// aarch64.cc -- aarch64 target support for gold.

// Copyright (C) 2014-2024 Free Software Foundation, Inc.
// Written by Jing Yu <[email protected]> and Han Shen <[email protected]>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#include "gold.h"

#include <cstring>
#include <map>
#include <set>

#include "elfcpp.h"
#include "dwarf.h"
#include "parameters.h"
#include "reloc.h"
#include "aarch64.h"
#include "object.h"
#include "symtab.h"
#include "layout.h"
#include "output.h"
#include "copy-relocs.h"
#include "target.h"
#include "target-reloc.h"
#include "target-select.h"
#include "tls.h"
#include "freebsd.h"
#include "nacl.h"
#include "gc.h"
#include "icf.h"
#include "aarch64-reloc-property.h"

// The first three .got.plt entries are reserved.
const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;


namespace
{

using namespace gold;

template<int size, bool big_endian>
class Output_data_plt_aarch64;

template<int size, bool big_endian>
class Output_data_plt_aarch64_standard;

template<int size, bool big_endian>
class Target_aarch64;

template<int size, bool big_endian>
class AArch64_relocate_functions;

// Utility class dealing with insns. This is ported from macros in
// bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
// class is used in erratum sequence scanning.

template<bool big_endian>
class AArch64_insn_utilities
{
public:
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;

 static const int BYTES_PER_INSN;

 // Zero register encoding - 31.
 static const unsigned int AARCH64_ZR;

 static unsigned int
 aarch64_bit(Insntype insn, int pos)
 { return ((1 << pos)  & insn) >> pos; }

 static unsigned int
 aarch64_bits(Insntype insn, int pos, int l)
 { return (insn >> pos) & ((1 << l) - 1); }

 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
 // the name defined in armv8 insn manual C3.5.9.
 static unsigned int
 aarch64_op31(Insntype insn)
 { return aarch64_bits(insn, 21, 3); }

 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
 // third source register. See armv8 insn manual C3.5.9.
 static unsigned int
 aarch64_ra(Insntype insn)
 { return aarch64_bits(insn, 10, 5); }

 static bool
 is_adr(const Insntype insn)
 { return (insn & 0x9F000000) == 0x10000000; }

 static bool
 is_adrp(const Insntype insn)
 { return (insn & 0x9F000000) == 0x90000000; }

 static bool
 is_mrs_tpidr_el0(const Insntype insn)
 { return (insn & 0xFFFFFFE0) == 0xd53bd040; }

 static unsigned int
 aarch64_rm(const Insntype insn)
 { return aarch64_bits(insn, 16, 5); }

 static unsigned int
 aarch64_rn(const Insntype insn)
 { return aarch64_bits(insn, 5, 5); }

 static unsigned int
 aarch64_rd(const Insntype insn)
 { return aarch64_bits(insn, 0, 5); }

 static unsigned int
 aarch64_rt(const Insntype insn)
 { return aarch64_bits(insn, 0, 5); }

 static unsigned int
 aarch64_rt2(const Insntype insn)
 { return aarch64_bits(insn, 10, 5); }

 // Encode imm21 into adr. Signed imm21 is in the range of [-1M, 1M).
 static Insntype
 aarch64_adr_encode_imm(Insntype adr, int imm21)
 {
   gold_assert(is_adr(adr));
   gold_assert(-(1 << 20) <= imm21 && imm21 < (1 << 20));
   const int mask19 = (1 << 19) - 1;
   const int mask2 = 3;
   adr &= ~((mask19 << 5) | (mask2 << 29));
   adr |= ((imm21 & mask2) << 29) | (((imm21 >> 2) & mask19) << 5);
   return adr;
 }

 // Retrieve encoded adrp 33-bit signed imm value. This value is obtained by
 // 21-bit signed imm encoded in the insn multiplied by 4k (page size) and
 // 64-bit sign-extended, resulting in [-4G, 4G) with 12-lsb being 0.
 static int64_t
 aarch64_adrp_decode_imm(const Insntype adrp)
 {
   const int mask19 = (1 << 19) - 1;
   const int mask2 = 3;
   gold_assert(is_adrp(adrp));
   // 21-bit imm encoded in adrp.
   uint64_t imm = ((adrp >> 29) & mask2) | (((adrp >> 5) & mask19) << 2);
   // Retrieve msb of 21-bit-signed imm for sign extension.
   uint64_t msbt = (imm >> 20) & 1;
   // Real value is imm multiplied by 4k. Value now has 33-bit information.
   int64_t value = imm << 12;
   // Sign extend to 64-bit by repeating msbt 31 (64-33) times and merge it
   // with value.
   return ((((uint64_t)(1) << 32) - msbt) << 33) | value;
 }

 static bool
 aarch64_b(const Insntype insn)
 { return (insn & 0xFC000000) == 0x14000000; }

 static bool
 aarch64_bl(const Insntype insn)
 { return (insn & 0xFC000000) == 0x94000000; }

 static bool
 aarch64_blr(const Insntype insn)
 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }

 static bool
 aarch64_br(const Insntype insn)
 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }

 // All ld/st ops.  See C4-182 of the ARM ARM.  The encoding space for
 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
 static bool
 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }

 static bool
 aarch64_ldst(Insntype insn)
 { return (insn & 0x0a000000) == 0x08000000; }

 static bool
 aarch64_ldst_ex(Insntype insn)
 { return (insn & 0x3f000000) == 0x08000000; }

 static bool
 aarch64_ldst_pcrel(Insntype insn)
 { return (insn & 0x3b000000) == 0x18000000; }

 static bool
 aarch64_ldst_nap(Insntype insn)
 { return (insn & 0x3b800000) == 0x28000000; }

 static bool
 aarch64_ldstp_pi(Insntype insn)
 { return (insn & 0x3b800000) == 0x28800000; }

 static bool
 aarch64_ldstp_o(Insntype insn)
 { return (insn & 0x3b800000) == 0x29000000; }

 static bool
 aarch64_ldstp_pre(Insntype insn)
 { return (insn & 0x3b800000) == 0x29800000; }

 static bool
 aarch64_ldst_ui(Insntype insn)
 { return (insn & 0x3b200c00) == 0x38000000; }

 static bool
 aarch64_ldst_piimm(Insntype insn)
 { return (insn & 0x3b200c00) == 0x38000400; }

 static bool
 aarch64_ldst_u(Insntype insn)
 { return (insn & 0x3b200c00) == 0x38000800; }

 static bool
 aarch64_ldst_preimm(Insntype insn)
 { return (insn & 0x3b200c00) == 0x38000c00; }

 static bool
 aarch64_ldst_ro(Insntype insn)
 { return (insn & 0x3b200c00) == 0x38200800; }

 static bool
 aarch64_ldst_uimm(Insntype insn)
 { return (insn & 0x3b000000) == 0x39000000; }

 static bool
 aarch64_ldst_simd_m(Insntype insn)
 { return (insn & 0xbfbf0000) == 0x0c000000; }

 static bool
 aarch64_ldst_simd_m_pi(Insntype insn)
 { return (insn & 0xbfa00000) == 0x0c800000; }

 static bool
 aarch64_ldst_simd_s(Insntype insn)
 { return (insn & 0xbf9f0000) == 0x0d000000; }

 static bool
 aarch64_ldst_simd_s_pi(Insntype insn)
 { return (insn & 0xbf800000) == 0x0d800000; }

 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
 // instructions PAIR is TRUE, RT and RT2 are returned.
 static bool
 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
                  bool *pair, bool *load)
 {
   uint32_t opcode;
   unsigned int r;
   uint32_t opc = 0;
   uint32_t v = 0;
   uint32_t opc_v = 0;

   /* Bail out quickly if INSN doesn't fall into the load-store
      encoding space.  */
   if (!aarch64_ldst (insn))
     return false;

   *pair = false;
   *load = false;
   if (aarch64_ldst_ex (insn))
     {
       *rt = aarch64_rt (insn);
       *rt2 = *rt;
       if (aarch64_bit (insn, 21) == 1)
         {
           *pair = true;
           *rt2 = aarch64_rt2 (insn);
         }
       *load = aarch64_ld (insn);
       return true;
     }
   else if (aarch64_ldst_nap (insn)
            || aarch64_ldstp_pi (insn)
            || aarch64_ldstp_o (insn)
            || aarch64_ldstp_pre (insn))
     {
       *pair = true;
       *rt = aarch64_rt (insn);
       *rt2 = aarch64_rt2 (insn);
       *load = aarch64_ld (insn);
       return true;
     }
   else if (aarch64_ldst_pcrel (insn)
            || aarch64_ldst_ui (insn)
            || aarch64_ldst_piimm (insn)
            || aarch64_ldst_u (insn)
            || aarch64_ldst_preimm (insn)
            || aarch64_ldst_ro (insn)
            || aarch64_ldst_uimm (insn))
     {
       *rt = aarch64_rt (insn);
       *rt2 = *rt;
       if (aarch64_ldst_pcrel (insn))
         *load = true;
       opc = aarch64_bits (insn, 22, 2);
       v = aarch64_bit (insn, 26);
       opc_v = opc | (v << 2);
       *load =  (opc_v == 1 || opc_v == 2 || opc_v == 3
                 || opc_v == 5 || opc_v == 7);
       return true;
     }
   else if (aarch64_ldst_simd_m (insn)
            || aarch64_ldst_simd_m_pi (insn))
     {
       *rt = aarch64_rt (insn);
       *load = aarch64_bit (insn, 22);
       opcode = (insn >> 12) & 0xf;
       switch (opcode)
         {
         case 0:
         case 2:
           *rt2 = *rt + 3;
           break;

         case 4:
         case 6:
           *rt2 = *rt + 2;
           break;

         case 7:
           *rt2 = *rt;
           break;

         case 8:
         case 10:
           *rt2 = *rt + 1;
           break;

         default:
           return false;
         }
       return true;
     }
   else if (aarch64_ldst_simd_s (insn)
            || aarch64_ldst_simd_s_pi (insn))
     {
       *rt = aarch64_rt (insn);
       r = (insn >> 21) & 1;
       *load = aarch64_bit (insn, 22);
       opcode = (insn >> 13) & 0x7;
       switch (opcode)
         {
         case 0:
         case 2:
         case 4:
           *rt2 = *rt + r;
           break;

         case 1:
         case 3:
         case 5:
           *rt2 = *rt + (r == 0 ? 2 : 3);
           break;

         case 6:
           *rt2 = *rt + r;
           break;

         case 7:
           *rt2 = *rt + (r == 0 ? 2 : 3);
           break;

         default:
           return false;
         }
       return true;
     }
   return false;
 }  // End of "aarch64_mem_op_p".

 // Return true if INSN is mac insn.
 static bool
 aarch64_mac(Insntype insn)
 { return (insn & 0xff000000) == 0x9b000000; }

 // Return true if INSN is multiply-accumulate.
 // (This is similar to implementaton in elfnn-aarch64.c.)
 static bool
 aarch64_mlxl(Insntype insn)
 {
   uint32_t op31 = aarch64_op31(insn);
   if (aarch64_mac(insn)
       && (op31 == 0 || op31 == 1 || op31 == 5)
       /* Exclude MUL instructions which are encoded as a multiple-accumulate
          with RA = XZR.  */
       && aarch64_ra(insn) != AARCH64_ZR)
     {
       return true;
     }
   return false;
 }
};  // End of "AArch64_insn_utilities".


