,
   this,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   view,
   address,
   view_size,
   reloc_symbol_changes);
}

// Return the size of a relocation while scanning during a relocatable
// link.

template<bool big_endian>
unsigned int
Target_arm<big_endian>::Classify_reloc::get_size_for_reloc(
   unsigned int r_type,
   Relobj* object)
{
 Target_arm<big_endian>* arm_target =
     Target_arm<big_endian>::default_target();
 r_type = arm_target->get_real_reloc_type(r_type);
 const Arm_reloc_property* arp =
     arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
 if (arp != NULL)
   return arp->size();
 else
   {
     std::string reloc_name =
       arm_reloc_property_table->reloc_name_in_error_message(r_type);
     gold_error(_("%s: unexpected %s in object file"),
                object->name().c_str(), reloc_name.c_str());
     return 0;
   }
}

// Scan the relocs during a relocatable link.

template<bool big_endian>
void
Target_arm<big_endian>::scan_relocatable_relocs(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<32, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_symbols,
   Relocatable_relocs* rr)
{
 typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc>
     Scan_relocatable_relocs;

 gold_assert(sh_type == elfcpp::SHT_REL);

 gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols,
   rr);
}

// Scan the relocs for --emit-relocs.

template<bool big_endian>
void
Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<32, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_syms,
   Relocatable_relocs* rr)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian>
     Classify_reloc;
 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
     Emit_relocs_strategy;

 gold_assert(sh_type == elfcpp::SHT_REL);

 gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_syms,
   rr);
}

// Emit relocations for a section.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_relocs(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
   unsigned char* view,
   Arm_address view_address,
   section_size_type view_size,
   unsigned char* reloc_view,
   section_size_type reloc_view_size)
{
 gold_assert(sh_type == elfcpp::SHT_REL);

 gold::relocate_relocs<32, big_endian, Classify_reloc>(
   relinfo,
   prelocs,
   reloc_count,
   output_section,
   offset_in_output_section,
   view,
   view_address,
   view_size,
   reloc_view,
   reloc_view_size);
}

// Perform target-specific processing in a relocatable link.  This is
// only used if we use the relocation strategy RELOC_SPECIAL.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_special_relocatable(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* preloc_in,
   size_t relnum,
   Output_section* output_section,
   typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section,
   unsigned char* view,
   elfcpp::Elf_types<32>::Elf_Addr view_address,
   section_size_type,
   unsigned char* preloc_out)
{
 // We can only handle REL type relocation sections.
 gold_assert(sh_type == elfcpp::SHT_REL);

 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
 typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
   Reltype_write;
 const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;

 const Arm_relobj<big_endian>* object =
   Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
 const unsigned int local_count = object->local_symbol_count();

 Reltype reloc(preloc_in);
 Reltype_write reloc_write(preloc_out);

 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
 const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
 const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);

 const Arm_reloc_property* arp =
   arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
 gold_assert(arp != NULL);

 // Get the new symbol index.
 // We only use RELOC_SPECIAL strategy in local relocations.
 gold_assert(r_sym < local_count);

 // We are adjusting a section symbol.  We need to find
 // the symbol table index of the section symbol for
 // the output section corresponding to input section
 // in which this symbol is defined.
 bool is_ordinary;
 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
 gold_assert(is_ordinary);
 Output_section* os = object->output_section(shndx);
 gold_assert(os != NULL);
 gold_assert(os->needs_symtab_index());
 unsigned int new_symndx = os->symtab_index();

 // Get the new offset--the location in the output section where
 // this relocation should be applied.

 Arm_address offset = reloc.get_r_offset();
 Arm_address new_offset;
 if (offset_in_output_section != invalid_address)
   new_offset = offset + offset_in_output_section;
 else
   {
     section_offset_type sot_offset =
         convert_types<section_offset_type, Arm_address>(offset);
     section_offset_type new_sot_offset =
         output_section->output_offset(object, relinfo->data_shndx,
                                       sot_offset);
     gold_assert(new_sot_offset != -1);
     new_offset = new_sot_offset;
   }

 // In an object file, r_offset is an offset within the section.
 // In an executable or dynamic object, generated by
 // --emit-relocs, r_offset is an absolute address.
 if (!parameters->options().relocatable())
   {
     new_offset += view_address;
     if (offset_in_output_section != invalid_address)
       new_offset -= offset_in_output_section;
   }

 reloc_write.put_r_offset(new_offset);
 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));

 // Handle the reloc addend.
 // The relocation uses a section symbol in the input file.
 // We are adjusting it to use a section symbol in the output
 // file.  The input section symbol refers to some address in
 // the input section.  We need the relocation in the output
 // file to refer to that same address.  This adjustment to
 // the addend is the same calculation we use for a simple
 // absolute relocation for the input section symbol.

 const Symbol_value<32>* psymval = object->local_symbol(r_sym);

 // Handle THUMB bit.
 Symbol_value<32> symval;
 Arm_address thumb_bit =
    object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
 if (thumb_bit != 0
     && arp->uses_thumb_bit()
     && ((psymval->value(object, 0) & 1) != 0))
   {
     Arm_address stripped_value =
       psymval->value(object, 0) & ~static_cast<Arm_address>(1);
     symval.set_output_value(stripped_value);
     psymval = &symval;
   }

 unsigned char* paddend = view + offset;
 typename Arm_relocate_functions<big_endian>::Status reloc_status =
       Arm_relocate_functions<big_endian>::STATUS_OKAY;
 switch (r_type)
   {
   case elfcpp::R_ARM_ABS8:
     reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
                                                             psymval);
     break;

   case elfcpp::R_ARM_ABS12:
     reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
                                                              psymval);
     break;

   case elfcpp::R_ARM_ABS16:
     reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
                                                              psymval);
     break;

   case elfcpp::R_ARM_THM_ABS5:
     reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
                                                                 object,
                                                                 psymval);
     break;

   case elfcpp::R_ARM_MOVW_ABS_NC:
   case elfcpp::R_ARM_MOVW_PREL_NC:
   case elfcpp::R_ARM_MOVW_BREL_NC:
   case elfcpp::R_ARM_MOVW_BREL:
     reloc_status = Arm_relocate_functions<big_endian>::movw(
         paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
     break;

   case elfcpp::R_ARM_THM_MOVW_ABS_NC:
   case elfcpp::R_ARM_THM_MOVW_PREL_NC:
   case elfcpp::R_ARM_THM_MOVW_BREL_NC:
   case elfcpp::R_ARM_THM_MOVW_BREL:
     reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
         paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
     break;

   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_XPC22:
   case elfcpp::R_ARM_THM_JUMP24:
     reloc_status =
       Arm_relocate_functions<big_endian>::thumb_branch_common(
           r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
           false);
     break;

   case elfcpp::R_ARM_PLT32:
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_XPC25:
     reloc_status =
       Arm_relocate_functions<big_endian>::arm_branch_common(
           r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
           false);
     break;

   case elfcpp::R_ARM_THM_JUMP19:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
                                                      psymval, 0, thumb_bit);
     break;

   case elfcpp::R_ARM_THM_JUMP6:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
                                                     0);
     break;

   case elfcpp::R_ARM_THM_JUMP8:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
                                                     0);
     break;

   case elfcpp::R_ARM_THM_JUMP11:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
                                                      0);
     break;

   case elfcpp::R_ARM_PREL31:
     reloc_status =
       Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
                                                  thumb_bit);
     break;

   case elfcpp::R_ARM_THM_PC8:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
                                                   0);
     break;

   case elfcpp::R_ARM_THM_PC12:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
                                                    0);
     break;

   case elfcpp::R_ARM_THM_ALU_PREL_11_0:
     reloc_status =
       Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
                                                     0, thumb_bit);
     break;

   // These relocation truncate relocation results so we cannot handle them
   // in a relocatable link.
   case elfcpp::R_ARM_MOVT_ABS:
   case elfcpp::R_ARM_THM_MOVT_ABS:
   case elfcpp::R_ARM_MOVT_PREL:
   case elfcpp::R_ARM_MOVT_BREL:
   case elfcpp::R_ARM_THM_MOVT_PREL:
   case elfcpp::R_ARM_THM_MOVT_BREL:
   case elfcpp::R_ARM_ALU_PC_G0_NC:
   case elfcpp::R_ARM_ALU_PC_G0:
   case elfcpp::R_ARM_ALU_PC_G1_NC:
   case elfcpp::R_ARM_ALU_PC_G1:
   case elfcpp::R_ARM_ALU_PC_G2:
   case elfcpp::R_ARM_ALU_SB_G0_NC:
   case elfcpp::R_ARM_ALU_SB_G0:
   case elfcpp::R_ARM_ALU_SB_G1_NC:
   case elfcpp::R_ARM_ALU_SB_G1:
   case elfcpp::R_ARM_ALU_SB_G2:
   case elfcpp::R_ARM_LDR_PC_G0:
   case elfcpp::R_ARM_LDR_PC_G1:
   case elfcpp::R_ARM_LDR_PC_G2:
   case elfcpp::R_ARM_LDR_SB_G0:
   case elfcpp::R_ARM_LDR_SB_G1:
   case elfcpp::R_ARM_LDR_SB_G2:
   case elfcpp::R_ARM_LDRS_PC_G0:
   case elfcpp::R_ARM_LDRS_PC_G1:
   case elfcpp::R_ARM_LDRS_PC_G2:
   case elfcpp::R_ARM_LDRS_SB_G0:
   case elfcpp::R_ARM_LDRS_SB_G1:
   case elfcpp::R_ARM_LDRS_SB_G2:
   case elfcpp::R_ARM_LDC_PC_G0:
   case elfcpp::R_ARM_LDC_PC_G1:
   case elfcpp::R_ARM_LDC_PC_G2:
   case elfcpp::R_ARM_LDC_SB_G0:
   case elfcpp::R_ARM_LDC_SB_G1:
   case elfcpp::R_ARM_LDC_SB_G2:
     gold_error(_("cannot handle %s in a relocatable link"),
                arp->name().c_str());
     break;

   default:
     gold_unreachable();
   }

 // Report any errors.
 switch (reloc_status)
   {
   case Arm_relocate_functions<big_endian>::STATUS_OKAY:
     break;
   case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
     gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
                            _("relocation overflow in %s"),
                            arp->name().c_str());
     break;
   case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
     gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
       _("unexpected opcode while processing relocation %s"),
       arp->name().c_str());
     break;
   default:
     gold_unreachable();
   }
}

// Return the value to use for a dynamic symbol which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<bool big_endian>
uint64_t
Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const
{
 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
 return this->plt_address_for_global(gsym);
}