// Insn length in byte.

template<bool big_endian>
const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;


// Zero register encoding - 31.

template<bool big_endian>
const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;


// Output_data_got_aarch64 class.

template<int size, bool big_endian>
class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
   : Output_data_got<size, big_endian>(),
     symbol_table_(symtab), layout_(layout)
 { }

 // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
 // applied in a static link.
 void
 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }


 // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
 // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
 // relocation that needs to be applied in a static link.
 void
 add_static_reloc(unsigned int got_offset, unsigned int r_type,
                  Sized_relobj_file<size, big_endian>* relobj,
                  unsigned int index)
 {
   this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
                                               index));
 }


protected:
 // Write out the GOT table.
 void
 do_write(Output_file* of) {
   // The first entry in the GOT is the address of the .dynamic section.
   gold_assert(this->data_size() >= size / 8);
   Output_section* dynamic = this->layout_->dynamic_section();
   Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
   this->replace_constant(0, dynamic_addr);
   Output_data_got<size, big_endian>::do_write(of);

   // Handling static relocs
   if (this->static_relocs_.empty())
     return;

   typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;

   gold_assert(parameters->doing_static_link());
   const off_t offset = this->offset();
   const section_size_type oview_size =
     convert_to_section_size_type(this->data_size());
   unsigned char* const oview = of->get_output_view(offset, oview_size);

   Output_segment* tls_segment = this->layout_->tls_segment();
   gold_assert(tls_segment != NULL);

   AArch64_address aligned_tcb_address =
     align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
                   tls_segment->maximum_alignment());

   for (size_t i = 0; i < this->static_relocs_.size(); ++i)
     {
       Static_reloc& reloc(this->static_relocs_[i]);
       AArch64_address value;

       if (!reloc.symbol_is_global())
         {
           Sized_relobj_file<size, big_endian>* object = reloc.relobj();
           const Symbol_value<size>* psymval =
             reloc.relobj()->local_symbol(reloc.index());

           // We are doing static linking.  Issue an error and skip this
           // relocation if the symbol is undefined or in a discarded_section.
           bool is_ordinary;
           unsigned int shndx = psymval->input_shndx(&is_ordinary);
           if ((shndx == elfcpp::SHN_UNDEF)
               || (is_ordinary
                   && shndx != elfcpp::SHN_UNDEF
                   && !object->is_section_included(shndx)
                   && !this->symbol_table_->is_section_folded(object, shndx)))
             {
               gold_error(_("undefined or discarded local symbol %u from "
                            " object %s in GOT"),
                          reloc.index(), reloc.relobj()->name().c_str());
               continue;
             }
           value = psymval->value(object, 0);
         }
       else
         {
           const Symbol* gsym = reloc.symbol();
           gold_assert(gsym != NULL);
           if (gsym->is_forwarder())
             gsym = this->symbol_table_->resolve_forwards(gsym);

           // We are doing static linking.  Issue an error and skip this
           // relocation if the symbol is undefined or in a discarded_section
           // unless it is a weakly_undefined symbol.
           if ((gsym->is_defined_in_discarded_section()
                || gsym->is_undefined())
               && !gsym->is_weak_undefined())
             {
               gold_error(_("undefined or discarded symbol %s in GOT"),
                          gsym->name());
               continue;
             }

           if (!gsym->is_weak_undefined())
             {
               const Sized_symbol<size>* sym =
                 static_cast<const Sized_symbol<size>*>(gsym);
               value = sym->value();
             }
           else
             value = 0;
         }

       unsigned got_offset = reloc.got_offset();
       gold_assert(got_offset < oview_size);

       typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
       Valtype x;
       switch (reloc.r_type())
         {
         case elfcpp::R_AARCH64_TLS_DTPREL64:
           x = value;
           break;
         case elfcpp::R_AARCH64_TLS_TPREL64:
           x = value + aligned_tcb_address;
           break;
         default:
           gold_unreachable();
         }
       elfcpp::Swap<size, big_endian>::writeval(wv, x);
     }

   of->write_output_view(offset, oview_size, oview);
 }

private:
 // Symbol table of the output object.
 Symbol_table* symbol_table_;
 // A pointer to the Layout class, so that we can find the .dynamic
 // section when we write out the GOT section.
 Layout* layout_;

 // This class represent dynamic relocations that need to be applied by
 // gold because we are using TLS relocations in a static link.
 class Static_reloc
 {
  public:
   Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
     : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
   { this->u_.global.symbol = gsym; }

   Static_reloc(unsigned int got_offset, unsigned int r_type,
         Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
     : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
   {
     this->u_.local.relobj = relobj;
     this->u_.local.index = index;
   }

   // Return the GOT offset.
   unsigned int
   got_offset() const
   { return this->got_offset_; }

   // Relocation type.
   unsigned int
   r_type() const
   { return this->r_type_; }

   // Whether the symbol is global or not.
   bool
   symbol_is_global() const
   { return this->symbol_is_global_; }

   // For a relocation against a global symbol, the global symbol.
   Symbol*
   symbol() const
   {
     gold_assert(this->symbol_is_global_);
     return this->u_.global.symbol;
   }

   // For a relocation against a local symbol, the defining object.
   Sized_relobj_file<size, big_endian>*
   relobj() const
   {
     gold_assert(!this->symbol_is_global_);
     return this->u_.local.relobj;
   }

   // For a relocation against a local symbol, the local symbol index.
   unsigned int
   index() const
   {
     gold_assert(!this->symbol_is_global_);
     return this->u_.local.index;
   }

  private:
   // GOT offset of the entry to which this relocation is applied.
   unsigned int got_offset_;
   // Type of relocation.
   unsigned int r_type_;
   // Whether this relocation is against a global symbol.
   bool symbol_is_global_;
   // A global or local symbol.
   union
   {
     struct
     {
       // For a global symbol, the symbol itself.
       Symbol* symbol;
     } global;
     struct
     {
       // For a local symbol, the object defining the symbol.
       Sized_relobj_file<size, big_endian>* relobj;
       // For a local symbol, the symbol index.
       unsigned int index;
     } local;
   } u_;
 };  // End of inner class Static_reloc

 std::vector<Static_reloc> static_relocs_;
};  // End of Output_data_got_aarch64


template<int size, bool big_endian>
class AArch64_input_section;


template<int size, bool big_endian>
class AArch64_output_section;


template<int size, bool big_endian>
class AArch64_relobj;


// Stub type enum constants.

enum
{
 ST_NONE = 0,

 // Using adrp/add pair, 4 insns (including alignment) without mem access,
 // the fastest stub. This has a limited jump distance, which is tested by
 // aarch64_valid_for_adrp_p.
 ST_ADRP_BRANCH = 1,

 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
 // unlimited in jump distance.
 ST_LONG_BRANCH_ABS = 2,

 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
 // mem access, slowest one. Only used in position independent executables.
 ST_LONG_BRANCH_PCREL = 3,

 // Stub for erratum 843419 handling.
 ST_E_843419 = 4,

 // Stub for erratum 835769 handling.
 ST_E_835769 = 5,

 // Number of total stub types.
 ST_NUMBER = 6
};


// Struct that wraps insns for a particular stub. All stub templates are
// created/initialized as constants by Stub_template_repertoire.

template<bool big_endian>
struct Stub_template
{
 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
 const int insn_num;
};


// Simple singleton class that creates/initializes/stores all types of stub
// templates.

template<bool big_endian>
class Stub_template_repertoire
{
public:
 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;

 // Single static method to get stub template for a given stub type.
 static const Stub_template<big_endian>*
 get_stub_template(int type)
 {
   static Stub_template_repertoire<big_endian> singleton;
   return singleton.stub_templates_[type];
 }

private:
 // Constructor - creates/initializes all stub templates.
 Stub_template_repertoire();
 ~Stub_template_repertoire()
 { }

 // Disallowing copy ctor and copy assignment operator.
 Stub_template_repertoire(Stub_template_repertoire&);
 Stub_template_repertoire& operator=(Stub_template_repertoire&);

 // Data that stores all insn templates.
 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
};  // End of "class Stub_template_repertoire".


// Constructor - creates/initilizes all stub templates.

template<bool big_endian>
Stub_template_repertoire<big_endian>::Stub_template_repertoire()
{
 // Insn array definitions.
 const static Insntype ST_NONE_INSNS[] = {};

 const static Insntype ST_ADRP_BRANCH_INSNS[] =
   {
     0x90000010,       /*      adrp    ip0, X             */
                       /*        ADR_PREL_PG_HI21(X)      */
     0x91000210,       /*      add     ip0, ip0, :lo12:X  */
                       /*        ADD_ABS_LO12_NC(X)       */
     0xd61f0200,       /*      br      ip0                */
     0x00000000,       /*      alignment padding          */
   };

 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
   {
     0x58000050,       /*      ldr   ip0, 0x8             */
     0xd61f0200,       /*      br    ip0                  */
     0x00000000,       /*      address field              */
     0x00000000,       /*      address fields             */
   };

 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
   {
     0x58000090,       /*      ldr   ip0, 0x10            */
     0x10000011,       /*      adr   ip1, #0              */
     0x8b110210,       /*      add   ip0, ip0, ip1        */
     0xd61f0200,       /*      br    ip0                  */
     0x00000000,       /*      address field              */
     0x00000000,       /*      address field              */
     0x00000000,       /*      alignment padding          */
     0x00000000,       /*      alignment padding          */
   };

 const static Insntype ST_E_843419_INSNS[] =
   {
     0x00000000,    /* Placeholder for erratum insn. */
     0x14000000,    /* b <label> */
   };

 // ST_E_835769 has the same stub template as ST_E_843419
 // but we reproduce the array here so that the sizeof
 // expressions in install_insn_template will work.
 const static Insntype ST_E_835769_INSNS[] =
   {
     0x00000000,    /* Placeholder for erratum insn. */
     0x14000000,    /* b <label> */
   };

#define install_insn_template(T) \
 const static Stub_template<big_endian> template_##T = {  \
   T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
 this->stub_templates_[T] = &template_##T

 install_insn_template(ST_NONE);
 install_insn_template(ST_ADRP_BRANCH);
 install_insn_template(ST_LONG_BRANCH_ABS);
 install_insn_template(ST_LONG_BRANCH_PCREL);
 install_insn_template(ST_E_843419);
 install_insn_template(ST_E_835769);

#undef install_insn_template
}


// Base class for stubs.

template<int size, bool big_endian>
class Stub_base
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;

 static const AArch64_address invalid_address =
   static_cast<AArch64_address>(-1);

 static const section_offset_type invalid_offset =
   static_cast<section_offset_type>(-1);

 Stub_base(int type)
   : destination_address_(invalid_address),
     offset_(invalid_offset),
     type_(type)
 {}

 ~Stub_base()
 {}

 // Get stub type.
 int
 type() const
 { return this->type_; }

 // Get stub template that provides stub insn information.
 const Stub_template<big_endian>*
 stub_template() const
 {
   return Stub_template_repertoire<big_endian>::
     get_stub_template(this->type());
 }

 // Get destination address.
 AArch64_address
 destination_address() const
 {
   gold_assert(this->destination_address_ != this->invalid_address);
   return this->destination_address_;
 }

 // Set destination address.
 void
 set_destination_address(AArch64_address address)
 {
   gold_assert(address != this->invalid_address);
   this->destination_address_ = address;
 }

 // Reset the destination address.
 void
 reset_destination_address()
 { this->destination_address_ = this->invalid_address; }

 // Get offset of code stub. For Reloc_stub, it is the offset from the
 // beginning of its containing stub table; for Erratum_stub, it is the offset
 // from the end of reloc_stubs.
 section_offset_type
 offset() const
 {
   gold_assert(this->offset_ != this->invalid_offset);
   return this->offset_;
 }

 // Set stub offset.
 void
 set_offset(section_offset_type offset)
 { this->offset_ = offset; }

 // Return the stub insn.
 const Insntype*
 insns() const
 { return this->stub_template()->insns; }

 // Return num of stub insns.
 unsigned int
 insn_num() const
 { return this->stub_template()->insn_num; }

 // Get size of the stub.
 int
 stub_size() const
 {
   return this->insn_num() *
     AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
 }

 // Write stub to output file.
 void
 write(unsigned char* view, section_size_type view_size)
 { this->do_write(view, view_size); }

protected:
 // Abstract method to be implemented by sub-classes.
 virtual void
 do_write(unsigned char*, section_size_type) = 0;

private:
 // The last insn of a stub is a jump to destination insn. This field records
 // the destination address.
 AArch64_address destination_address_;
 // The stub offset. Note this has difference interpretations between an
 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
 // beginning of the containing stub_table, whereas for Erratum_stub, this is
 // the offset from the end of reloc_stubs.
 section_offset_type offset_;
 // Stub type.
 const int type_;
};  // End of "Stub_base".


// Erratum stub class. An erratum stub differs from a reloc stub in that for
// each erratum occurrence, we generate an erratum stub. We never share erratum
// stubs, whereas for reloc stubs, different branch insns share a single reloc
// stub as long as the branch targets are the same. (More to the point, reloc
// stubs can be shared because they're used to reach a specific target, whereas
// erratum stubs branch back to the original control flow.)

template<int size, bool big_endian>
class Erratum_stub : public Stub_base<size, big_endian>
{
public:
 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;

 static const int STUB_ADDR_ALIGN;

 static const Insntype invalid_insn = static_cast<Insntype>(-1);

 Erratum_stub(The_aarch64_relobj* relobj, int type,
              unsigned shndx, unsigned int sh_offset)
   : Stub_base<size, big_endian>(type), relobj_(relobj),
     shndx_(shndx), sh_offset_(sh_offset),
     erratum_insn_(invalid_insn),
     erratum_address_(this->invalid_address)
 {}

 ~Erratum_stub() {}

 // Return the object that contains the erratum.
 The_aarch64_relobj*
 relobj()
 { return this->relobj_; }

 // Get section index of the erratum.
 unsigned int
 shndx() const
 { return this->shndx_; }

 // Get section offset of the erratum.
 unsigned int
 sh_offset() const
 { return this->sh_offset_; }

 // Get the erratum insn. This is the insn located at erratum_insn_address.
 Insntype
 erratum_insn() const
 {
   gold_assert(this->erratum_insn_ != this->invalid_insn);
   return this->erratum_insn_;
 }

 // Set the insn that the erratum happens to.
 void
 set_erratum_insn(Insntype insn)
 { this->erratum_insn_ = insn; }

 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
 // is no longer the one we want to write out to the stub, update erratum_insn_
 // with relocated version. Also note that in this case xn must not be "PC", so
 // it is safe to move the erratum insn from the origin place to the stub. For
 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
 // relocation spot (assertion added though).
 void
 update_erratum_insn(Insntype insn)
 {
   gold_assert(this->erratum_insn_ != this->invalid_insn);
   switch (this->type())
     {
     case ST_E_843419:
       gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
       gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
       gold_assert(Insn_utilities::aarch64_rd(insn) ==
                   Insn_utilities::aarch64_rd(this->erratum_insn()));
       gold_assert(Insn_utilities::aarch64_rn(insn) ==
                   Insn_utilities::aarch64_rn(this->erratum_insn()));
       // Update plain ld/st insn with relocated insn.
       this->erratum_insn_ = insn;
       break;
     case ST_E_835769:
       gold_assert(insn == this->erratum_insn());
       break;
     default:
       gold_unreachable();
     }
 }


 // Return the address where an erratum must be done.
 AArch64_address
 erratum_address() const
 {
   gold_assert(this->erratum_address_ != this->invalid_address);
   return this->erratum_address_;
 }

 // Set the address where an erratum must be done.
 void
 set_erratum_address(AArch64_address addr)
 { this->erratum_address_ = addr; }

 // Later relaxation passes of may alter the recorded erratum and destination
 // address. Given an up to date output section address of shidx_ in
 // relobj_ we can derive the erratum_address and destination address.
 void
 update_erratum_address(AArch64_address output_section_addr)
 {
   const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
   AArch64_address updated_addr = output_section_addr + this->sh_offset_;
   this->set_erratum_address(updated_addr);
   this->set_destination_address(updated_addr + BPI);
 }

 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
 // sh_offset). We do not include 'type' in the calculation, because there is
 // at most one stub type at (obj, shndx, sh_offset).
 bool
 operator<(const Erratum_stub<size, big_endian>& k) const
 {
   if (this == &k)
     return false;
   // We group stubs by relobj.
   if (this->relobj_ != k.relobj_)
     return this->relobj_ < k.relobj_;
   // Then by section index.
   if (this->shndx_ != k.shndx_)
     return this->shndx_ < k.shndx_;
   // Lastly by section offset.
   return this->sh_offset_ < k.sh_offset_;
 }

 void
 invalidate_erratum_stub()
 {
    gold_assert(this->erratum_insn_ != invalid_insn);
    this->erratum_insn_ = invalid_insn;
 }

 bool
 is_invalidated_erratum_stub()
 { return this->erratum_insn_ == invalid_insn; }

protected:
 virtual void
 do_write(unsigned char*, section_size_type);

private:
 // The object that needs to be fixed.
 The_aarch64_relobj* relobj_;
 // The shndx in the object that needs to be fixed.
 const unsigned int shndx_;
 // The section offset in the obejct that needs to be fixed.
 const unsigned int sh_offset_;
 // The insn to be fixed.
 Insntype erratum_insn_;
 // The address of the above insn.
 AArch64_address erratum_address_;
};  // End of "Erratum_stub".


// Erratum sub class to wrap additional info needed by 843419.  In fixing this
// erratum, we may choose to replace 'adrp' with 'adr', in this case, we need
// adrp's code position (two or three insns before erratum insn itself).

template<int size, bool big_endian>
class E843419_stub : public Erratum_stub<size, big_endian>
{
public:
 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;

 E843419_stub(AArch64_relobj<size, big_endian>* relobj,
                     unsigned int shndx, unsigned int sh_offset,
                     unsigned int adrp_sh_offset)
   : Erratum_stub<size, big_endian>(relobj, ST_E_843419, shndx, sh_offset),
     adrp_sh_offset_(adrp_sh_offset)
 {}

 unsigned int
 adrp_sh_offset() const
 { return this->adrp_sh_offset_; }

private:
 // Section offset of "adrp". (We do not need a "adrp_shndx_" field, because we
 // can obtain it from its parent.)
 const unsigned int adrp_sh_offset_;
};


template<int size, bool big_endian>
const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;

// Comparator used in set definition.
template<int size, bool big_endian>
struct Erratum_stub_less
{
 bool
 operator()(const Erratum_stub<size, big_endian>* s1,
            const Erratum_stub<size, big_endian>* s2) const
 { return *s1 < *s2; }
};

// Erratum_stub implementation for writing stub to output file.

template<int size, bool big_endian>
void
Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
{
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 const Insntype* insns = this->insns();
 uint32_t num_insns = this->insn_num();
 Insntype* ip = reinterpret_cast<Insntype*>(view);
 // For current implemented erratum 843419 and 835769, the first insn in the
 // stub is always a copy of the problematic insn (in 843419, the mem access
 // insn, in 835769, the mac insn), followed by a jump-back.
 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
 for (uint32_t i = 1; i < num_insns; ++i)
   elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
}


// Reloc stub class.

template<int size, bool big_endian>
class Reloc_stub : public Stub_base<size, big_endian>
{
public:
 typedef Reloc_stub<size, big_endian> This;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;

 // Branch range. This is used to calculate the section group size, as well as
 // determine whether a stub is needed.
 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);

 // Constant used to determine if an offset fits in the adrp instruction
 // encoding.
 static const int MAX_ADRP_IMM = (1 << 20) - 1;
 static const int MIN_ADRP_IMM = -(1 << 20);

 static const int BYTES_PER_INSN = 4;
 static const int STUB_ADDR_ALIGN;

 // Determine whether the offset fits in the jump/branch instruction.
 static bool
 aarch64_valid_branch_offset_p(int64_t offset)
 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }

 // Determine whether the offset fits in the adrp immediate field.
 static bool
 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
 {
   typedef AArch64_relocate_functions<size, big_endian> Reloc;
   int64_t adrp_imm = Reloc::Page (dest) - Reloc::Page (location);
   adrp_imm = adrp_imm < 0 ? ~(~adrp_imm >> 12) : adrp_imm >> 12;
   return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
 }

 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
 // needed.
 static int
 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
                     AArch64_address target);

 Reloc_stub(int type)
   : Stub_base<size, big_endian>(type)
 { }

 ~Reloc_stub()
 { }

 // The key class used to index the stub instance in the stub table's stub map.
 class Key
 {
  public:
   Key(int type, const Symbol* symbol, const Relobj* relobj,
       unsigned int r_sym, int32_t addend)
     : type_(type), addend_(addend)
   {
     if (symbol != NULL)
       {
         this->r_sym_ = Reloc_stub::invalid_index;
         this->u_.symbol = symbol;
       }
     else
       {
         gold_assert(relobj != NULL && r_sym != invalid_index);
         this->r_sym_ = r_sym;
         this->u_.relobj = relobj;
       }
   }

   ~Key()
   { }

   // Return stub type.
   int
   type() const
   { return this->type_; }

   // Return the local symbol index or invalid_index.
   unsigned int
   r_sym() const
   { return this->r_sym_; }

   // Return the symbol if there is one.
   const Symbol*
   symbol() const
   { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }

   // Return the relobj if there is one.
   const Relobj*
   relobj() const
   { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }

   // Whether this equals to another key k.
   bool
   eq(const Key& k) const
   {
     return ((this->type_ == k.type_)
             && (this->r_sym_ == k.r_sym_)
             && ((this->r_sym_ != Reloc_stub::invalid_index)
                 ? (this->u_.relobj == k.u_.relobj)
                 : (this->u_.symbol == k.u_.symbol))
             && (this->addend_ == k.addend_));
   }

   // Return a hash value.
   size_t
   hash_value() const
   {
     size_t name_hash_value = gold::string_hash<char>(
         (this->r_sym_ != Reloc_stub::invalid_index)
         ? this->u_.relobj->name().c_str()
         : this->u_.symbol->name());
     // We only have 4 stub types.
     size_t stub_type_hash_value = 0x03 & this->type_;
     return (name_hash_value
             ^ stub_type_hash_value
             ^ ((this->r_sym_ & 0x3fff) << 2)
             ^ ((this->addend_ & 0xffff) << 16));
   }

   // Functors for STL associative containers.
   struct hash
   {
     size_t
     operator()(const Key& k) const
     { return k.hash_value(); }
   };

   struct equal_to
   {
     bool
     operator()(const Key& k1, const Key& k2) const
     { return k1.eq(k2); }
   };

  private:
   // Stub type.
   const int type_;
   // If this is a local symbol, this is the index in the defining object.
   // Otherwise, it is invalid_index for a global symbol.
   unsigned int r_sym_;
   // If r_sym_ is an invalid index, this points to a global symbol.
   // Otherwise, it points to a relobj.  We used the unsized and target
   // independent Symbol and Relobj classes instead of Sized_symbol<32> and
   // Arm_relobj, in order to avoid making the stub class a template
   // as most of the stub machinery is endianness-neutral.  However, it
   // may require a bit of casting done by users of this class.
   union
   {
     const Symbol* symbol;
     const Relobj* relobj;
   } u_;
   // Addend associated with a reloc.
   int32_t addend_;
 };  // End of inner class Reloc_stub::Key

protected:
 // This may be overridden in the child class.
 virtual void
 do_write(unsigned char*, section_size_type);

private:
 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
};  // End of Reloc_stub

template<int size, bool big_endian>
const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;

// Write data to output file.

template<int size, bool big_endian>
void
Reloc_stub<size, big_endian>::
do_write(unsigned char* view, section_size_type)
{
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 const uint32_t* insns = this->insns();
 uint32_t num_insns = this->insn_num();
 Insntype* ip = reinterpret_cast<Insntype*>(view);
 for (uint32_t i = 0; i < num_insns; ++i)
   elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
}