// Map platform-specific relocs to real relocs
//
template<bool big_endian>
unsigned int
Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const
{
 switch (r_type)
   {
   case elfcpp::R_ARM_TARGET1:
     return this->target1_reloc_;

   case elfcpp::R_ARM_TARGET2:
     return this->target2_reloc_;

   default:
     return r_type;
   }
}

// Whether if two EABI versions V1 and V2 are compatible.

template<bool big_endian>
bool
Target_arm<big_endian>::are_eabi_versions_compatible(
   elfcpp::Elf_Word v1,
   elfcpp::Elf_Word v2)
{
 // v4 and v5 are the same spec before and after it was released,
 // so allow mixing them.
 if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
     || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
     || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
   return true;

 return v1 == v2;
}

// Combine FLAGS from an input object called NAME and the processor-specific
// flags in the ELF header of the output.  Much of this is adapted from the
// processor-specific flags merging code in elf32_arm_merge_private_bfd_data
// in bfd/elf32-arm.c.

template<bool big_endian>
void
Target_arm<big_endian>::merge_processor_specific_flags(
   const std::string& name,
   elfcpp::Elf_Word flags)
{
 if (this->are_processor_specific_flags_set())
   {
     elfcpp::Elf_Word out_flags = this->processor_specific_flags();

     // Nothing to merge if flags equal to those in output.
     if (flags == out_flags)
       return;

     // Complain about various flag mismatches.
     elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
     elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
     if (!this->are_eabi_versions_compatible(version1, version2)
         && parameters->options().warn_mismatch())
       gold_error(_("Source object %s has EABI version %d but output has "
                    "EABI version %d."),
                  name.c_str(),
                  (flags & elfcpp::EF_ARM_EABIMASK) >> 24,
                  (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24);
   }
 else
   {
     // If the input is the default architecture and had the default
     // flags then do not bother setting the flags for the output
     // architecture, instead allow future merges to do this.  If no
     // future merges ever set these flags then they will retain their
     // uninitialised values, which surprise surprise, correspond
     // to the default values.
     if (flags == 0)
       return;

     // This is the first time, just copy the flags.
     // We only copy the EABI version for now.
     this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK);
   }
}

// Adjust ELF file header.
template<bool big_endian>
void
Target_arm<big_endian>::do_adjust_elf_header(
   unsigned char* view,
   int len)
{
 gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size);

 elfcpp::Ehdr<32, big_endian> ehdr(view);
 elfcpp::Elf_Word flags = this->processor_specific_flags();
 unsigned char e_ident[elfcpp::EI_NIDENT];
 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);

 if (elfcpp::arm_eabi_version(flags)
     == elfcpp::EF_ARM_EABI_UNKNOWN)
   e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM;
 else
   e_ident[elfcpp::EI_OSABI] = 0;
 e_ident[elfcpp::EI_ABIVERSION] = 0;

 // Do EF_ARM_BE8 adjustment.
 if (parameters->options().be8() && !big_endian)
   gold_error("BE8 images only valid in big-endian mode.");
 if (parameters->options().be8())
   {
     flags |= elfcpp::EF_ARM_BE8;
     this->set_processor_specific_flags(flags);
   }

 // If we're working in EABI_VER5, set the hard/soft float ABI flags
 // as appropriate.
 if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5)
 {
   elfcpp::Elf_Half type = ehdr.get_e_type();
   if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN)
     {
       Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args);
       if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp)
         flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD;
       else
         flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT;
       this->set_processor_specific_flags(flags);
     }
 }
 elfcpp::Ehdr_write<32, big_endian> oehdr(view);
 oehdr.put_e_ident(e_ident);
 oehdr.put_e_flags(this->processor_specific_flags());
}

// do_make_elf_object to override the same function in the base class.
// We need to use a target-specific sub-class of
// Sized_relobj_file<32, big_endian> to store ARM specific information.
// Hence we need to have our own ELF object creation.

template<bool big_endian>
Object*
Target_arm<big_endian>::do_make_elf_object(
   const std::string& name,
   Input_file* input_file,
   off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr)
{
 int et = ehdr.get_e_type();
 // ET_EXEC files are valid input for --just-symbols/-R,
 // and we treat them as relocatable objects.
 if (et == elfcpp::ET_REL
     || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
   {
     Arm_relobj<big_endian>* obj =
       new Arm_relobj<big_endian>(name, input_file, offset, ehdr);
     obj->setup();
     return obj;
   }
 else if (et == elfcpp::ET_DYN)
   {
     Sized_dynobj<32, big_endian>* obj =
       new Arm_dynobj<big_endian>(name, input_file, offset, ehdr);
     obj->setup();
     return obj;
   }
 else
   {
     gold_error(_("%s: unsupported ELF file type %d"),
                name.c_str(), et);
     return NULL;
   }
}

// Read the architecture from the Tag_also_compatible_with attribute, if any.
// Returns -1 if no architecture could be read.
// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.

template<bool big_endian>
int
Target_arm<big_endian>::get_secondary_compatible_arch(
   const Attributes_section_data* pasd)
{
 const Object_attribute* known_attributes =
   pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);

 // Note: the tag and its argument below are uleb128 values, though
 // currently-defined values fit in one byte for each.
 const std::string& sv =
   known_attributes[elfcpp::Tag_also_compatible_with].string_value();
 if (sv.size() == 2
     && sv.data()[0] == elfcpp::Tag_CPU_arch
     && (sv.data()[1] & 128) != 128)
  return sv.data()[1];

 // This tag is "safely ignorable", so don't complain if it looks funny.
 return -1;
}

// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
// The tag is removed if ARCH is -1.
// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.

template<bool big_endian>
void
Target_arm<big_endian>::set_secondary_compatible_arch(
   Attributes_section_data* pasd,
   int arch)
{
 Object_attribute* known_attributes =
   pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);

 if (arch == -1)
   {
     known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
     return;
   }

 // Note: the tag and its argument below are uleb128 values, though
 // currently-defined values fit in one byte for each.
 char sv[3];
 sv[0] = elfcpp::Tag_CPU_arch;
 gold_assert(arch != 0);
 sv[1] = arch;
 sv[2] = '\0';

 known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
}

// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
// into account.
// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.

template<bool big_endian>
int
Target_arm<big_endian>::tag_cpu_arch_combine(
   const char* name,
   int oldtag,
   int* secondary_compat_out,
   int newtag,
   int secondary_compat)
{
#define T(X) elfcpp::TAG_CPU_ARCH_##X
 static const int v6t2[] =
   {
     T(V6T2),   // PRE_V4.
     T(V6T2),   // V4.
     T(V6T2),   // V4T.
     T(V6T2),   // V5T.
     T(V6T2),   // V5TE.
     T(V6T2),   // V5TEJ.
     T(V6T2),   // V6.
     T(V7),     // V6KZ.
     T(V6T2)    // V6T2.
   };
 static const int v6k[] =
   {
     T(V6K),    // PRE_V4.
     T(V6K),    // V4.
     T(V6K),    // V4T.
     T(V6K),    // V5T.
     T(V6K),    // V5TE.
     T(V6K),    // V5TEJ.
     T(V6K),    // V6.
     T(V6KZ),   // V6KZ.
     T(V7),     // V6T2.
     T(V6K)     // V6K.
   };
 static const int v7[] =
   {
     T(V7),     // PRE_V4.
     T(V7),     // V4.
     T(V7),     // V4T.
     T(V7),     // V5T.
     T(V7),     // V5TE.
     T(V7),     // V5TEJ.
     T(V7),     // V6.
     T(V7),     // V6KZ.
     T(V7),     // V6T2.
     T(V7),     // V6K.
     T(V7)      // V7.
   };
 static const int v6_m[] =
   {
     -1,        // PRE_V4.
     -1,        // V4.
     T(V6K),    // V4T.
     T(V6K),    // V5T.
     T(V6K),    // V5TE.
     T(V6K),    // V5TEJ.
     T(V6K),    // V6.
     T(V6KZ),   // V6KZ.
     T(V7),     // V6T2.
     T(V6K),    // V6K.
     T(V7),     // V7.
     T(V6_M)    // V6_M.
   };
 static const int v6s_m[] =
   {
     -1,        // PRE_V4.
     -1,        // V4.
     T(V6K),    // V4T.
     T(V6K),    // V5T.
     T(V6K),    // V5TE.
     T(V6K),    // V5TEJ.
     T(V6K),    // V6.
     T(V6KZ),   // V6KZ.
     T(V7),     // V6T2.
     T(V6K),    // V6K.
     T(V7),     // V7.
     T(V6S_M),  // V6_M.
     T(V6S_M)   // V6S_M.
   };
 static const int v7e_m[] =
   {
     -1,       // PRE_V4.
     -1,       // V4.
     T(V7E_M), // V4T.
     T(V7E_M), // V5T.
     T(V7E_M), // V5TE.
     T(V7E_M), // V5TEJ.
     T(V7E_M), // V6.
     T(V7E_M), // V6KZ.
     T(V7E_M), // V6T2.
     T(V7E_M), // V6K.
     T(V7E_M), // V7.
     T(V7E_M), // V6_M.
     T(V7E_M), // V6S_M.
     T(V7E_M)  // V7E_M.
   };
 static const int v8[] =
   {
     T(V8),   // PRE_V4.
     T(V8),   // V4.
     T(V8),   // V4T.
     T(V8),   // V5T.
     T(V8),   // V5TE.
     T(V8),   // V5TEJ.
     T(V8),   // V6.
     T(V8),   // V6KZ.
     T(V8),   // V6T2.
     T(V8),   // V6K.
     T(V8),   // V7.
     T(V8),   // V6_M.
     T(V8),   // V6S_M.
     T(V8),   // V7E_M.
     T(V8)    // V8.
   };
 static const int v4t_plus_v6_m[] =
   {
     -1,               // PRE_V4.
     -1,               // V4.
     T(V4T),           // V4T.
     T(V5T),           // V5T.
     T(V5TE),          // V5TE.
     T(V5TEJ),         // V5TEJ.
     T(V6),            // V6.
     T(V6KZ),          // V6KZ.
     T(V6T2),          // V6T2.
     T(V6K),           // V6K.
     T(V7),            // V7.
     T(V6_M),          // V6_M.
     T(V6S_M),         // V6S_M.
     T(V7E_M),         // V7E_M.
     T(V8),            // V8.
     T(V4T_PLUS_V6_M)  // V4T plus V6_M.
   };
 static const int* comb[] =
   {
     v6t2,
     v6k,
     v7,
     v6_m,
     v6s_m,
     v7e_m,
     v8,
     // Pseudo-architecture.
     v4t_plus_v6_m
   };

 // Check we've not got a higher architecture than we know about.

 if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH)
   {
     gold_error(_("%s: unknown CPU architecture"), name);
     return -1;
   }

 // Override old tag if we have a Tag_also_compatible_with on the output.