// Determine the stub type for a certain relocation or ST_NONE, if no stub is
// needed.

template<int size, bool big_endian>
inline int
Reloc_stub<size, big_endian>::stub_type_for_reloc(
   unsigned int r_type, AArch64_address location, AArch64_address dest)
{
 int64_t branch_offset = 0;
 switch(r_type)
   {
   case elfcpp::R_AARCH64_CALL26:
   case elfcpp::R_AARCH64_JUMP26:
     branch_offset = dest - location;
     break;
   default:
     gold_unreachable();
   }

 if (aarch64_valid_branch_offset_p(branch_offset))
   return ST_NONE;

 if (aarch64_valid_for_adrp_p(location, dest))
   return ST_ADRP_BRANCH;

 // Always use PC-relative addressing in case of -shared or -pie.
 if (parameters->options().output_is_position_independent())
   return ST_LONG_BRANCH_PCREL;

 // This saves 2 insns per stub, compared to ST_LONG_BRANCH_PCREL.
 // But is only applicable to non-shared or non-pie.
 return ST_LONG_BRANCH_ABS;
}

// A class to hold stubs for the ARM target. This contains 2 different types of
// stubs - reloc stubs and erratum stubs.

template<int size, bool big_endian>
class Stub_table : public Output_data
{
public:
 typedef Target_aarch64<size, big_endian> The_target_aarch64;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
 typedef Reloc_stub<size, big_endian> The_reloc_stub;
 typedef typename The_reloc_stub::Key The_reloc_stub_key;
 typedef Erratum_stub<size, big_endian> The_erratum_stub;
 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
 typedef Stub_table<size, big_endian> The_stub_table;
 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
                       The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
                       Reloc_stub_map;
 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
 typedef Relocate_info<size, big_endian> The_relocate_info;

 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;

 Stub_table(The_aarch64_input_section* owner)
   : Output_data(), owner_(owner), reloc_stubs_size_(0),
     erratum_stubs_size_(0), prev_data_size_(0)
 { }

 ~Stub_table()
 { }

 The_aarch64_input_section*
 owner() const
 { return owner_; }

 // Whether this stub table is empty.
 bool
 empty() const
 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }

 // Return the current data size.
 off_t
 current_data_size() const
 { return this->current_data_size_for_child(); }

 // Add a STUB using KEY.  The caller is responsible for avoiding addition
 // if a STUB with the same key has already been added.
 void
 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);

 // Add an erratum stub into the erratum stub set. The set is ordered by
 // (relobj, shndx, sh_offset).
 void
 add_erratum_stub(The_erratum_stub* stub);

 // Find if such erratum exists for any given (obj, shndx, sh_offset).
 The_erratum_stub*
 find_erratum_stub(The_aarch64_relobj* a64relobj,
                   unsigned int shndx, unsigned int sh_offset);

 // Find all the erratums for a given input section. The return value is a pair
 // of iterators [begin, end).
 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
                                      unsigned int shndx);

 // Compute the erratum stub address.
 AArch64_address
 erratum_stub_address(The_erratum_stub* stub) const
 {
   AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
                                     The_erratum_stub::STUB_ADDR_ALIGN);
   r += stub->offset();
   return r;
 }

 // Finalize stubs. No-op here, just for completeness.
 void
 finalize_stubs()
 { }

 // Look up a relocation stub using KEY. Return NULL if there is none.
 The_reloc_stub*
 find_reloc_stub(The_reloc_stub_key& key)
 {
   Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
   return (p != this->reloc_stubs_.end()) ? p->second : NULL;
 }

 // Relocate reloc stubs in this stub table. This does not relocate erratum stubs.
 void
 relocate_reloc_stubs(const The_relocate_info*,
                      The_target_aarch64*,
                      Output_section*,
                      unsigned char*,
                      AArch64_address,
                      section_size_type);

 // Relocate an erratum stub.
 void
 relocate_erratum_stub(The_erratum_stub*, unsigned char*);

 // Update data size at the end of a relaxation pass.  Return true if data size
 // is different from that of the previous relaxation pass.
 bool
 update_data_size_changed_p()
 {
   // No addralign changed here.
   off_t s = align_address(this->reloc_stubs_size_,
                           The_erratum_stub::STUB_ADDR_ALIGN)
             + this->erratum_stubs_size_;
   bool changed = (s != this->prev_data_size_);
   this->prev_data_size_ = s;
   return changed;
 }

protected:
 // Write out section contents.
 void
 do_write(Output_file*);

 // Return the required alignment.
 uint64_t
 do_addralign() const
 {
   return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
                   The_erratum_stub::STUB_ADDR_ALIGN);
 }

 // Reset address and file offset.
 void
 do_reset_address_and_file_offset()
 { this->set_current_data_size_for_child(this->prev_data_size_); }

 // Set final data size.
 void
 set_final_data_size()
 { this->set_data_size(this->current_data_size()); }

private:
 // Relocate one reloc stub.
 void
 relocate_reloc_stub(The_reloc_stub*,
                     const The_relocate_info*,
                     The_target_aarch64*,
                     Output_section*,
                     unsigned char*,
                     AArch64_address,
                     section_size_type);

private:
 // Owner of this stub table.
 The_aarch64_input_section* owner_;
 // The relocation stubs.
 Reloc_stub_map reloc_stubs_;
 // The erratum stubs.
 Erratum_stub_set erratum_stubs_;
 // Size of reloc stubs.
 off_t reloc_stubs_size_;
 // Size of erratum stubs.
 off_t erratum_stubs_size_;
 // data size of this in the previous pass.
 off_t prev_data_size_;
};  // End of Stub_table


// Add an erratum stub into the erratum stub set. The set is ordered by
// (relobj, shndx, sh_offset).

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
{
 std::pair<Erratum_stub_set_iter, bool> ret =
   this->erratum_stubs_.insert(stub);
 gold_assert(ret.second);
 this->erratum_stubs_size_ = align_address(
       this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
 stub->set_offset(this->erratum_stubs_size_);
 this->erratum_stubs_size_ += stub->stub_size();
}


// Find if such erratum exists for given (obj, shndx, sh_offset).

template<int size, bool big_endian>
Erratum_stub<size, big_endian>*
Stub_table<size, big_endian>::find_erratum_stub(
   The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
{
 // A dummy object used as key to search in the set.
 The_erratum_stub key(a64relobj, ST_NONE,
                        shndx, sh_offset);
 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
 if (i != this->erratum_stubs_.end())
   {
       The_erratum_stub* stub(*i);
       gold_assert(stub->erratum_insn() != 0);
       return stub;
   }
 return NULL;
}


// Find all the errata for a given input section. The return value is a pair of
// iterators [begin, end).

template<int size, bool big_endian>
std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
         typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
   The_aarch64_relobj* a64relobj, unsigned int shndx)
{
 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
 Erratum_stub_set_iter start, end;
 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
 start = this->erratum_stubs_.lower_bound(&low_key);
 if (start == this->erratum_stubs_.end())
   return Result_pair(this->erratum_stubs_.end(),
                      this->erratum_stubs_.end());
 end = start;
 while (end != this->erratum_stubs_.end() &&
        (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
   ++end;
 return Result_pair(start, end);
}


// Add a STUB using KEY.  The caller is responsible for avoiding addition
// if a STUB with the same key has already been added.

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::add_reloc_stub(
   The_reloc_stub* stub, const The_reloc_stub_key& key)
{
 gold_assert(stub->type() == key.type());
 this->reloc_stubs_[key] = stub;

 // Assign stub offset early.  We can do this because we never remove
 // reloc stubs and they are in the beginning of the stub table.
 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
                                         The_reloc_stub::STUB_ADDR_ALIGN);
 stub->set_offset(this->reloc_stubs_size_);
 this->reloc_stubs_size_ += stub->stub_size();
}


// Relocate an erratum stub.

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::
relocate_erratum_stub(The_erratum_stub* estub,
                     unsigned char* view)
{
 // Just for convenience.
 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;

 gold_assert(!estub->is_invalidated_erratum_stub());
 AArch64_address stub_address = this->erratum_stub_address(estub);
 // The address of "b" in the stub that is to be "relocated".
 AArch64_address stub_b_insn_address;
 // Branch offset that is to be filled in "b" insn.
 int b_offset = 0;
 switch (estub->type())
   {
   case ST_E_843419:
   case ST_E_835769:
     // The 1st insn of the erratum could be a relocation spot,
     // in this case we need to fix it with
     // "(*i)->erratum_insn()".
     elfcpp::Swap<32, big_endian>::writeval(
         view + (stub_address - this->address()),
         estub->erratum_insn());
     // For the erratum, the 2nd insn is a b-insn to be patched
     // (relocated).
     stub_b_insn_address = stub_address + 1 * BPI;
     b_offset = estub->destination_address() - stub_b_insn_address;
     AArch64_relocate_functions<size, big_endian>::construct_b(
         view + (stub_b_insn_address - this->address()),
         ((unsigned int)(b_offset)) & 0xfffffff);
     break;
   default:
     gold_unreachable();
     break;
   }
 estub->invalidate_erratum_stub();
}


// Relocate only reloc stubs in this stub table. This does not relocate erratum
// stubs.

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::
relocate_reloc_stubs(const The_relocate_info* relinfo,
                    The_target_aarch64* target_aarch64,
                    Output_section* output_section,
                    unsigned char* view,
                    AArch64_address address,
                    section_size_type view_size)
{
 // "view_size" is the total size of the stub_table.
 gold_assert(address == this->address() &&
             view_size == static_cast<section_size_type>(this->data_size()));
 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
     p != this->reloc_stubs_.end(); ++p)
   relocate_reloc_stub(p->second, relinfo, target_aarch64, output_section,
                       view, address, view_size);
}


// Relocate one reloc stub. This is a helper for
// Stub_table::relocate_reloc_stubs().

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::
relocate_reloc_stub(The_reloc_stub* stub,
                   const The_relocate_info* relinfo,
                   The_target_aarch64* target_aarch64,
                   Output_section* output_section,
                   unsigned char* view,
                   AArch64_address address,
                   section_size_type view_size)
{
 // "offset" is the offset from the beginning of the stub_table.
 section_size_type offset = stub->offset();
 section_size_type stub_size = stub->stub_size();
 // "view_size" is the total size of the stub_table.
 gold_assert(offset + stub_size <= view_size);

 target_aarch64->relocate_reloc_stub(stub, relinfo, output_section,
                                     view + offset, address + offset, view_size);
}


// Write out the stubs to file.

template<int size, bool big_endian>
void
Stub_table<size, big_endian>::do_write(Output_file* of)
{
 off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 // Write relocation stubs.
 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
     p != this->reloc_stubs_.end(); ++p)
   {
     The_reloc_stub* stub = p->second;
     AArch64_address address = this->address() + stub->offset();
     gold_assert(address ==
                 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
     stub->write(oview + stub->offset(), stub->stub_size());
   }

 // Write erratum stubs.
 unsigned int erratum_stub_start_offset =
   align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
      p != this->erratum_stubs_.end(); ++p)
   {
     The_erratum_stub* stub(*p);
     stub->write(oview + erratum_stub_start_offset + stub->offset(),
                 stub->stub_size());
   }

 of->write_output_view(this->offset(), oview_size, oview);
}


// AArch64_relobj class.

template<int size, bool big_endian>
class AArch64_relobj : public Sized_relobj_file<size, big_endian>
{
public:
 typedef AArch64_relobj<size, big_endian> This;
 typedef Target_aarch64<size, big_endian> The_target_aarch64;
 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef Stub_table<size, big_endian> The_stub_table;
 typedef Erratum_stub<size, big_endian> The_erratum_stub;
 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
 typedef std::vector<The_stub_table*> Stub_table_list;
 static const AArch64_address invalid_address =
     static_cast<AArch64_address>(-1);

 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
                const typename elfcpp::Ehdr<size, big_endian>& ehdr)
   : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
     stub_tables_()
 { }

 ~AArch64_relobj()
 { }

 // Return the stub table of the SHNDX-th section if there is one.
 The_stub_table*
 stub_table(unsigned int shndx) const
 {
   gold_assert(shndx < this->stub_tables_.size());
   return this->stub_tables_[shndx];
 }

 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
 void
 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
 {
   gold_assert(shndx < this->stub_tables_.size());
   this->stub_tables_[shndx] = stub_table;
 }

 // Entrance to errata scanning.
 void
 scan_errata(unsigned int shndx,
             const elfcpp::Shdr<size, big_endian>&,
             Output_section*, const Symbol_table*,
             The_target_aarch64*);

 // Scan all relocation sections for stub generation.
 void
 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
                         const Layout*);

 // Whether a section is a scannable text section.
 bool
 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
                           const Output_section*, const Symbol_table*);

 // Convert regular input section with index SHNDX to a relaxed section.
 void
 convert_input_section_to_relaxed_section(unsigned shndx)
 {
   // The stubs have relocations and we need to process them after writing
   // out the stubs.  So relocation now must follow section write.
   this->set_section_offset(shndx, -1ULL);
   this->set_relocs_must_follow_section_writes();
 }

 // Structure for mapping symbol position.
 struct Mapping_symbol_position
 {
   Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
     shndx_(shndx), offset_(offset)
   {}

   // "<" comparator used in ordered_map container.
   bool
   operator<(const Mapping_symbol_position& p) const
   {
     return (this->shndx_ < p.shndx_
             || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
   }

   // Section index.
   unsigned int shndx_;

   // Section offset.
   AArch64_address offset_;
 };

 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;

protected:
 // Post constructor setup.
 void
 do_setup()
 {
   // Call parent's setup method.
   Sized_relobj_file<size, big_endian>::do_setup();

   // Initialize look-up tables.
   this->stub_tables_.resize(this->shnum());
 }

 virtual void
 do_relocate_sections(
     const Symbol_table* symtab, const Layout* layout,
     const unsigned char* pshdrs, Output_file* of,
     typename Sized_relobj_file<size, big_endian>::Views* pviews);

 // Count local symbols and (optionally) record mapping info.
 virtual void
 do_count_local_symbols(Stringpool_template<char>*,
                        Stringpool_template<char>*);

private:
 // Fix all errata in the object, and for each erratum, relocate corresponding
 // erratum stub.
 void
 fix_errata_and_relocate_erratum_stubs(
     typename Sized_relobj_file<size, big_endian>::Views* pviews);

 // Try to fix erratum 843419 in an optimized way. Return true if patch is
 // applied.
 bool
 try_fix_erratum_843419_optimized(
     The_erratum_stub*, AArch64_address,
     typename Sized_relobj_file<size, big_endian>::View_size&);

 // Whether a section needs to be scanned for relocation stubs.
 bool
 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
                                   const Relobj::Output_sections&,
                                   const Symbol_table*, const unsigned char*);

 // List of stub tables.
 Stub_table_list stub_tables_;

 // Mapping symbol information sorted by (section index, section_offset).
 Mapping_symbol_info mapping_symbol_info_;
};  // End of AArch64_relobj


// Override to record mapping symbol information.
template<int size, bool big_endian>
void
AArch64_relobj<size, big_endian>::do_count_local_symbols(
   Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
{
 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);

 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
 // processing if not fixing erratum.
 if (!parameters->options().fix_cortex_a53_843419()
     && !parameters->options().fix_cortex_a53_835769())
   return;

 const unsigned int loccount = this->local_symbol_count();
 if (loccount == 0)
   return;

 // Read the symbol table section header.
 const unsigned int symtab_shndx = this->symtab_shndx();
 elfcpp::Shdr<size, big_endian>
     symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);

 // Read the local symbols.
 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
 gold_assert(loccount == symtabshdr.get_sh_info());
 off_t locsize = loccount * sym_size;
 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                             locsize, true, true);

 // For mapping symbol processing, we need to read the symbol names.
 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
 if (strtab_shndx >= this->shnum())
   {
     this->error(_("invalid symbol table name index: %u"), strtab_shndx);
     return;
   }

 elfcpp::Shdr<size, big_endian>
   strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
   {
     this->error(_("symbol table name section has wrong type: %u"),
                 static_cast<unsigned int>(strtabshdr.get_sh_type()));
     return;
   }

 const char* pnames =
   reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
                                                strtabshdr.get_sh_size(),
                                                false, false));

 // Skip the first dummy symbol.
 psyms += sym_size;
 typename Sized_relobj_file<size, big_endian>::Local_values*
   plocal_values = this->local_values();
 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
   {
     elfcpp::Sym<size, big_endian> sym(psyms);
     Symbol_value<size>& lv((*plocal_values)[i]);
     AArch64_address input_value = lv.input_value();

     // Check to see if this is a mapping symbol. AArch64 mapping symbols are
     // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
     // symbols.
     // Mapping symbols could be one of the following 4 forms -
     //   a) $x
     //   b) $x.<any...>
     //   c) $d
     //   d) $d.<any...>
     const char* sym_name = pnames + sym.get_st_name();
     if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
         && (sym_name[2] == '\0' || sym_name[2] == '.'))
       {
         bool is_ordinary;
         unsigned int input_shndx =
           this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
         gold_assert(is_ordinary);

         Mapping_symbol_position msp(input_shndx, input_value);
         // Insert mapping_symbol_info into map whose ordering is defined by
         // (shndx, offset_within_section).
         this->mapping_symbol_info_[msp] = sym_name[1];
       }
  }
}


// Fix all errata in the object and for each erratum, we relocate the
// corresponding erratum stub (by calling Stub_table::relocate_erratum_stub).

template<int size, bool big_endian>
void
AArch64_relobj<size, big_endian>::fix_errata_and_relocate_erratum_stubs(
   typename Sized_relobj_file<size, big_endian>::Views* pviews)
{
 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
 unsigned int shnum = this->shnum();
 const Relobj::Output_sections& out_sections(this->output_sections());
 for (unsigned int i = 1; i < shnum; ++i)
   {
     The_stub_table* stub_table = this->stub_table(i);
     if (!stub_table)
       continue;
     std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
       ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
     Erratum_stub_set_iter p = ipair.first, end = ipair.second;
     typename Sized_relobj_file<size, big_endian>::View_size&
       pview((*pviews)[i]);
     AArch64_address view_offset = 0;
     if (pview.is_input_output_view)
       {
         // In this case, write_sections has not added the output offset to
         // the view's address, so we must do so. Currently this only happens
         // for a relaxed section.
         unsigned int index = this->adjust_shndx(i);
         const Output_relaxed_input_section* poris =
             out_sections[index]->find_relaxed_input_section(this, index);
         gold_assert(poris != NULL);
         view_offset = poris->address() - pview.address;
       }

     while (p != end)
       {
         The_erratum_stub* stub = *p;

         // Double check data before fix.
         gold_assert(pview.address + view_offset + stub->sh_offset()
                     == stub->erratum_address());

         // Update previously recorded erratum insn with relocated
         // version.
         Insntype* ip =
           reinterpret_cast<Insntype*>(
             pview.view + view_offset + stub->sh_offset());
         Insntype insn_to_fix = ip[0];
         stub->update_erratum_insn(insn_to_fix);

         // First try to see if erratum is 843419 and if it can be fixed
         // without using branch-to-stub.
         if (!try_fix_erratum_843419_optimized(stub, view_offset, pview))
           {
             // Replace the erratum insn with a branch-to-stub.
             AArch64_address stub_address =
               stub_table->erratum_stub_address(stub);
             unsigned int b_offset = stub_address - stub->erratum_address();
             AArch64_relocate_functions<size, big_endian>::construct_b(
               pview.view + view_offset + stub->sh_offset(),
               b_offset & 0xfffffff);
           }

         // Erratum fix is done (or skipped), continue to relocate erratum
         // stub. Note, when erratum fix is skipped (either because we
         // proactively change the code sequence or the code sequence is
         // changed by relaxation, etc), we can still safely relocate the
         // erratum stub, ignoring the fact the erratum could never be
         // executed.
         stub_table->relocate_erratum_stub(
           stub,
           pview.view + (stub_table->address() - pview.address));

         // Next erratum stub.
         ++p;
       }
   }
}


// This is an optimization for 843419. This erratum requires the sequence begin
// with 'adrp', when final value calculated by adrp fits in adr, we can just
// replace 'adrp' with 'adr', so we save 2 jumps per occurrence. (Note, however,
// in this case, we do not delete the erratum stub (too late to do so), it is
// merely generated without ever being called.)

template<int size, bool big_endian>
bool
AArch64_relobj<size, big_endian>::try_fix_erratum_843419_optimized(
   The_erratum_stub* stub, AArch64_address view_offset,
   typename Sized_relobj_file<size, big_endian>::View_size& pview)
{
 if (stub->type() != ST_E_843419)
   return false;

 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
 E843419_stub<size, big_endian>* e843419_stub =
   reinterpret_cast<E843419_stub<size, big_endian>*>(stub);
 AArch64_address pc =
   pview.address + view_offset + e843419_stub->adrp_sh_offset();
 unsigned int adrp_offset = e843419_stub->adrp_sh_offset ();
 Insntype* adrp_view =
   reinterpret_cast<Insntype*>(pview.view + view_offset + adrp_offset);
 Insntype adrp_insn = adrp_view[0];

 // If the instruction at adrp_sh_offset is "mrs R, tpidr_el0", it may come
 // from IE -> LE relaxation etc.  This is a side-effect of TLS relaxation that
 // ADRP has been turned into MRS, there is no erratum risk anymore.
 // Therefore, we return true to avoid doing unnecessary branch-to-stub.
 if (Insn_utilities::is_mrs_tpidr_el0(adrp_insn))
   return true;

 // If the instruction at adrp_sh_offset is not ADRP and the instruction before
 // it is "mrs R, tpidr_el0", it may come from LD -> LE relaxation etc.
 // Like the above case, there is no erratum risk any more, we can safely
 // return true.
 if (!Insn_utilities::is_adrp(adrp_insn) && adrp_offset)
   {
     Insntype* prev_view =
       reinterpret_cast<Insntype*>(
         pview.view + view_offset + adrp_offset - 4);
     Insntype prev_insn = prev_view[0];

     if (Insn_utilities::is_mrs_tpidr_el0(prev_insn))
       return true;
   }

 /* If we reach here, the first instruction must be ADRP.  */
 gold_assert(Insn_utilities::is_adrp(adrp_insn));
 // Get adrp 33-bit signed imm value.
 int64_t adrp_imm = Insn_utilities::
   aarch64_adrp_decode_imm(adrp_insn);
 // adrp - final value transferred to target register is calculated as:
 //     PC[11:0] = Zeros(12)
 //     adrp_dest_value = PC + adrp_imm;
 int64_t adrp_dest_value = (pc & ~((1 << 12) - 1)) + adrp_imm;
 // adr -final value transferred to target register is calucalted as:
 //     PC + adr_imm
 // So we have:
 //     PC + adr_imm = adrp_dest_value
 //   ==>
 //     adr_imm = adrp_dest_value - PC
 int64_t adr_imm = adrp_dest_value - pc;
 // Check if imm fits in adr (21-bit signed).
 if (-(1 << 20) <= adr_imm && adr_imm < (1 << 20))
   {
     // Convert 'adrp' into 'adr'.
     Insntype adr_insn = adrp_insn & ((1u << 31) - 1);
     adr_insn = Insn_utilities::
       aarch64_adr_encode_imm(adr_insn, adr_imm);
     elfcpp::Swap<32, big_endian>::writeval(adrp_view, adr_insn);
     return true;
   }
 return false;
}