 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
     || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
   oldtag = T(V4T_PLUS_V6_M);

 // And override the new tag if we have a Tag_also_compatible_with on the
 // input.

 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
     || (newtag == T(V4T) && secondary_compat == T(V6_M)))
   newtag = T(V4T_PLUS_V6_M);

 // Architectures before V6KZ add features monotonically.
 int tagh = std::max(oldtag, newtag);
 if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
   return tagh;

 int tagl = std::min(oldtag, newtag);
 int result = comb[tagh - T(V6T2)][tagl];

 // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
 // as the canonical version.
 if (result == T(V4T_PLUS_V6_M))
   {
     result = T(V4T);
     *secondary_compat_out = T(V6_M);
   }
 else
   *secondary_compat_out = -1;

 if (result == -1)
   {
     gold_error(_("%s: conflicting CPU architectures %d/%d"),
                name, oldtag, newtag);
     return -1;
   }

 return result;
#undef T
}

// Helper to print AEABI enum tag value.

template<bool big_endian>
std::string
Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
{
 static const char* aeabi_enum_names[] =
   { "", "variable-size", "32-bit", "" };
 const size_t aeabi_enum_names_size =
   sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);

 if (value < aeabi_enum_names_size)
   return std::string(aeabi_enum_names[value]);
 else
   {
     char buffer[100];
     sprintf(buffer, "<unknown value %u>", value);
     return std::string(buffer);
   }
}

// Return the string value to store in TAG_CPU_name.

template<bool big_endian>
std::string
Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
{
 static const char* name_table[] = {
   // These aren't real CPU names, but we can't guess
   // that from the architecture version alone.
  "Pre v4",
  "ARM v4",
  "ARM v4T",
  "ARM v5T",
  "ARM v5TE",
  "ARM v5TEJ",
  "ARM v6",
  "ARM v6KZ",
  "ARM v6T2",
  "ARM v6K",
  "ARM v7",
  "ARM v6-M",
  "ARM v6S-M",
  "ARM v7E-M",
  "ARM v8"
};
const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);

 if (value < name_table_size)
   return std::string(name_table[value]);
 else
   {
     char buffer[100];
     sprintf(buffer, "<unknown CPU value %u>", value);
     return std::string(buffer);
   }
}

// Query attributes object to see if integer divide instructions may be
// present in an object.

template<bool big_endian>
bool
Target_arm<big_endian>::attributes_accept_div(int arch, int profile,
   const Object_attribute* div_attr)
{
 switch (div_attr->int_value())
   {
   case 0:
     // Integer divide allowed if instruction contained in
     // architecture.
     if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
       return true;
     else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M)
       return true;
     else
       return false;

   case 1:
     // Integer divide explicitly prohibited.
     return false;

   default:
     // Unrecognised case - treat as allowing divide everywhere.
   case 2:
     // Integer divide allowed in ARM state.
     return true;
   }
}

// Query attributes object to see if integer divide instructions are
// forbidden to be in the object.  This is not the inverse of
// attributes_accept_div.

template<bool big_endian>
bool
Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr)
{
 return div_attr->int_value() == 1;
}

// Merge object attributes from input file called NAME with those of the
// output.  The input object attributes are in the object pointed by PASD.

template<bool big_endian>
void
Target_arm<big_endian>::merge_object_attributes(
   const char* name,
   const Attributes_section_data* pasd)
{
 // Return if there is no attributes section data.
 if (pasd == NULL)
   return;

 // If output has no object attributes, just copy.
 const int vendor = Object_attribute::OBJ_ATTR_PROC;
 if (this->attributes_section_data_ == NULL)
   {
     this->attributes_section_data_ = new Attributes_section_data(*pasd);
     Object_attribute* out_attr =
       this->attributes_section_data_->known_attributes(vendor);

     // We do not output objects with Tag_MPextension_use_legacy - we move
     //  the attribute's value to Tag_MPextension_use.  */
     if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
       {
         if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
             && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
               != out_attr[elfcpp::Tag_MPextension_use].int_value())
           {
             gold_error(_("%s has both the current and legacy "
                          "Tag_MPextension_use attributes"),
                        name);
           }

         out_attr[elfcpp::Tag_MPextension_use] =
           out_attr[elfcpp::Tag_MPextension_use_legacy];
         out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
         out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
       }

     return;
   }

 const Object_attribute* in_attr = pasd->known_attributes(vendor);
 Object_attribute* out_attr =
   this->attributes_section_data_->known_attributes(vendor);

 // This needs to happen before Tag_ABI_FP_number_model is merged.  */
 if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
     != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
   {
     // Ignore mismatches if the object doesn't use floating point.  */
     if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
         == elfcpp::AEABI_FP_number_model_none
         || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
             != elfcpp::AEABI_FP_number_model_none
             && out_attr[elfcpp::Tag_ABI_VFP_args].int_value()
                == elfcpp::AEABI_VFP_args_compatible))
       out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
           in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
     else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value()
              != elfcpp::AEABI_FP_number_model_none
              && in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
                 != elfcpp::AEABI_VFP_args_compatible
              && parameters->options().warn_mismatch())
       gold_error(_("%s uses VFP register arguments, output does not"),
                  name);
   }

 for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
   {
     // Merge this attribute with existing attributes.
     switch (i)
       {
       case elfcpp::Tag_CPU_raw_name:
       case elfcpp::Tag_CPU_name:
         // These are merged after Tag_CPU_arch.
         break;

       case elfcpp::Tag_ABI_optimization_goals:
       case elfcpp::Tag_ABI_FP_optimization_goals:
         // Use the first value seen.
         break;

       case elfcpp::Tag_CPU_arch:
         {
           unsigned int saved_out_attr = out_attr->int_value();
           // Merge Tag_CPU_arch and Tag_also_compatible_with.
           int secondary_compat =
             this->get_secondary_compatible_arch(pasd);
           int secondary_compat_out =
             this->get_secondary_compatible_arch(
                 this->attributes_section_data_);
           out_attr[i].set_int_value(
               tag_cpu_arch_combine(name, out_attr[i].int_value(),
                                    &secondary_compat_out,
                                    in_attr[i].int_value(),
                                    secondary_compat));
           this->set_secondary_compatible_arch(this->attributes_section_data_,
                                               secondary_compat_out);

           // Merge Tag_CPU_name and Tag_CPU_raw_name.
           if (out_attr[i].int_value() == saved_out_attr)
             ; // Leave the names alone.
           else if (out_attr[i].int_value() == in_attr[i].int_value())
             {
               // The output architecture has been changed to match the
               // input architecture.  Use the input names.
               out_attr[elfcpp::Tag_CPU_name].set_string_value(
                   in_attr[elfcpp::Tag_CPU_name].string_value());
               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
                   in_attr[elfcpp::Tag_CPU_raw_name].string_value());
             }
           else
             {
               out_attr[elfcpp::Tag_CPU_name].set_string_value("");
               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
             }

           // If we still don't have a value for Tag_CPU_name,
           // make one up now.  Tag_CPU_raw_name remains blank.
           if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
             {
               const std::string cpu_name =
                 this->tag_cpu_name_value(out_attr[i].int_value());
               // FIXME:  If we see an unknown CPU, this will be set
               // to "<unknown CPU n>", where n is the attribute value.
               // This is different from BFD, which leaves the name alone.
               out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
             }
         }
         break;

       case elfcpp::Tag_ARM_ISA_use:
       case elfcpp::Tag_THUMB_ISA_use:
       case elfcpp::Tag_WMMX_arch:
       case elfcpp::Tag_Advanced_SIMD_arch:
         // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
       case elfcpp::Tag_ABI_FP_rounding:
       case elfcpp::Tag_ABI_FP_exceptions:
       case elfcpp::Tag_ABI_FP_user_exceptions:
       case elfcpp::Tag_ABI_FP_number_model:
       case elfcpp::Tag_VFP_HP_extension:
       case elfcpp::Tag_CPU_unaligned_access:
       case elfcpp::Tag_T2EE_use:
       case elfcpp::Tag_Virtualization_use:
       case elfcpp::Tag_MPextension_use:
         // Use the largest value specified.
         if (in_attr[i].int_value() > out_attr[i].int_value())
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;

       case elfcpp::Tag_ABI_align8_preserved:
       case elfcpp::Tag_ABI_PCS_RO_data:
         // Use the smallest value specified.
         if (in_attr[i].int_value() < out_attr[i].int_value())
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;

       case elfcpp::Tag_ABI_align8_needed:
         if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
             && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
                 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
                     == 0)))
           {
             // This error message should be enabled once all non-conforming
             // binaries in the toolchain have had the attributes set
             // properly.
             // gold_error(_("output 8-byte data alignment conflicts with %s"),
             //            name);
           }
         // Fall through.
       case elfcpp::Tag_ABI_FP_denormal:
       case elfcpp::Tag_ABI_PCS_GOT_use:
         {
           // These tags have 0 = don't care, 1 = strong requirement,
           // 2 = weak requirement.
           static const int order_021[3] = {0, 2, 1};

           // Use the "greatest" from the sequence 0, 2, 1, or the largest
           // value if greater than 2 (for future-proofing).
           if ((in_attr[i].int_value() > 2
                && in_attr[i].int_value() > out_attr[i].int_value())
               || (in_attr[i].int_value() <= 2
                   && out_attr[i].int_value() <= 2
                   && (order_021[in_attr[i].int_value()]
                       > order_021[out_attr[i].int_value()])))
             out_attr[i].set_int_value(in_attr[i].int_value());
         }
         break;

       case elfcpp::Tag_CPU_arch_profile:
         if (out_attr[i].int_value() != in_attr[i].int_value())
           {
             // 0 will merge with anything.
             // 'A' and 'S' merge to 'A'.
             // 'R' and 'S' merge to 'R'.
             // 'M' and 'A|R|S' is an error.
             if (out_attr[i].int_value() == 0
                 || (out_attr[i].int_value() == 'S'
                     && (in_attr[i].int_value() == 'A'
                         || in_attr[i].int_value() == 'R')))
               out_attr[i].set_int_value(in_attr[i].int_value());
             else if (in_attr[i].int_value() == 0
                      || (in_attr[i].int_value() == 'S'
                          && (out_attr[i].int_value() == 'A'
                              || out_attr[i].int_value() == 'R')))
               ; // Do nothing.
             else if (parameters->options().warn_mismatch())
               {
                 gold_error
                   (_("conflicting architecture profiles %c/%c"),
                    in_attr[i].int_value() ? in_attr[i].int_value() : '0',
                    out_attr[i].int_value() ? out_attr[i].int_value() : '0');
               }
           }
         break;
       case elfcpp::Tag_VFP_arch:
           {
             static const struct
             {
                 int ver;
                 int regs;
             } vfp_versions[7] =
               {
                 {0, 0},
                 {1, 16},
                 {2, 16},
                 {3, 32},
                 {3, 16},
                 {4, 32},
                 {4, 16}
               };

             // Values greater than 6 aren't defined, so just pick the
             // biggest.
             if (in_attr[i].int_value() > 6
                 && in_attr[i].int_value() > out_attr[i].int_value())
               {
                 *out_attr = *in_attr;
                 break;
               }
             // The output uses the superset of input features
             // (ISA version) and registers.
             int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
                                vfp_versions[out_attr[i].int_value()].ver);
             int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
                                 vfp_versions[out_attr[i].int_value()].regs);
             // This assumes all possible supersets are also a valid
             // options.
             int newval;
             for (newval = 6; newval > 0; newval--)
               {
                 if (regs == vfp_versions[newval].regs
                     && ver == vfp_versions[newval].ver)
                   break;
               }
             out_attr[i].set_int_value(newval);
           }
         break;
       case elfcpp::Tag_PCS_config:
         if (out_attr[i].int_value() == 0)
           out_attr[i].set_int_value(in_attr[i].int_value());
         else if (in_attr[i].int_value() != 0
                  && out_attr[i].int_value() != 0
                  && parameters->options().warn_mismatch())
           {
             // It's sometimes ok to mix different configs, so this is only
             // a warning.
             gold_warning(_("%s: conflicting platform configuration"), name);
           }
         break;
       case elfcpp::Tag_ABI_PCS_R9_use:
         if (in_attr[i].int_value() != out_attr[i].int_value()
             && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
             && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
             && parameters->options().warn_mismatch())
           {
             gold_error(_("%s: conflicting use of R9"), name);
           }
         if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;
       case elfcpp::Tag_ABI_PCS_RW_data:
         if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
             && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
                 != elfcpp::AEABI_R9_SB)
             && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
                 != elfcpp::AEABI_R9_unused)
             && parameters->options().warn_mismatch())
           {
             gold_error(_("%s: SB relative addressing conflicts with use "
                          "of R9"),
                          name);
           }
         // Use the smallest value specified.
         if (in_attr[i].int_value() < out_attr[i].int_value())
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;
       case elfcpp::Tag_ABI_PCS_wchar_t:
         if (out_attr[i].int_value()
             && in_attr[i].int_value()
             && out_attr[i].int_value() != in_attr[i].int_value()
             && parameters->options().warn_mismatch()
             && parameters->options().wchar_size_warning())
           {
             gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
                            "use %u-byte wchar_t; use of wchar_t values "
                            "across objects may fail"),
                          name, in_attr[i].int_value(),
                          out_attr[i].int_value());
           }
         else if (in_attr[i].int_value() && !out_attr[i].int_value())
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;
       case elfcpp::Tag_ABI_enum_size:
         if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
           {
             if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
                 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
               {
                 // The existing object is compatible with anything.
                 // Use whatever requirements the new object has.
                 out_attr[i].set_int_value(in_attr[i].int_value());
               }
             else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
                      && out_attr[i].int_value() != in_attr[i].int_value()
                      && parameters->options().warn_mismatch()
                      && parameters->options().enum_size_warning())
               {
                 unsigned int in_value = in_attr[i].int_value();
                 unsigned int out_value = out_attr[i].int_value();
                 gold_warning(_("%s uses %s enums yet the output is to use "
                                "%s enums; use of enum values across objects "
                                "may fail"),
                              name,
                              this->aeabi_enum_name(in_value).c_str(),
                              this->aeabi_enum_name(out_value).c_str());
               }
           }
         break;
       case elfcpp::Tag_ABI_VFP_args:
         // Already done.
         break;
       case elfcpp::Tag_ABI_WMMX_args:
         if (in_attr[i].int_value() != out_attr[i].int_value()
             && parameters->options().warn_mismatch())
           {
             gold_error(_("%s uses iWMMXt register arguments, output does "
                          "not"),
                        name);
           }
         break;
       case Object_attribute::Tag_compatibility:
         // Merged in target-independent code.
         break;
       case elfcpp::Tag_ABI_HardFP_use:
         // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
         if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
             || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
           out_attr[i].set_int_value(3);
         else if (in_attr[i].int_value() > out_attr[i].int_value())
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;
       case elfcpp::Tag_ABI_FP_16bit_format:
         if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
           {
             if (in_attr[i].int_value() != out_attr[i].int_value()
                 && parameters->options().warn_mismatch())
               gold_error(_("fp16 format mismatch between %s and output"),
                          name);
           }
         if (in_attr[i].int_value() != 0)
           out_attr[i].set_int_value(in_attr[i].int_value());
         break;

       case elfcpp::Tag_DIV_use:
         {
           // A value of zero on input means that the divide
           // instruction may be used if available in the base
           // architecture as specified via Tag_CPU_arch and
           // Tag_CPU_arch_profile.  A value of 1 means that the user
           // did not want divide instructions.  A value of 2
           // explicitly means that divide instructions were allowed
           // in ARM and Thumb state.
           int arch = this->
             get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)->
             int_value();
           int profile = this->
             get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)->
             int_value();
           if (in_attr[i].int_value() == out_attr[i].int_value())
             {
               // Do nothing.
             }
           else if (attributes_forbid_div(&in_attr[i])
                    && !attributes_accept_div(arch, profile, &out_attr[i]))
             out_attr[i].set_int_value(1);
           else if (attributes_forbid_div(&out_attr[i])
                    && attributes_accept_div(arch, profile, &in_attr[i]))
             out_attr[i].set_int_value(in_attr[i].int_value());
           else if (in_attr[i].int_value() == 2)
             out_attr[i].set_int_value(in_attr[i].int_value());
         }
         break;

       case elfcpp::Tag_MPextension_use_legacy:
         // We don't output objects with Tag_MPextension_use_legacy - we
         // move the value to Tag_MPextension_use.
         if (in_attr[i].int_value() != 0
             && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
           {
             if (in_attr[elfcpp::Tag_MPextension_use].int_value()
                 != in_attr[i].int_value())
               {
                 gold_error(_("%s has both the current and legacy "
                              "Tag_MPextension_use attributes"),
                            name);
               }
           }

         if (in_attr[i].int_value()
             > out_attr[elfcpp::Tag_MPextension_use].int_value())
           out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];

         break;

       case elfcpp::Tag_nodefaults:
         // This tag is set if it exists, but the value is unused (and is
         // typically zero).  We don't actually need to do anything here -
         // the merge happens automatically when the type flags are merged
         // below.
         break;
       case elfcpp::Tag_also_compatible_with:
         // Already done in Tag_CPU_arch.
         break;
       case elfcpp::Tag_conformance:
         // Keep the attribute if it matches.  Throw it away otherwise.
         // No attribute means no claim to conform.
         if (in_attr[i].string_value() != out_attr[i].string_value())
           out_attr[i].set_string_value("");
         break;

       default:
         {
           const char* err_object = NULL;

           // The "known_obj_attributes" table does contain some undefined
           // attributes.  Ensure that there are unused.
           if (out_attr[i].int_value() != 0
               || out_attr[i].string_value() != "")
             err_object = "output";
           else if (in_attr[i].int_value() != 0
                    || in_attr[i].string_value() != "")
             err_object = name;

           if (err_object != NULL
               && parameters->options().warn_mismatch())
             {
               // Attribute numbers >=64 (mod 128) can be safely ignored.
               if ((i & 127) < 64)
                 gold_error(_("%s: unknown mandatory EABI object attribute "
                              "%d"),
                            err_object, i);
               else
                 gold_warning(_("%s: unknown EABI object attribute %d"),
                              err_object, i);
             }

           // Only pass on attributes that match in both inputs.
           if (!in_attr[i].matches(out_attr[i]))
             {
               out_attr[i].set_int_value(0);
               out_attr[i].set_string_value("");
             }
         }
       }

     // If out_attr was copied from in_attr then it won't have a type yet.
     if (in_attr[i].type() && !out_attr[i].type())
       out_attr[i].set_type(in_attr[i].type());
   }

 // Merge Tag_compatibility attributes and any common GNU ones.
 this->attributes_section_data_->merge(name, pasd);

 // Check for any attributes not known on ARM.
 typedef Vendor_object_attributes::Other_attributes Other_attributes;
 const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
 Other_attributes::const_iterator in_iter = in_other_attributes->begin();
 Other_attributes* out_other_attributes =
   this->attributes_section_data_->other_attributes(vendor);
 Other_attributes::iterator out_iter = out_other_attributes->begin();

 while (in_iter != in_other_attributes->end()
        || out_iter != out_other_attributes->end())
   {
     const char* err_object = NULL;
     int err_tag = 0;

     // The tags for each list are in numerical order.
     // If the tags are equal, then merge.
     if (out_iter != out_other_attributes->end()
         && (in_iter == in_other_attributes->end()
             || in_iter->first > out_iter->first))
       {
         // This attribute only exists in output.  We can't merge, and we
         // don't know what the tag means, so delete it.
         err_object = "output";
         err_tag = out_iter->first;
         int saved_tag = out_iter->first;
         delete out_iter->second;
         out_other_attributes->erase(out_iter);
         out_iter = out_other_attributes->upper_bound(saved_tag);
       }
     else if (in_iter != in_other_attributes->end()
              && (out_iter != out_other_attributes->end()
                  || in_iter->first < out_iter->first))
       {
         // This attribute only exists in input. We can't merge, and we
         // don't know what the tag means, so ignore it.
         err_object = name;
         err_tag = in_iter->first;
         ++in_iter;
       }
     else // The tags are equal.
       {
         // As present, all attributes in the list are unknown, and
         // therefore can't be merged meaningfully.
         err_object = "output";
         err_tag = out_iter->first;

         //  Only pass on attributes that match in both inputs.
         if (!in_iter->second->matches(*(out_iter->second)))
           {
             // No match.  Delete the attribute.
             int saved_tag = out_iter->first;
             delete out_iter->second;
             out_other_attributes->erase(out_iter);
             out_iter = out_other_attributes->upper_bound(saved_tag);
           }
         else
           {
             // Matched.  Keep the attribute and move to the next.
             ++out_iter;
             ++in_iter;
           }
       }

     if (err_object && parameters->options().warn_mismatch())
       {
         // Attribute numbers >=64 (mod 128) can be safely ignored.  */
         if ((err_tag & 127) < 64)
           {
             gold_error(_("%s: unknown mandatory EABI object attribute %d"),
                        err_object, err_tag);
           }
         else
           {
             gold_warning(_("%s: unknown EABI object attribute %d"),
                          err_object, err_tag);
           }
       }
   }
}

// Stub-generation methods for Target_arm.