// Relocate sections.

template<int size, bool big_endian>
void
AArch64_relobj<size, big_endian>::do_relocate_sections(
   const Symbol_table* symtab, const Layout* layout,
   const unsigned char* pshdrs, Output_file* of,
   typename Sized_relobj_file<size, big_endian>::Views* pviews)
{
 // Relocate the section data.
 this->relocate_section_range(symtab, layout, pshdrs, of, pviews,
                              1, this->shnum() - 1);

 // We do not generate stubs if doing a relocatable link.
 if (parameters->options().relocatable())
   return;

 // This part only relocates erratum stubs that belong to input sections of this
 // object file.
 if (parameters->options().fix_cortex_a53_843419()
     || parameters->options().fix_cortex_a53_835769())
   this->fix_errata_and_relocate_erratum_stubs(pviews);

 Relocate_info<size, big_endian> relinfo;
 relinfo.symtab = symtab;
 relinfo.layout = layout;
 relinfo.object = this;

 // This part relocates all reloc stubs that are contained in stub_tables of
 // this object file.
 unsigned int shnum = this->shnum();
 The_target_aarch64* target = The_target_aarch64::current_target();

 for (unsigned int i = 1; i < shnum; ++i)
   {
     The_aarch64_input_section* aarch64_input_section =
         target->find_aarch64_input_section(this, i);
     if (aarch64_input_section != NULL
         && aarch64_input_section->is_stub_table_owner()
         && !aarch64_input_section->stub_table()->empty())
       {
         Output_section* os = this->output_section(i);
         gold_assert(os != NULL);

         relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
         relinfo.reloc_shdr = NULL;
         relinfo.data_shndx = i;
         relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;

         typename Sized_relobj_file<size, big_endian>::View_size&
             view_struct = (*pviews)[i];
         gold_assert(view_struct.view != NULL);

         The_stub_table* stub_table = aarch64_input_section->stub_table();
         off_t offset = stub_table->address() - view_struct.address;
         unsigned char* view = view_struct.view + offset;
         AArch64_address address = stub_table->address();
         section_size_type view_size = stub_table->data_size();
         stub_table->relocate_reloc_stubs(&relinfo, target, os, view, address,
                                          view_size);
       }
   }
}


// Determine if an input section is scannable for stub processing.  SHDR is
// the header of the section and SHNDX is the section index.  OS is the output
// section for the input section and SYMTAB is the global symbol table used to
// look up ICF information.

template<int size, bool big_endian>
bool
AArch64_relobj<size, big_endian>::text_section_is_scannable(
   const elfcpp::Shdr<size, big_endian>& text_shdr,
   unsigned int text_shndx,
   const Output_section* os,
   const Symbol_table* symtab)
{
 // Skip any empty sections, unallocated sections or sections whose
 // type are not SHT_PROGBITS.
 if (text_shdr.get_sh_size() == 0
     || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
     || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
   return false;

 // Skip any discarded or ICF'ed sections.
 if (os == NULL || symtab->is_section_folded(this, text_shndx))
   return false;

 // Skip exception frame.
 if (strcmp(os->name(), ".eh_frame") == 0)
   return false ;

 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
             os->find_relaxed_input_section(this, text_shndx) != NULL);

 return true;
}


// Determine if we want to scan the SHNDX-th section for relocation stubs.
// This is a helper for AArch64_relobj::scan_sections_for_stubs().

template<int size, bool big_endian>
bool
AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
   const elfcpp::Shdr<size, big_endian>& shdr,
   const Relobj::Output_sections& out_sections,
   const Symbol_table* symtab,
   const unsigned char* pshdrs)
{
 unsigned int sh_type = shdr.get_sh_type();
 if (sh_type != elfcpp::SHT_RELA)
   return false;

 // Ignore empty section.
 off_t sh_size = shdr.get_sh_size();
 if (sh_size == 0)
   return false;

 // Ignore reloc section with unexpected symbol table.  The
 // error will be reported in the final link.
 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
   return false;

 gold_assert(sh_type == elfcpp::SHT_RELA);
 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;

 // Ignore reloc section with unexpected entsize or uneven size.
 // The error will be reported in the final link.
 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
   return false;

 // Ignore reloc section with bad info.  This error will be
 // reported in the final link.
 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
 if (text_shndx >= this->shnum())
   return false;

 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
                                                text_shndx * shdr_size);
 return this->text_section_is_scannable(text_shdr, text_shndx,
                                        out_sections[text_shndx], symtab);
}


// Scan section SHNDX for erratum 843419 and 835769.

template<int size, bool big_endian>
void
AArch64_relobj<size, big_endian>::scan_errata(
   unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
   Output_section* os, const Symbol_table* symtab,
   The_target_aarch64* target)
{
 if (shdr.get_sh_size() == 0
     || (shdr.get_sh_flags() &
         (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
     || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
   return;

 if (!os || symtab->is_section_folded(this, shndx)) return;

 AArch64_address output_offset = this->get_output_section_offset(shndx);
 AArch64_address output_address;
 if (output_offset != invalid_address)
   output_address = os->address() + output_offset;
 else
   {
     const Output_relaxed_input_section* poris =
       os->find_relaxed_input_section(this, shndx);
     if (!poris) return;
     output_address = poris->address();
   }

 // Update the addresses in previously generated erratum stubs. Unlike when
 // we scan relocations for stubs, if section addresses have changed due to
 // other relaxations we are unlikely to scan the same erratum instances
 // again.
 The_stub_table* stub_table = this->stub_table(shndx);
 if (stub_table)
   {
     std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
         ipair(stub_table->find_erratum_stubs_for_input_section(this, shndx));
     for (Erratum_stub_set_iter p = ipair.first;  p != ipair.second; ++p)
         (*p)->update_erratum_address(output_address);
   }

 section_size_type input_view_size = 0;
 const unsigned char* input_view =
   this->section_contents(shndx, &input_view_size, false);

 Mapping_symbol_position section_start(shndx, 0);
 // Find the first mapping symbol record within section shndx.
 typename Mapping_symbol_info::const_iterator p =
   this->mapping_symbol_info_.lower_bound(section_start);
 while (p != this->mapping_symbol_info_.end() &&
        p->first.shndx_ == shndx)
   {
     typename Mapping_symbol_info::const_iterator prev = p;
     ++p;
     if (prev->second == 'x')
       {
         section_size_type span_start =
           convert_to_section_size_type(prev->first.offset_);
         section_size_type span_end;
         if (p != this->mapping_symbol_info_.end()
             && p->first.shndx_ == shndx)
           span_end = convert_to_section_size_type(p->first.offset_);
         else
           span_end = convert_to_section_size_type(shdr.get_sh_size());

         // Here we do not share the scanning code of both errata. For 843419,
         // only the last few insns of each page are examined, which is fast,
         // whereas, for 835769, every insn pair needs to be checked.

         if (parameters->options().fix_cortex_a53_843419())
           target->scan_erratum_843419_span(
             this, shndx, span_start, span_end,
             const_cast<unsigned char*>(input_view), output_address);

         if (parameters->options().fix_cortex_a53_835769())
           target->scan_erratum_835769_span(
             this, shndx, span_start, span_end,
             const_cast<unsigned char*>(input_view), output_address);
       }
   }
}


// Scan relocations for stub generation.

template<int size, bool big_endian>
void
AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
   The_target_aarch64* target,
   const Symbol_table* symtab,
   const Layout* layout)
{
 unsigned int shnum = this->shnum();
 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;

 // Read the section headers.
 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
                                              shnum * shdr_size,
                                              true, true);

 // To speed up processing, we set up hash tables for fast lookup of
 // input offsets to output addresses.
 this->initialize_input_to_output_maps();

 const Relobj::Output_sections& out_sections(this->output_sections());

 Relocate_info<size, big_endian> relinfo;
 relinfo.symtab = symtab;
 relinfo.layout = layout;
 relinfo.object = this;

 // Do relocation stubs scanning.
 const unsigned char* p = pshdrs + shdr_size;
 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
   {
     const elfcpp::Shdr<size, big_endian> shdr(p);
     if (parameters->options().fix_cortex_a53_843419()
         || parameters->options().fix_cortex_a53_835769())
       scan_errata(i, shdr, out_sections[i], symtab, target);
     if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
                                                 pshdrs))
       {
         unsigned int index = this->adjust_shndx(shdr.get_sh_info());
         AArch64_address output_offset =
             this->get_output_section_offset(index);
         AArch64_address output_address;
         if (output_offset != invalid_address)
           {
             output_address = out_sections[index]->address() + output_offset;
           }
         else
           {
             // Currently this only happens for a relaxed section.
             const Output_relaxed_input_section* poris =
                 out_sections[index]->find_relaxed_input_section(this, index);
             gold_assert(poris != NULL);
             output_address = poris->address();
           }

         // Get the relocations.
         const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
                                                       shdr.get_sh_size(),
                                                       true, false);

         // Get the section contents.
         section_size_type input_view_size = 0;
         const unsigned char* input_view =
             this->section_contents(index, &input_view_size, false);

         relinfo.reloc_shndx = i;
         relinfo.data_shndx = index;
         unsigned int sh_type = shdr.get_sh_type();
         unsigned int reloc_size;
         gold_assert (sh_type == elfcpp::SHT_RELA);
         reloc_size = elfcpp::Elf_sizes<size>::rela_size;

         Output_section* os = out_sections[index];
         target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
                                        shdr.get_sh_size() / reloc_size,
                                        os,
                                        output_offset == invalid_address,
                                        input_view, output_address,
                                        input_view_size);
       }
   }
}


// A class to wrap an ordinary input section containing executable code.

template<int size, bool big_endian>
class AArch64_input_section : public Output_relaxed_input_section
{
public:
 typedef Stub_table<size, big_endian> The_stub_table;

 AArch64_input_section(Relobj* relobj, unsigned int shndx)
   : Output_relaxed_input_section(relobj, shndx, 1),
     stub_table_(NULL),
     original_contents_(NULL), original_size_(0),
     original_addralign_(1)
 { }

 ~AArch64_input_section()
 { delete[] this->original_contents_; }

 // Initialize.
 void
 init();

 // Set the stub_table.
 void
 set_stub_table(The_stub_table* st)
 { this->stub_table_ = st; }

 // Whether this is a stub table owner.
 bool
 is_stub_table_owner() const
 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }

 // Return the original size of the section.
 uint32_t
 original_size() const
 { return this->original_size_; }

 // Return the stub table.
 The_stub_table*
 stub_table()
 { return stub_table_; }

protected:
 // Write out this input section.
 void
 do_write(Output_file*);

 // Return required alignment of this.
 uint64_t
 do_addralign() const
 {
   if (this->is_stub_table_owner())
     return std::max(this->stub_table_->addralign(),
                     static_cast<uint64_t>(this->original_addralign_));
   else
     return this->original_addralign_;
 }

 // Finalize data size.
 void
 set_final_data_size();

 // Reset address and file offset.
 void
 do_reset_address_and_file_offset();

 // Output offset.
 bool
 do_output_offset(const Relobj* object, unsigned int shndx,
                  section_offset_type offset,
                  section_offset_type* poutput) const
 {
   if ((object == this->relobj())
       && (shndx == this->shndx())
       && (offset >= 0)
       && (offset <=
           convert_types<section_offset_type, uint32_t>(this->original_size_)))
     {
       *poutput = offset;
       return true;
     }
   else
     return false;
 }

private:
 // Copying is not allowed.
 AArch64_input_section(const AArch64_input_section&);
 AArch64_input_section& operator=(const AArch64_input_section&);

 // The relocation stubs.
 The_stub_table* stub_table_;
 // Original section contents.  We have to make a copy here since the file
 // containing the original section may not be locked when we need to access
 // the contents.
 unsigned char* original_contents_;
 // Section size of the original input section.
 uint32_t original_size_;
 // Address alignment of the original input section.
 uint32_t original_addralign_;
};  // End of AArch64_input_section