// Make a new Arm_input_section object.

template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::new_arm_input_section(
   Relobj* relobj,
   unsigned int shndx)
{
 Section_id sid(relobj, shndx);

 Arm_input_section<big_endian>* arm_input_section =
   new Arm_input_section<big_endian>(relobj, shndx);
 arm_input_section->init();

 // Register new Arm_input_section in map for look-up.
 std::pair<typename Arm_input_section_map::iterator, bool> ins =
   this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));

 // Make sure that it we have not created another Arm_input_section
 // for this input section already.
 gold_assert(ins.second);

 return arm_input_section;
}

// Find the Arm_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.

template<bool big_endian>
Arm_input_section<big_endian>*
Target_arm<big_endian>::find_arm_input_section(
   Relobj* relobj,
   unsigned int shndx) const
{
 Section_id sid(relobj, shndx);
 typename Arm_input_section_map::const_iterator p =
   this->arm_input_section_map_.find(sid);
 return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
}

// Make a new stub table.

template<bool big_endian>
Stub_table<big_endian>*
Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
{
 Stub_table<big_endian>* stub_table =
   new Stub_table<big_endian>(owner);
 this->stub_tables_.push_back(stub_table);

 stub_table->set_address(owner->address() + owner->data_size());
 stub_table->set_file_offset(owner->offset() + owner->data_size());
 stub_table->finalize_data_size();

 return stub_table;
}

// Scan a relocation for stub generation.

template<bool big_endian>
void
Target_arm<big_endian>::scan_reloc_for_stub(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int r_type,
   const Sized_symbol<32>* gsym,
   unsigned int r_sym,
   const Symbol_value<32>* psymval,
   elfcpp::Elf_types<32>::Elf_Swxword addend,
   Arm_address address)
{
 const Arm_relobj<big_endian>* arm_relobj =
   Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);

 bool target_is_thumb;
 Symbol_value<32> symval;
 if (gsym != NULL)
   {
     // This is a global symbol.  Determine if we use PLT and if the
     // final target is THUMB.
     if (gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
       {
         // This uses a PLT, change the symbol value.
         symval.set_output_value(this->plt_address_for_global(gsym));
         psymval = &symval;
         target_is_thumb = false;
       }
     else if (gsym->is_undefined())
       // There is no need to generate a stub symbol is undefined.
       return;
     else
       {
         target_is_thumb =
           ((gsym->type() == elfcpp::STT_ARM_TFUNC)
            || (gsym->type() == elfcpp::STT_FUNC
                && !gsym->is_undefined()
                && ((psymval->value(arm_relobj, 0) & 1) != 0)));
       }
   }
 else
   {
     // This is a local symbol.  Determine if the final target is THUMB.
     target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
   }

 // Strip LSB if this points to a THUMB target.
 const Arm_reloc_property* reloc_property =
   arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
 gold_assert(reloc_property != NULL);
 if (target_is_thumb
     && reloc_property->uses_thumb_bit()
     && ((psymval->value(arm_relobj, 0) & 1) != 0))
   {
     Arm_address stripped_value =
       psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
     symval.set_output_value(stripped_value);
     psymval = &symval;
   }

 // Get the symbol value.
 Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);

 // Owing to pipelining, the PC relative branches below actually skip
 // two instructions when the branch offset is 0.
 Arm_address destination;
 switch (r_type)
   {
   case elfcpp::R_ARM_CALL:
   case elfcpp::R_ARM_JUMP24:
   case elfcpp::R_ARM_PLT32:
     // ARM branches.
     destination = value + addend + 8;
     break;
   case elfcpp::R_ARM_THM_CALL:
   case elfcpp::R_ARM_THM_XPC22:
   case elfcpp::R_ARM_THM_JUMP24:
   case elfcpp::R_ARM_THM_JUMP19:
     // THUMB branches.
     destination = value + addend + 4;
     break;
   default:
     gold_unreachable();
   }

 Reloc_stub* stub = NULL;
 Stub_type stub_type =
   Reloc_stub::stub_type_for_reloc(r_type, address, destination,
                                   target_is_thumb);
 if (stub_type != arm_stub_none)
   {
     // Try looking up an existing stub from a stub table.
     Stub_table<big_endian>* stub_table =
       arm_relobj->stub_table(relinfo->data_shndx);
     gold_assert(stub_table != NULL);

     // Locate stub by destination.
     Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);

     // Create a stub if there is not one already
     stub = stub_table->find_reloc_stub(stub_key);
     if (stub == NULL)
       {
         // create a new stub and add it to stub table.
         stub = this->stub_factory().make_reloc_stub(stub_type);
         stub_table->add_reloc_stub(stub, stub_key);
       }

     // Record the destination address.
     stub->set_destination_address(destination
                                   | (target_is_thumb ? 1 : 0));
   }

 // For Cortex-A8, we need to record a relocation at 4K page boundary.
 if (this->fix_cortex_a8_
     && (r_type == elfcpp::R_ARM_THM_JUMP24
         || r_type == elfcpp::R_ARM_THM_JUMP19
         || r_type == elfcpp::R_ARM_THM_CALL
         || r_type == elfcpp::R_ARM_THM_XPC22)
     && (address & 0xfffU) == 0xffeU)
   {
     // Found a candidate.  Note we haven't checked the destination is
     // within 4K here: if we do so (and don't create a record) we can't
     // tell that a branch should have been relocated when scanning later.
     this->cortex_a8_relocs_info_[address] =
       new Cortex_a8_reloc(stub, r_type,
                           destination | (target_is_thumb ? 1 : 0));
   }
}

// This function scans a relocation sections for stub generation.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.

// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
// SHT_REL or SHT_RELA.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.

// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.

template<bool big_endian>
template<int sh_type>
void inline
Target_arm<big_endian>::scan_reloc_section_for_stubs(
   const Relocate_info<32, big_endian>* relinfo,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   const unsigned char* view,
   elfcpp::Elf_types<32>::Elf_Addr view_address,
   section_size_type)
{
 typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
 const int reloc_size =
   Reloc_types<sh_type, 32, big_endian>::reloc_size;

 Arm_relobj<big_endian>* arm_object =
   Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
 unsigned int local_count = arm_object->local_symbol_count();

 gold::Default_comdat_behavior default_comdat_behavior;
 Comdat_behavior comdat_behavior = CB_UNDETERMINED;

 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
   {
     Reltype reloc(prelocs);

     typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
     unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
     unsigned int r_type = elfcpp::elf_r_type<32>(r_info);

     r_type = this->get_real_reloc_type(r_type);

     // Only a few relocation types need stubs.
     if ((r_type != elfcpp::R_ARM_CALL)
        && (r_type != elfcpp::R_ARM_JUMP24)
        && (r_type != elfcpp::R_ARM_PLT32)
        && (r_type != elfcpp::R_ARM_THM_CALL)
        && (r_type != elfcpp::R_ARM_THM_XPC22)
        && (r_type != elfcpp::R_ARM_THM_JUMP24)
        && (r_type != elfcpp::R_ARM_THM_JUMP19)
        && (r_type != elfcpp::R_ARM_V4BX))
       continue;

     section_offset_type offset =
       convert_to_section_size_type(reloc.get_r_offset());

     if (needs_special_offset_handling)
       {
         offset = output_section->output_offset(relinfo->object,
                                                relinfo->data_shndx,
                                                offset);
         if (offset == -1)
           continue;
       }

     // Create a v4bx stub if --fix-v4bx-interworking is used.
     if (r_type == elfcpp::R_ARM_V4BX)
       {
         if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
           {
             // Get the BX instruction.
             typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
             const Valtype* wv =
               reinterpret_cast<const Valtype*>(view + offset);
             elfcpp::Elf_types<32>::Elf_Swxword insn =
               elfcpp::Swap<32, big_endian>::readval(wv);
             const uint32_t reg = (insn & 0xf);

             if (reg < 0xf)
               {
                 // Try looking up an existing stub from a stub table.
                 Stub_table<big_endian>* stub_table =
                   arm_object->stub_table(relinfo->data_shndx);
                 gold_assert(stub_table != NULL);

                 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
                   {
                     // create a new stub and add it to stub table.
                     Arm_v4bx_stub* stub =
                       this->stub_factory().make_arm_v4bx_stub(reg);
                     gold_assert(stub != NULL);
                     stub_table->add_arm_v4bx_stub(stub);
                   }
               }
           }
         continue;
       }

     // Get the addend.
     Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
     elfcpp::Elf_types<32>::Elf_Swxword addend =
       stub_addend_reader(r_type, view + offset, reloc);

     const Sized_symbol<32>* sym;

     Symbol_value<32> symval;
     const Symbol_value<32> *psymval;
     bool is_defined_in_discarded_section;
     unsigned int shndx;
     const Symbol* gsym = NULL;
     if (r_sym < local_count)
       {
         sym = NULL;
         psymval = arm_object->local_symbol(r_sym);

         // If the local symbol belongs to a section we are discarding,
         // and that section is a debug section, try to find the
         // corresponding kept section and map this symbol to its
         // counterpart in the kept section.  The symbol must not
         // correspond to a section we are folding.
         bool is_ordinary;
         shndx = psymval->input_shndx(&is_ordinary);
         is_defined_in_discarded_section =
           (is_ordinary
            && shndx != elfcpp::SHN_UNDEF
            && !arm_object->is_section_included(shndx)
            && !relinfo->symtab->is_section_folded(arm_object, shndx));