// Finalize data size.

template<int size, bool big_endian>
void
AArch64_input_section<size, big_endian>::set_final_data_size()
{
 off_t off = convert_types<off_t, uint64_t>(this->original_size_);

 if (this->is_stub_table_owner())
   {
     this->stub_table_->finalize_data_size();
     off = align_address(off, this->stub_table_->addralign());
     off += this->stub_table_->data_size();
   }
 this->set_data_size(off);
}


// Reset address and file offset.

template<int size, bool big_endian>
void
AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
{
 // Size of the original input section contents.
 off_t off = convert_types<off_t, uint64_t>(this->original_size_);

 // If this is a stub table owner, account for the stub table size.
 if (this->is_stub_table_owner())
   {
     The_stub_table* stub_table = this->stub_table_;

     // Reset the stub table's address and file offset.  The
     // current data size for child will be updated after that.
     stub_table_->reset_address_and_file_offset();
     off = align_address(off, stub_table_->addralign());
     off += stub_table->current_data_size();
   }

 this->set_current_data_size(off);
}


// Initialize an Arm_input_section.

template<int size, bool big_endian>
void
AArch64_input_section<size, big_endian>::init()
{
 Relobj* relobj = this->relobj();
 unsigned int shndx = this->shndx();

 // We have to cache original size, alignment and contents to avoid locking
 // the original file.
 this->original_addralign_ =
     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));

 // This is not efficient but we expect only a small number of relaxed
 // input sections for stubs.
 section_size_type section_size;
 const unsigned char* section_contents =
     relobj->section_contents(shndx, &section_size, false);
 this->original_size_ =
     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));

 gold_assert(this->original_contents_ == NULL);
 this->original_contents_ = new unsigned char[section_size];
 memcpy(this->original_contents_, section_contents, section_size);

 // We want to make this look like the original input section after
 // output sections are finalized.
 Output_section* os = relobj->output_section(shndx);
 off_t offset = relobj->output_section_offset(shndx);
 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
 this->set_address(os->address() + offset);
 this->set_file_offset(os->offset() + offset);
 this->set_current_data_size(this->original_size_);
 this->finalize_data_size();
}


// Write data to output file.

template<int size, bool big_endian>
void
AArch64_input_section<size, big_endian>::do_write(Output_file* of)
{
 // We have to write out the original section content.
 gold_assert(this->original_contents_ != NULL);
 of->write(this->offset(), this->original_contents_,
           this->original_size_);

 // If this owns a stub table and it is not empty, write it.
 if (this->is_stub_table_owner() && !this->stub_table_->empty())
   this->stub_table_->write(of);
}


// Arm output section class.  This is defined mainly to add a number of stub
// generation methods.

template<int size, bool big_endian>
class AArch64_output_section : public Output_section
{
public:
 typedef Target_aarch64<size, big_endian> The_target_aarch64;
 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
 typedef Stub_table<size, big_endian> The_stub_table;
 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;

public:
 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
                        elfcpp::Elf_Xword flags)
   : Output_section(name, type, flags)
 { }

 ~AArch64_output_section() {}

 // Group input sections for stub generation.
 void
 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
                const Task*);

private:
 typedef Output_section::Input_section Input_section;
 typedef Output_section::Input_section_list Input_section_list;

 // Create a stub group.
 void
 create_stub_group(Input_section_list::const_iterator,
                   Input_section_list::const_iterator,
                   Input_section_list::const_iterator,
                   The_target_aarch64*,
                   std::vector<Output_relaxed_input_section*>&,
                   const Task*);
};  // End of AArch64_output_section


// Create a stub group for input sections from FIRST to LAST. OWNER points to
// the input section that will be the owner of the stub table.

template<int size, bool big_endian> void
AArch64_output_section<size, big_endian>::create_stub_group(
   Input_section_list::const_iterator first,
   Input_section_list::const_iterator last,
   Input_section_list::const_iterator owner,
   The_target_aarch64* target,
   std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
   const Task* task)
{
 // Currently we convert ordinary input sections into relaxed sections only
 // at this point.
 The_aarch64_input_section* input_section;
 if (owner->is_relaxed_input_section())
   gold_unreachable();
 else
   {
     gold_assert(owner->is_input_section());
     // Create a new relaxed input section.  We need to lock the original
     // file.
     Task_lock_obj<Object> tl(task, owner->relobj());
     input_section =
         target->new_aarch64_input_section(owner->relobj(), owner->shndx());
     new_relaxed_sections.push_back(input_section);
   }

 // Create a stub table.
 The_stub_table* stub_table =
     target->new_stub_table(input_section);

 input_section->set_stub_table(stub_table);

 Input_section_list::const_iterator p = first;
 // Look for input sections or relaxed input sections in [first ... last].
 do
   {
     if (p->is_input_section() || p->is_relaxed_input_section())
       {
         // The stub table information for input sections live
         // in their objects.
         The_aarch64_relobj* aarch64_relobj =
             static_cast<The_aarch64_relobj*>(p->relobj());
         aarch64_relobj->set_stub_table(p->shndx(), stub_table);
       }
   }
 while (p++ != last);
}


// Group input sections for stub generation. GROUP_SIZE is roughly the limit of
// stub groups. We grow a stub group by adding input section until the size is
// just below GROUP_SIZE. The last input section will be converted into a stub
// table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
// after the stub table, effectively doubling the group size.
//
// This is similar to the group_sections() function in elf32-arm.c but is
// implemented differently.

template<int size, bool big_endian>
void AArch64_output_section<size, big_endian>::group_sections(
   section_size_type group_size,
   bool stubs_always_after_branch,
   Target_aarch64<size, big_endian>* target,
   const Task* task)
{
 typedef enum
 {
   NO_GROUP,
   FINDING_STUB_SECTION,
   HAS_STUB_SECTION
 } State;

 std::vector<Output_relaxed_input_section*> new_relaxed_sections;

 State state = NO_GROUP;
 section_size_type off = 0;
 section_size_type group_begin_offset = 0;
 section_size_type group_end_offset = 0;
 section_size_type stub_table_end_offset = 0;
 Input_section_list::const_iterator group_begin =
     this->input_sections().end();
 Input_section_list::const_iterator stub_table =
     this->input_sections().end();
 Input_section_list::const_iterator group_end = this->input_sections().end();
 for (Input_section_list::const_iterator p = this->input_sections().begin();
      p != this->input_sections().end();
      ++p)
   {
     section_size_type section_begin_offset =
       align_address(off, p->addralign());
     section_size_type section_end_offset =
       section_begin_offset + p->data_size();

     // Check to see if we should group the previously seen sections.
     switch (state)
       {
       case NO_GROUP:
         break;

       case FINDING_STUB_SECTION:
         // Adding this section makes the group larger than GROUP_SIZE.
         if (section_end_offset - group_begin_offset >= group_size)
           {
             if (stubs_always_after_branch)
               {
                 gold_assert(group_end != this->input_sections().end());
                 this->create_stub_group(group_begin, group_end, group_end,
                                         target, new_relaxed_sections,
                                         task);
                 state = NO_GROUP;
               }
             else
               {
                 // Input sections up to stub_group_size bytes after the stub
                 // table can be handled by it too.
                 state = HAS_STUB_SECTION;
                 stub_table = group_end;
                 stub_table_end_offset = group_end_offset;
               }
           }
           break;

       case HAS_STUB_SECTION:
         // Adding this section makes the post stub-section group larger
         // than GROUP_SIZE.
         gold_unreachable();
         // NOT SUPPORTED YET. For completeness only.
         if (section_end_offset - stub_table_end_offset >= group_size)
          {
            gold_assert(group_end != this->input_sections().end());
            this->create_stub_group(group_begin, group_end, stub_table,
                                    target, new_relaxed_sections, task);
            state = NO_GROUP;
          }
          break;

         default:
           gold_unreachable();
       }

     // If we see an input section and currently there is no group, start
     // a new one.  Skip any empty sections.  We look at the data size
     // instead of calling p->relobj()->section_size() to avoid locking.
     if ((p->is_input_section() || p->is_relaxed_input_section())
         && (p->data_size() != 0))
       {
         if (state == NO_GROUP)
           {
             state = FINDING_STUB_SECTION;
             group_begin = p;
             group_begin_offset = section_begin_offset;
           }

         // Keep track of the last input section seen.
         group_end = p;
         group_end_offset = section_end_offset;
       }

     off = section_end_offset;
   }

 // Create a stub group for any ungrouped sections.
 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
   {
     gold_assert(group_end != this->input_sections().end());
     this->create_stub_group(group_begin, group_end,
                             (state == FINDING_STUB_SECTION
                              ? group_end
                              : stub_table),
                             target, new_relaxed_sections, task);
   }

 if (!new_relaxed_sections.empty())
   this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);

 // Update the section offsets
 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
   {
     The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
         new_relaxed_sections[i]->relobj());
     unsigned int shndx = new_relaxed_sections[i]->shndx();
     // Tell AArch64_relobj that this input section is converted.
     relobj->convert_input_section_to_relaxed_section(shndx);
   }
}  // End of AArch64_output_section::group_sections


AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;


// The aarch64 target class.
// See the ABI at
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
template<int size, bool big_endian>
class Target_aarch64 : public Sized_target<size, big_endian>
{
public:
 typedef Target_aarch64<size, big_endian> This;
 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
     Reloc_section;
 typedef Relocate_info<size, big_endian> The_relocate_info;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
 typedef Reloc_stub<size, big_endian> The_reloc_stub;
 typedef Erratum_stub<size, big_endian> The_erratum_stub;
 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
 typedef Stub_table<size, big_endian> The_stub_table;
 typedef std::vector<The_stub_table*> Stub_table_list;
 typedef typename Stub_table_list::iterator Stub_table_iterator;
 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
 typedef Unordered_map<Section_id,
                       AArch64_input_section<size, big_endian>*,
                       Section_id_hash> AArch64_input_section_map;
 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
 const static int TCB_SIZE = size / 8 * 2;
 static const Address invalid_address = static_cast<Address>(-1);

 Target_aarch64(const Target::Target_info* info = &aarch64_info)
   : Sized_target<size, big_endian>(info),
     got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
     got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
     rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
     got_mod_index_offset_(-1U),
     tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
     stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
 { }

 // Scan the relocations to determine unreferenced sections for
 // garbage collection.
 void
 gc_process_relocs(Symbol_table* symtab,
                   Layout* layout,
                   Sized_relobj_file<size, big_endian>* object,
                   unsigned int data_shndx,
                   unsigned int sh_type,
                   const unsigned char* prelocs,
                   size_t reloc_count,
                   Output_section* output_section,
                   bool needs_special_offset_handling,
                   size_t local_symbol_count,
                   const unsigned char* plocal_symbols);

 // Scan the relocations to look for symbol adjustments.
 void
 scan_relocs(Symbol_table* symtab,
             Layout* layout,
             Sized_relobj_file<size, big_endian>* object,
             unsigned int data_shndx,
             unsigned int sh_type,
             const unsigned char* prelocs,
             size_t reloc_count,
             Output_section* output_section,
             bool needs_special_offset_handling,
             size_t local_symbol_count,
             const unsigned char* plocal_symbols);

 // Finalize the sections.
 void
 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);

 // Return the value to use for a dynamic which requires special
 // treatment.
 uint64_t
 do_dynsym_value(const Symbol*) const;

 // Relocate a section.
 void
 relocate_section(const Relocate_info<size, big_endian>*,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  unsigned char* view,
                  typename elfcpp::Elf_types<size>::Elf_Addr view_address,
                  section_size_type view_size,
                  const Reloc_symbol_changes*);