         // We need to compute the would-be final value of this local
         // symbol.
         if (!is_defined_in_discarded_section)
           {
             typedef Sized_relobj_file<32, big_endian> ObjType;
             if (psymval->is_section_symbol())
               symval.set_is_section_symbol();
             typename ObjType::Compute_final_local_value_status status =
               arm_object->compute_final_local_value(r_sym, psymval, &symval,
                                                     relinfo->symtab);
             if (status == ObjType::CFLV_OK)
               {
                 // Currently we cannot handle a branch to a target in
                 // a merged section.  If this is the case, issue an error
                 // and also free the merge symbol value.
                 if (!symval.has_output_value())
                   {
                     const std::string& section_name =
                       arm_object->section_name(shndx);
                     arm_object->error(_("cannot handle branch to local %u "
                                         "in a merged section %s"),
                                       r_sym, section_name.c_str());
                   }
                 psymval = &symval;
               }
             else
               {
                 // We cannot determine the final value.
                 continue;
               }
           }
       }
     else
       {
         gsym = arm_object->global_symbol(r_sym);
         gold_assert(gsym != NULL);
         if (gsym->is_forwarder())
           gsym = relinfo->symtab->resolve_forwards(gsym);

         sym = static_cast<const Sized_symbol<32>*>(gsym);
         if (sym->has_symtab_index() && sym->symtab_index() != -1U)
           symval.set_output_symtab_index(sym->symtab_index());
         else
           symval.set_no_output_symtab_entry();

         // We need to compute the would-be final value of this global
         // symbol.
         const Symbol_table* symtab = relinfo->symtab;
         const Sized_symbol<32>* sized_symbol =
           symtab->get_sized_symbol<32>(gsym);
         Symbol_table::Compute_final_value_status status;
         Arm_address value =
           symtab->compute_final_value<32>(sized_symbol, &status);

         // Skip this if the symbol has not output section.
         if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
           continue;
         symval.set_output_value(value);

         if (gsym->type() == elfcpp::STT_TLS)
           symval.set_is_tls_symbol();
         else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
           symval.set_is_ifunc_symbol();
         psymval = &symval;

         is_defined_in_discarded_section =
           (gsym->is_defined_in_discarded_section()
            && gsym->is_undefined());
         shndx = 0;
       }

     Symbol_value<32> symval2;
     if (is_defined_in_discarded_section)
       {
         std::string name = arm_object->section_name(relinfo->data_shndx);

         if (comdat_behavior == CB_UNDETERMINED)
             comdat_behavior = default_comdat_behavior.get(name.c_str());

         if (comdat_behavior == CB_PRETEND)
           {
             // FIXME: This case does not work for global symbols.
             // We have no place to store the original section index.
             // Fortunately this does not matter for comdat sections,
             // only for sections explicitly discarded by a linker
             // script.
             bool found;
             typename elfcpp::Elf_types<32>::Elf_Addr value =
               arm_object->map_to_kept_section(shndx, name, &found);
             if (found)
               symval2.set_output_value(value + psymval->input_value());
             else
               symval2.set_output_value(0);
           }
         else
           {
             if (comdat_behavior == CB_ERROR)
               issue_discarded_error(relinfo, i, offset, r_sym, gsym);
             symval2.set_output_value(0);
           }
         symval2.set_no_output_symtab_entry();
         psymval = &symval2;
       }

     // If symbol is a section symbol, we don't know the actual type of
     // destination.  Give up.
     if (psymval->is_section_symbol())
       continue;

     this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
                               addend, view_address + offset);
   }
}

// Scan an input section for stub generation.

template<bool big_endian>
void
Target_arm<big_endian>::scan_section_for_stubs(
   const Relocate_info<32, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   const unsigned char* view,
   Arm_address view_address,
   section_size_type view_size)
{
 if (sh_type == elfcpp::SHT_REL)
   this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
       relinfo,
       prelocs,
       reloc_count,
       output_section,
       needs_special_offset_handling,
       view,
       view_address,
       view_size);
 else if (sh_type == elfcpp::SHT_RELA)
   // We do not support RELA type relocations yet.  This is provided for
   // completeness.
   this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
       relinfo,
       prelocs,
       reloc_count,
       output_section,
       needs_special_offset_handling,
       view,
       view_address,
       view_size);
 else
   gold_unreachable();
}

// Group input sections for stub generation.
//
// We group input sections in an output section so that the total size,
// including any padding space due to alignment is smaller than GROUP_SIZE
// unless the only input section in group is bigger than GROUP_SIZE already.
// Then an ARM stub table is created to follow the last input section
// in group.  For each group an ARM stub table is created an is placed
// after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
// extend the group after the stub table.

template<bool big_endian>
void
Target_arm<big_endian>::group_sections(
   Layout* layout,
   section_size_type group_size,
   bool stubs_always_after_branch,
   const Task* task)
{
 // Group input sections and insert stub table
 Layout::Section_list section_list;
 layout->get_executable_sections(&section_list);
 for (Layout::Section_list::const_iterator p = section_list.begin();
      p != section_list.end();
      ++p)
   {
     Arm_output_section<big_endian>* output_section =
       Arm_output_section<big_endian>::as_arm_output_section(*p);
     output_section->group_sections(group_size, stubs_always_after_branch,
                                    this, task);
   }
}

// Relaxation hook.  This is where we do stub generation.

template<bool big_endian>
bool
Target_arm<big_endian>::do_relax(
   int pass,
   const Input_objects* input_objects,
   Symbol_table* symtab,
   Layout* layout,
   const Task* task)
{
 // No need to generate stubs if this is a relocatable link.
 gold_assert(!parameters->options().relocatable());

 // If this is the first pass, we need to group input sections into
 // stub groups.
 bool done_exidx_fixup = false;
 typedef typename Stub_table_list::iterator Stub_table_iterator;
 if (pass == 1)
   {
     // Determine the stub group size.  The group size is the absolute
     // value of the parameter --stub-group-size.  If --stub-group-size
     // is passed a negative value, we restrict stubs to be always after
     // the stubbed branches.
     int32_t stub_group_size_param =
       parameters->options().stub_group_size();
     bool stubs_always_after_branch = stub_group_size_param < 0;
     section_size_type stub_group_size = abs(stub_group_size_param);

     if (stub_group_size == 1)
       {
         // Default value.
         // Thumb branch range is +-4MB has to be used as the default
         // maximum size (a given section can contain both ARM and Thumb
         // code, so the worst case has to be taken into account).  If we are
         // fixing cortex-a8 errata, the branch range has to be even smaller,
         // since wide conditional branch has a range of +-1MB only.
         //
         // This value is 48K less than that, which allows for 4096
         // 12-byte stubs.  If we exceed that, then we will fail to link.
         // The user will have to relink with an explicit group size
         // option.
           stub_group_size = 4145152;
       }

     // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
     // page as the first half of a 32-bit branch straddling two 4K pages.
     // This is a crude way of enforcing that.  In addition, long conditional
     // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
     // erratum, limit the group size to  (1M - 12k) to avoid unreachable
     // cortex-A8 stubs from long conditional branches.
     if (this->fix_cortex_a8_)
       {
         stubs_always_after_branch = true;
         const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
         stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
       }

     group_sections(layout, stub_group_size, stubs_always_after_branch, task);

     // Also fix .ARM.exidx section coverage.
     Arm_output_section<big_endian>* exidx_output_section = NULL;
     for (Layout::Section_list::const_iterator p =
            layout->section_list().begin();
          p != layout->section_list().end();
          ++p)
       if ((*p)->type() == elfcpp::SHT_ARM_EXIDX)
         {
           if (exidx_output_section == NULL)
             exidx_output_section =
               Arm_output_section<big_endian>::as_arm_output_section(*p);
           else
             // We cannot handle this now.
             gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a "
                          "non-relocatable link"),
                         exidx_output_section->name(),
                         (*p)->name());
         }

     if (exidx_output_section != NULL)
       {
         this->fix_exidx_coverage(layout, input_objects, exidx_output_section,
                                  symtab, task);
         done_exidx_fixup = true;
       }
   }
 else
   {
     // If this is not the first pass, addresses and file offsets have
     // been reset at this point, set them here.
     for (Stub_table_iterator sp = this->stub_tables_.begin();
          sp != this->stub_tables_.end();
          ++sp)
       {
         Arm_input_section<big_endian>* owner = (*sp)->owner();
         off_t off = align_address(owner->original_size(),
                                   (*sp)->addralign());
         (*sp)->set_address_and_file_offset(owner->address() + off,
                                            owner->offset() + off);
       }
   }

 // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
 // beginning of each relaxation pass, just blow away all the stubs.
 // Alternatively, we could selectively remove only the stubs and reloc
 // information for code sections that have moved since the last pass.
 // That would require more book-keeping.
 if (this->fix_cortex_a8_)
   {
     // Clear all Cortex-A8 reloc information.
     for (typename Cortex_a8_relocs_info::const_iterator p =
            this->cortex_a8_relocs_info_.begin();
          p != this->cortex_a8_relocs_info_.end();
          ++p)
       delete p->second;
     this->cortex_a8_relocs_info_.clear();

     // Remove all Cortex-A8 stubs.
     for (Stub_table_iterator sp = this->stub_tables_.begin();
          sp != this->stub_tables_.end();
          ++sp)
       (*sp)->remove_all_cortex_a8_stubs();
   }

 // Scan relocs for relocation stubs
 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
      op != input_objects->relobj_end();
      ++op)
   {
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(*op);
     // Lock the object so we can read from it.  This is only called
     // single-threaded from Layout::finalize, so it is OK to lock.
     Task_lock_obj<Object> tl(task, arm_relobj);
     arm_relobj->scan_sections_for_stubs(this, symtab, layout);
   }

 // Check all stub tables to see if any of them have their data sizes
 // or addresses alignments changed.  These are the only things that
 // matter.
 bool any_stub_table_changed = false;
 Unordered_set<const Output_section*> sections_needing_adjustment;
 for (Stub_table_iterator sp = this->stub_tables_.begin();
      (sp != this->stub_tables_.end()) && !any_stub_table_changed;
      ++sp)
   {
     if ((*sp)->update_data_size_and_addralign())
       {
         // Update data size of stub table owner.
         Arm_input_section<big_endian>* owner = (*sp)->owner();
         uint64_t address = owner->address();
         off_t offset = owner->offset();
         owner->reset_address_and_file_offset();
         owner->set_address_and_file_offset(address, offset);

         sections_needing_adjustment.insert(owner->output_section());
         any_stub_table_changed = true;
       }
   }

 // Output_section_data::output_section() returns a const pointer but we
 // need to update output sections, so we record all output sections needing
 // update above and scan the sections here to find out what sections need
 // to be updated.
 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
     p != layout->section_list().end();
     ++p)
   {
     if (sections_needing_adjustment.find(*p)
         != sections_needing_adjustment.end())
       (*p)->set_section_offsets_need_adjustment();
   }

 // Stop relaxation if no EXIDX fix-up and no stub table change.
 bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;

 // Finalize the stubs in the last relaxation pass.
 if (!continue_relaxation)
   {
     for (Stub_table_iterator sp = this->stub_tables_.begin();
          (sp != this->stub_tables_.end()) && !any_stub_table_changed;
           ++sp)
       (*sp)->finalize_stubs();

     // Update output local symbol counts of objects if necessary.
     for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
          op != input_objects->relobj_end();
          ++op)
       {
         Arm_relobj<big_endian>* arm_relobj =
           Arm_relobj<big_endian>::as_arm_relobj(*op);

         // Update output local symbol counts.  We need to discard local
         // symbols defined in parts of input sections that are discarded by
         // relaxation.
         if (arm_relobj->output_local_symbol_count_needs_update())
           {
             // We need to lock the object's file to update it.
             Task_lock_obj<Object> tl(task, arm_relobj);
             arm_relobj->update_output_local_symbol_count();
           }
       }
   }

 return continue_relaxation;
}

// Relocate a stub.

template<bool big_endian>
void
Target_arm<big_endian>::relocate_stub(
   Stub* stub,
   const Relocate_info<32, big_endian>* relinfo,
   Output_section* output_section,
   unsigned char* view,
   Arm_address address,
   section_size_type view_size)
{
 Relocate relocate;
 const Stub_template* stub_template = stub->stub_template();
 for (size_t i = 0; i < stub_template->reloc_count(); i++)
   {
     size_t reloc_insn_index = stub_template->reloc_insn_index(i);
     const Insn_template* insn = &stub_template->insns()[reloc_insn_index];

     unsigned int r_type = insn->r_type();
     section_size_type reloc_offset = stub_template->reloc_offset(i);
     section_size_type reloc_size = insn->size();
     gold_assert(reloc_offset + reloc_size <= view_size);

     // This is the address of the stub destination.
     Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
     Symbol_value<32> symval;
     symval.set_output_value(target);

     // Synthesize a fake reloc just in case.  We don't have a symbol so
     // we use 0.
     unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
     memset(reloc_buffer, 0, sizeof(reloc_buffer));
     elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
     reloc_write.put_r_offset(reloc_offset);
     reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));

     relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section,
                       this->fake_relnum_for_stubs, reloc_buffer,
                       NULL, &symval, view + reloc_offset,
                       address + reloc_offset, reloc_size);
   }
}

// Determine whether an object attribute tag takes an integer, a
// string or both.

template<bool big_endian>
int
Target_arm<big_endian>::do_attribute_arg_type(int tag) const
{
 if (tag == Object_attribute::Tag_compatibility)
   return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
           | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
 else if (tag == elfcpp::Tag_nodefaults)
   return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
           | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
 else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
   return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
 else if (tag < 32)
   return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
 else
   return ((tag & 1) != 0
           ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
           : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
}

// Reorder attributes.
//
// The ABI defines that Tag_conformance should be emitted first, and that
// Tag_nodefaults should be second (if either is defined).  This sets those
// two positions, and bumps up the position of all the remaining tags to
// compensate.

template<bool big_endian>
int
Target_arm<big_endian>::do_attributes_order(int num) const
{
 // Reorder the known object attributes in output.  We want to move
 // Tag_conformance to position 4 and Tag_conformance to position 5
 // and shift everything between 4 .. Tag_conformance - 1 to make room.
 if (num == 4)
   return elfcpp::Tag_conformance;
 if (num == 5)
   return elfcpp::Tag_nodefaults;
 if ((num - 2) < elfcpp::Tag_nodefaults)
   return num - 2;
 if ((num - 1) < elfcpp::Tag_conformance)
   return num - 1;
 return num;
}

// Scan a span of THUMB code for Cortex-A8 erratum.

template<bool big_endian>
void
Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
   Arm_relobj<big_endian>* arm_relobj,
   unsigned int shndx,
   section_size_type span_start,
   section_size_type span_end,
   const unsigned char* view,
   Arm_address address)
{
 // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
 //
 // The opcode is BLX.W, BL.W, B.W, Bcc.W
 // The branch target is in the same 4KB region as the
 // first half of the branch.
 // The instruction before the branch is a 32-bit
 // length non-branch instruction.
 section_size_type i = span_start;
 bool last_was_32bit = false;
 bool last_was_branch = false;
 while (i < span_end)
   {
     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
     const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
     uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
     bool is_blx = false, is_b = false;
     bool is_bl = false, is_bcc = false;

     bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
     if (insn_32bit)
       {
         // Load the rest of the insn (in manual-friendly order).
         insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);

         // Encoding T4: B<c>.W.
         is_b = (insn & 0xf800d000U) == 0xf0009000U;
         // Encoding T1: BL<c>.W.
         is_bl = (insn & 0xf800d000U) == 0xf000d000U;
         // Encoding T2: BLX<c>.W.
         is_blx = (insn & 0xf800d000U) == 0xf000c000U;
         // Encoding T3: B<c>.W (not permitted in IT block).
         is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
                   && (insn & 0x07f00000U) != 0x03800000U);
       }

     bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;

     // If this instruction is a 32-bit THUMB branch that crosses a 4K
     // page boundary and it follows 32-bit non-branch instruction,
     // we need to work around.
     if (is_32bit_branch
         && ((address + i) & 0xfffU) == 0xffeU
         && last_was_32bit
         && !last_was_branch)
       {
         // Check to see if there is a relocation stub for this branch.
         bool force_target_arm = false;
         bool force_target_thumb = false;
         const Cortex_a8_reloc* cortex_a8_reloc = NULL;
         Cortex_a8_relocs_info::const_iterator p =
           this->cortex_a8_relocs_info_.find(address + i);

         if (p != this->cortex_a8_relocs_info_.end())
           {
             cortex_a8_reloc = p->second;
             bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;

             if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
                 && !target_is_thumb)
               force_target_arm = true;
             else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
                      && target_is_thumb)
               force_target_thumb = true;
           }

         off_t offset;
         Stub_type stub_type = arm_stub_none;

         // Check if we have an offending branch instruction.
         uint16_t upper_insn = (insn >> 16) & 0xffffU;
         uint16_t lower_insn = insn & 0xffffU;
         typedef class Arm_relocate_functions<big_endian> RelocFuncs;

         if (cortex_a8_reloc != NULL
             && cortex_a8_reloc->reloc_stub() != NULL)
           // We've already made a stub for this instruction, e.g.
           // it's a long branch or a Thumb->ARM stub.  Assume that
           // stub will suffice to work around the A8 erratum (see
           // setting of always_after_branch above).
           ;
         else if (is_bcc)
           {
             offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
                                                             lower_insn);
             stub_type = arm_stub_a8_veneer_b_cond;
           }
         else if (is_b || is_bl || is_blx)
           {
             offset = RelocFuncs::thumb32_branch_offset(upper_insn,
                                                        lower_insn);
             if (is_blx)
               offset &= ~3;

             stub_type = (is_blx
                          ? arm_stub_a8_veneer_blx
                          : (is_bl
                             ? arm_stub_a8_veneer_bl
                             : arm_stub_a8_veneer_b));
           }

         if (stub_type != arm_stub_none)
           {
             Arm_address pc_for_insn = address + i + 4;

             // The original instruction is a BL, but the target is
             // an ARM instruction.  If we were not making a stub,
             // the BL would have been converted to a BLX.  Use the
             // BLX stub instead in that case.
             if (this->may_use_v5t_interworking() && force_target_arm
                 && stub_type == arm_stub_a8_veneer_bl)
               {
                 stub_type = arm_stub_a8_veneer_blx;
                 is_blx = true;
                 is_bl = false;
               }
             // Conversely, if the original instruction was
             // BLX but the target is Thumb mode, use the BL stub.
             else if (force_target_thumb
                      && stub_type == arm_stub_a8_veneer_blx)
               {
                 stub_type = arm_stub_a8_veneer_bl;
                 is_blx = false;
                 is_bl = true;
               }

             if (is_blx)
               pc_for_insn &= ~3;

             // If we found a relocation, use the proper destination,
             // not the offset in the (unrelocated) instruction.
             // Note this is always done if we switched the stub type above.
             if (cortex_a8_reloc != NULL)
               offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);

             Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);

             // Add a new stub if destination address is in the same page.
             if (((address + i) & ~0xfffU) == (target & ~0xfffU))
               {
                 Cortex_a8_stub* stub =
                   this->stub_factory_.make_cortex_a8_stub(stub_type,
                                                           arm_relobj, shndx,
                                                           address + i,
                                                           target, insn);
                 Stub_table<big_endian>* stub_table =
                   arm_relobj->stub_table(shndx);
                 gold_assert(stub_table != NULL);
                 stub_table->add_cortex_a8_stub(address + i, stub);
               }
           }
       }

     i += insn_32bit ? 4 : 2;
     last_was_32bit = insn_32bit;
     last_was_branch = is_32bit_branch;
   }
}

// Apply the Cortex-A8 workaround.

template<bool big_endian>
void
Target_arm<big_endian>::apply_cortex_a8_workaround(
   const Cortex_a8_stub* stub,
   Arm_address stub_address,
   unsigned char* insn_view,
   Arm_address insn_address)
{
 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
 Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
 Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
 Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
 off_t branch_offset = stub_address - (insn_address + 4);

 typedef class Arm_relocate_functions<big_endian> RelocFuncs;
 switch (stub->stub_template()->type())
   {
   case arm_stub_a8_veneer_b_cond:
     // For a conditional branch, we re-write it to be an unconditional
     // branch to the stub.  We use the THUMB-2 encoding here.
     upper_insn = 0xf000U;
     lower_insn = 0xb800U;
     // Fall through.
   case arm_stub_a8_veneer_b:
   case arm_stub_a8_veneer_bl:
   case arm_stub_a8_veneer_blx:
     if ((lower_insn & 0x5000U) == 0x4000U)
       // For a BLX instruction, make sure that the relocation is
       // rounded up to a word boundary.  This follows the semantics of
       // the instruction which specifies that bit 1 of the target
       // address will come from bit 1 of the base address.
       branch_offset = (branch_offset + 2) & ~3;

     // Put BRANCH_OFFSET back into the insn.
     gold_assert(!Bits<25>::has_overflow32(branch_offset));
     upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
     lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
     break;

   default:
     gold_unreachable();
   }

 // Put the relocated value back in the object file:
 elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
 elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
}

// Target selector for ARM.  Note this is never instantiated directly.
// It's only used in Target_selector_arm_nacl, below.

template<bool big_endian>
class Target_selector_arm : public Target_selector
{
public:
 Target_selector_arm()
   : Target_selector(elfcpp::EM_ARM, 32, big_endian,
                     (big_endian ? "elf32-bigarm" : "elf32-littlearm"),
                     (big_endian ? "armelfb" : "armelf"))
 { }

 Target*
 do_instantiate_target()
 { return new Target_arm<big_endian>(); }
};

// Fix .ARM.exidx section coverage.

template<bool big_endian>
void
Target_arm<big_endian>::fix_exidx_coverage(
   Layout* layout,
   const Input_objects* input_objects,
   Arm_output_section<big_endian>* exidx_section,
   Symbol_table* symtab,
   const Task* task)
{
 // We need to look at all the input sections in output in ascending
 // order of output address.  We do that by building a sorted list
 // of output sections by addresses.  Then we looks at the output sections
 // in order.  The input sections in an output section are already sorted
 // by addresses within the output section.

 typedef std::set<Output_section*, output_section_address_less_than>
     Sorted_output_section_list;
 Sorted_output_section_list sorted_output_sections;

 // Find out all the output sections of input sections pointed by
 // EXIDX input sections.
 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
      p != input_objects->relobj_end();
      ++p)
   {
     Arm_relobj<big_endian>* arm_relobj =
       Arm_relobj<big_endian>::as_arm_relobj(*p);
     std::vector<unsigned int> shndx_list;
     arm_relobj->get_exidx_shndx_list(&shndx_list);
     for (size_t i = 0; i < shndx_list.size(); ++i)
       {
         const Arm_exidx_input_section* exidx_input_section =
           arm_relobj->exidx_input_section_by_shndx(shndx_list[i]);
         gold_assert(exidx_input_section != NULL);
         if (!exidx_input_section->has_errors())
           {
             unsigned int text_shndx = exidx_input_section->link();
             Output_section* os = arm_relobj->output_section(text_shndx);
             if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0)
               sorted_output_sections.insert(os);
           }
       }
   }

 // Go over the output sections in ascending order of output addresses.
 typedef typename Arm_output_section<big_endian>::Text_section_list
     Text_section_list;
 Text_section_list sorted_text_sections;
 for (typename Sorted_output_section_list::iterator p =
       sorted_output_sections.begin();
     p != sorted_output_sections.end();
     ++p)
   {
     Arm_output_section<big_endian>* arm_output_section =
       Arm_output_section<big_endian>::as_arm_output_section(*p);
     arm_output_section->append_text_sections_to_list(&sorted_text_sections);
   }

 exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
                                   merge_exidx_entries(), task);
}

template<bool big_endian>
void
Target_arm<big_endian>::do_define_standard_symbols(
   Symbol_table* symtab,
   Layout* layout)
{
 // Handle the .ARM.exidx section.
 Output_section* exidx_section = layout->find_output_section(".ARM.exidx");

 if (exidx_section != NULL)
   {
     // Create __exidx_start and __exidx_end symbols.
     symtab->define_in_output_data("__exidx_start",
                                   NULL, // version
                                   Symbol_table::PREDEFINED,
                                   exidx_section,
                                   0, // value
                                   0, // symsize
                                   elfcpp::STT_NOTYPE,
                                   elfcpp::STB_GLOBAL,
                                   elfcpp::STV_HIDDEN,
                                   0, // nonvis
                                   false, // offset_is_from_end
                                   true); // only_if_ref

     symtab->define_in_output_data("__exidx_end",
                                   NULL, // version
                                   Symbol_table::PREDEFINED,
                                   exidx_section,
                                   0, // value
                                   0, // symsize
                                   elfcpp::STT_NOTYPE,
                                   elfcpp::STB_GLOBAL,
                                   elfcpp::STV_HIDDEN,
                                   0, // nonvis
                                   true, // offset_is_from_end
                                   true); // only_if_ref
   }
 else
   {
     // Define __exidx_start and __exidx_end even when .ARM.exidx
     // section is missing to match ld's behaviour.
     symtab->define_as_constant("__exidx_start", NULL,
                                Symbol_table::PREDEFINED,
                                0, 0, elfcpp::STT_OBJECT,
                                elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
                                true, false);
     symtab->define_as_constant("__exidx_end", NULL,
                                Symbol_table::PREDEFINED,
                                0, 0, elfcpp::STT_OBJECT,
                                elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
                                true, false);
   }
}

// NaCl variant.  It uses different PLT contents.

template<bool big_endian>
class Output_data_plt_arm_nacl;

template<bool big_endian>
class Target_arm_nacl : public Target_arm<big_endian>
{
public:
 Target_arm_nacl()
   : Target_arm<big_endian>(&arm_nacl_info)
 { }

protected:
 virtual Output_data_plt_arm<big_endian>*
 do_make_data_plt(
                  Layout* layout,
                  Arm_output_data_got<big_endian>* got,
                  Output_data_space* got_plt,
                  Output_data_space* got_irelative)
 { return new Output_data_plt_arm_nacl<big_endian>(
     layout, got, got_plt, got_irelative); }

private:
 static const Target::Target_info arm_nacl_info;
};

template<bool big_endian>
const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info =
{
 32,                   // size
 big_endian,           // is_big_endian
 elfcpp::EM_ARM,       // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 true,                 // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/lib/ld-nacl-arm.so.1", // dynamic_linker
 0x20000,              // default_text_segment_address
 0x10000,              // abi_pagesize (overridable by -z max-page-size)
 0x10000,              // common_pagesize (overridable by -z common-page-size)
 true,                 // isolate_execinstr
 0x10000000,           // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 ".ARM.attributes",    // attributes_section
 "aeabi",              // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

template<bool big_endian>
class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian>
{
public:
 Output_data_plt_arm_nacl(
     Layout* layout,
     Arm_output_data_got<big_endian>* got,
     Output_data_space* got_plt,
     Output_data_space* got_irelative)
   : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative)
 { }

protected:
 // Return the offset of the first non-reserved PLT entry.
 virtual unsigned int
 do_first_plt_entry_offset() const
 { return sizeof(first_plt_entry); }

 // Return the size of a PLT entry.
 virtual unsigned int
 do_get_plt_entry_size() const
 { return sizeof(plt_entry); }

 virtual void
 do_fill_first_plt_entry(unsigned char* pov,
                         Arm_address got_address,
                         Arm_address plt_address);

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Arm_address got_address,
                   Arm_address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset);

private:
 inline uint32_t arm_movw_immediate(uint32_t value)
 {
   return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
 }

 inline uint32_t arm_movt_immediate(uint32_t value)
 {
   return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
 }

 // Template for the first PLT entry.
 static const uint32_t first_plt_entry[16];

 // Template for subsequent PLT entries.
 static const uint32_t plt_entry[4];
};

// The first entry in the PLT.
template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] =
{
 // First bundle:
 0xe300c000,                           // movw ip, #:lower16:&GOT[2]-.+8
 0xe340c000,                           // movt ip, #:upper16:&GOT[2]-.+8
 0xe08cc00f,                           // add  ip, ip, pc
 0xe52dc008,                           // str  ip, [sp, #-8]!
 // Second bundle:
 0xe3ccc103,                           // bic  ip, ip, #0xc0000000
 0xe59cc000,                           // ldr  ip, [ip]
 0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
 0xe12fff1c,                           // bx   ip
 // Third bundle:
 0xe320f000,                           // nop
 0xe320f000,                           // nop
 0xe320f000,                           // nop
 // .Lplt_tail:
 0xe50dc004,                           // str  ip, [sp, #-4]
 // Fourth bundle:
 0xe3ccc103,                           // bic  ip, ip, #0xc0000000
 0xe59cc000,                           // ldr  ip, [ip]
 0xe3ccc13f,                           // bic  ip, ip, #0xc000000f
 0xe12fff1c,                           // bx   ip
};

template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry(
   unsigned char* pov,
   Arm_address got_address,
   Arm_address plt_address)
{
 // Write first PLT entry.  All but first two words are constants.
 const size_t num_first_plt_words = (sizeof(first_plt_entry)
                                     / sizeof(first_plt_entry[0]));

 int32_t got_displacement = got_address + 8 - (plt_address + 16);

 elfcpp::Swap<32, big_endian>::writeval
   (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement));
 elfcpp::Swap<32, big_endian>::writeval
   (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement));

 for (size_t i = 2; i < num_first_plt_words; ++i)
   elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]);
}

// Subsequent entries in the PLT.

template<bool big_endian>
const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] =
{
 0xe300c000,                           // movw ip, #:lower16:&GOT[n]-.+8
 0xe340c000,                           // movt ip, #:upper16:&GOT[n]-.+8
 0xe08cc00f,                           // add  ip, ip, pc
 0xea000000,                           // b    .Lplt_tail
};

template<bool big_endian>
void
Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry(
   unsigned char* pov,
   Arm_address got_address,
   Arm_address plt_address,
   unsigned int got_offset,
   unsigned int plt_offset)
{
 // Calculate the displacement between the PLT slot and the
 // common tail that's part of the special initial PLT slot.
 int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t))
                              - (plt_address + plt_offset
                                 + sizeof(plt_entry) + sizeof(uint32_t)));
 gold_assert((tail_displacement & 3) == 0);
 tail_displacement >>= 2;

 gold_assert ((tail_displacement & 0xff000000) == 0
              || (-tail_displacement & 0xff000000) == 0);

 // Calculate the displacement between the PLT slot and the entry
 // in the GOT.  The offset accounts for the value produced by
 // adding to pc in the penultimate instruction of the PLT stub.
 const int32_t got_displacement = (got_address + got_offset
                                   - (plt_address + sizeof(plt_entry)));

 elfcpp::Swap<32, big_endian>::writeval
   (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement));
 elfcpp::Swap<32, big_endian>::writeval
   (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement));
 elfcpp::Swap<32, big_endian>::writeval
   (pov + 8, plt_entry[2]);
 elfcpp::Swap<32, big_endian>::writeval
   (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff));
}

// Target selectors.

template<bool big_endian>
class Target_selector_arm_nacl
 : public Target_selector_nacl<Target_selector_arm<big_endian>,
                               Target_arm_nacl<big_endian> >
{
public:
 Target_selector_arm_nacl()
   : Target_selector_nacl<Target_selector_arm<big_endian>,
                          Target_arm_nacl<big_endian> >(
         "arm",
         big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl",
         big_endian ? "armelfb_nacl" : "armelf_nacl")
 { }
};

Target_selector_arm_nacl<false> target_selector_arm;
Target_selector_arm_nacl<true> target_selector_armbe;

} // End anonymous namespace.