 // Scan the relocs during a relocatable link.
 void
 scan_relocatable_relocs(Symbol_table* symtab,
                         Layout* layout,
                         Sized_relobj_file<size, big_endian>* object,
                         unsigned int data_shndx,
                         unsigned int sh_type,
                         const unsigned char* prelocs,
                         size_t reloc_count,
                         Output_section* output_section,
                         bool needs_special_offset_handling,
                         size_t local_symbol_count,
                         const unsigned char* plocal_symbols,
                         Relocatable_relocs*);

 // Scan the relocs for --emit-relocs.
 void
 emit_relocs_scan(Symbol_table* symtab,
                  Layout* layout,
                  Sized_relobj_file<size, big_endian>* object,
                  unsigned int data_shndx,
                  unsigned int sh_type,
                  const unsigned char* prelocs,
                  size_t reloc_count,
                  Output_section* output_section,
                  bool needs_special_offset_handling,
                  size_t local_symbol_count,
                  const unsigned char* plocal_syms,
                  Relocatable_relocs* rr);

 // Relocate a section during a relocatable link.
 void
 relocate_relocs(
     const Relocate_info<size, big_endian>*,
     unsigned int sh_type,
     const unsigned char* prelocs,
     size_t reloc_count,
     Output_section* output_section,
     typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
     unsigned char* view,
     typename elfcpp::Elf_types<size>::Elf_Addr view_address,
     section_size_type view_size,
     unsigned char* reloc_view,
     section_size_type reloc_view_size);

 // Return the symbol index to use for a target specific relocation.
 // The only target specific relocation is R_AARCH64_TLSDESC for a
 // local symbol, which is an absolute reloc.
 unsigned int
 do_reloc_symbol_index(void*, unsigned int r_type) const
 {
   gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
   return 0;
 }

 // Return the addend to use for a target specific relocation.
 uint64_t
 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;

 // Return the PLT section.
 uint64_t
 do_plt_address_for_global(const Symbol* gsym) const
 { return this->plt_section()->address_for_global(gsym); }

 uint64_t
 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
 { return this->plt_section()->address_for_local(relobj, symndx); }

 // This function should be defined in targets that can use relocation
 // types to determine (implemented in local_reloc_may_be_function_pointer
 // and global_reloc_may_be_function_pointer)
 // if a function's pointer is taken.  ICF uses this in safe mode to only
 // fold those functions whose pointer is defintely not taken.
 bool
 do_can_check_for_function_pointers() const
 { return true; }

 // Return the number of entries in the PLT.
 unsigned int
 plt_entry_count() const;

 //Return the offset of the first non-reserved PLT entry.
 unsigned int
 first_plt_entry_offset() const;

 // Return the size of each PLT entry.
 unsigned int
 plt_entry_size() const;

 // Create a stub table.
 The_stub_table*
 new_stub_table(The_aarch64_input_section*);

 // Create an aarch64 input section.
 The_aarch64_input_section*
 new_aarch64_input_section(Relobj*, unsigned int);

 // Find an aarch64 input section instance for a given OBJ and SHNDX.
 The_aarch64_input_section*
 find_aarch64_input_section(Relobj*, unsigned int) const;

 // Return the thread control block size.
 unsigned int
 tcb_size() const { return This::TCB_SIZE; }

 // Scan a section for stub generation.
 void
 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
                        const unsigned char*, size_t, Output_section*,
                        bool, const unsigned char*,
                        Address,
                        section_size_type);

 // Scan a relocation section for stub.
 template<int sh_type>
 void
 scan_reloc_section_for_stubs(
     const The_relocate_info* relinfo,
     const unsigned char* prelocs,
     size_t reloc_count,
     Output_section* output_section,
     bool needs_special_offset_handling,
     const unsigned char* view,
     Address view_address,
     section_size_type);

 // Relocate a single reloc stub.
 void
 relocate_reloc_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
                     Output_section*, unsigned char*, Address,
                     section_size_type);

 // Get the default AArch64 target.
 static This*
 current_target()
 {
   gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
               && parameters->target().get_size() == size
               && parameters->target().is_big_endian() == big_endian);
   return static_cast<This*>(parameters->sized_target<size, big_endian>());
 }


 // Scan erratum 843419 for a part of a section.
 void
 scan_erratum_843419_span(
   AArch64_relobj<size, big_endian>*,
   unsigned int,
   const section_size_type,
   const section_size_type,
   unsigned char*,
   Address);

 // Scan erratum 835769 for a part of a section.
 void
 scan_erratum_835769_span(
   AArch64_relobj<size, big_endian>*,
   unsigned int,
   const section_size_type,
   const section_size_type,
   unsigned char*,
   Address);

protected:
 void
 do_select_as_default_target()
 {
   gold_assert(aarch64_reloc_property_table == NULL);
   aarch64_reloc_property_table = new AArch64_reloc_property_table();
 }

 // Add a new reloc argument, returning the index in the vector.
 size_t
 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
                  unsigned int r_sym)
 {
   this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
   return this->tlsdesc_reloc_info_.size() - 1;
 }

 virtual Output_data_plt_aarch64<size, big_endian>*
 do_make_data_plt(Layout* layout,
                  Output_data_got_aarch64<size, big_endian>* got,
                  Output_data_space* got_plt,
                  Output_data_space* got_irelative)
 {
   return new Output_data_plt_aarch64_standard<size, big_endian>(
     layout, got, got_plt, got_irelative);
 }


 // do_make_elf_object to override the same function in the base class.
 Object*
 do_make_elf_object(const std::string&, Input_file*, off_t,
                    const elfcpp::Ehdr<size, big_endian>&);

 Output_data_plt_aarch64<size, big_endian>*
 make_data_plt(Layout* layout,
               Output_data_got_aarch64<size, big_endian>* got,
               Output_data_space* got_plt,
               Output_data_space* got_irelative)
 {
   return this->do_make_data_plt(layout, got, got_plt, got_irelative);
 }

 // We only need to generate stubs, and hence perform relaxation if we are
 // not doing relocatable linking.
 virtual bool
 do_may_relax() const
 { return !parameters->options().relocatable(); }

 // Relaxation hook.  This is where we do stub generation.
 virtual bool
 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);

 void
 group_sections(Layout* layout,
                section_size_type group_size,
                bool stubs_always_after_branch,
                const Task* task);

 void
 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
                     const Sized_symbol<size>*, unsigned int,
                     const Symbol_value<size>*,
                     typename elfcpp::Elf_types<size>::Elf_Swxword,
                     Address Elf_Addr);

 // Make an output section.
 Output_section*
 do_make_output_section(const char* name, elfcpp::Elf_Word type,
                        elfcpp::Elf_Xword flags)
 { return new The_aarch64_output_section(name, type, flags); }

private:
 // The class which scans relocations.
 class Scan
 {
 public:
   Scan()
     : issued_non_pic_error_(false)
   { }

   inline void
   local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
         Sized_relobj_file<size, big_endian>* object,
         unsigned int data_shndx,
         Output_section* output_section,
         const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
         const elfcpp::Sym<size, big_endian>& lsym,
         bool is_discarded);

   inline void
   global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
          Sized_relobj_file<size, big_endian>* object,
          unsigned int data_shndx,
          Output_section* output_section,
          const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
          Symbol* gsym);

   inline bool
   local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
                                       Target_aarch64<size, big_endian>* ,
                                       Sized_relobj_file<size, big_endian>* ,
                                       unsigned int ,
                                       Output_section* ,
                                       const elfcpp::Rela<size, big_endian>& ,
                                       unsigned int r_type,
                                       const elfcpp::Sym<size, big_endian>&);

   inline bool
   global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
                                        Target_aarch64<size, big_endian>* ,
                                        Sized_relobj_file<size, big_endian>* ,
                                        unsigned int ,
                                        Output_section* ,
                                        const elfcpp::Rela<size, big_endian>& ,
                                        unsigned int r_type,
                                        Symbol* gsym);

 private:
   static void
   unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
                           unsigned int r_type);

   static void
   unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
                            unsigned int r_type, Symbol*);

   inline bool
   possible_function_pointer_reloc(unsigned int r_type);

   void
   check_non_pic(Relobj*, unsigned int r_type);

   bool
   reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
                             unsigned int r_type);

   // Whether we have issued an error about a non-PIC compilation.
   bool issued_non_pic_error_;
 };

 // The class which implements relocation.
 class Relocate
 {
  public:
   Relocate()
     : skip_call_tls_get_addr_(false)
   { }

   ~Relocate()
   { }

   // Do a relocation.  Return false if the caller should not issue
   // any warnings about this relocation.
   inline bool
   relocate(const Relocate_info<size, big_endian>*, unsigned int,
            Target_aarch64*, Output_section*, size_t, const unsigned char*,
            const Sized_symbol<size>*, const Symbol_value<size>*,
            unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
            section_size_type);

 private:
   inline typename AArch64_relocate_functions<size, big_endian>::Status
   relocate_tls(const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                size_t,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int r_type, const Sized_symbol<size>*,
                const Symbol_value<size>*,
                unsigned char*,
                typename elfcpp::Elf_types<size>::Elf_Addr);

   inline typename AArch64_relocate_functions<size, big_endian>::Status
   tls_gd_to_le(
                const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int,
                unsigned char*,
                const Symbol_value<size>*);

   inline typename AArch64_relocate_functions<size, big_endian>::Status
   tls_ld_to_le(
                const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int,
                unsigned char*,
                const Symbol_value<size>*);

   inline typename AArch64_relocate_functions<size, big_endian>::Status
   tls_ie_to_le(
                const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int,
                unsigned char*,
                const Symbol_value<size>*);

   inline typename AArch64_relocate_functions<size, big_endian>::Status
   tls_desc_gd_to_le(
                const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int,
                unsigned char*,
                const Symbol_value<size>*);

   inline typename AArch64_relocate_functions<size, big_endian>::Status
   tls_desc_gd_to_ie(
                const Relocate_info<size, big_endian>*,
                Target_aarch64<size, big_endian>*,
                const elfcpp::Rela<size, big_endian>&,
                unsigned int,
                unsigned char*,
                const Symbol_value<size>*,
                typename elfcpp::Elf_types<size>::Elf_Addr,
                typename elfcpp::Elf_types<size>::Elf_Addr);

   bool skip_call_tls_get_addr_;

 };  // End of class Relocate

 // Adjust TLS relocation type based on the options and whether this
 // is a local symbol.
 static tls::Tls_optimization
 optimize_tls_reloc(bool is_final, int r_type);

 // Get the GOT section, creating it if necessary.
 Output_data_got_aarch64<size, big_endian>*
 got_section(Symbol_table*, Layout*);

 // Get the GOT PLT section.
 Output_data_space*
 got_plt_section() const
 {
   gold_assert(this->got_plt_ != NULL);
   return this->got_plt_;
 }

 // Get the GOT section for TLSDESC entries.
 Output_data_got<size, big_endian>*
 got_tlsdesc_section() const
 {
   gold_assert(this->got_tlsdesc_ != NULL);
   return this->got_tlsdesc_;
 }

 // Create the PLT section.
 void
 make_plt_section(Symbol_table* symtab, Layout* layout);

 // Create a PLT entry for a global symbol.
 void
 make_plt_entry(Symbol_table*, Layout*, Symbol*);

 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
 void
 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
                            Sized_relobj_file<size, big_endian>* relobj,
                            unsigned int local_sym_index);

 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
 void
 define_tls_base_symbol(Symbol_table*, Layout*);

 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
 void
 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);

 // Create a GOT entry for the TLS module index.
 unsigned int
 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
                     Sized_relobj_file<size, big_endian>* object);

 // Get the PLT section.
 Output_data_plt_aarch64<size, big_endian>*
 plt_section() const
 {
   gold_assert(this->plt_ != NULL);
   return this->plt_;
 }

 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769. For
 // ST_E_843419, we need an additional field for adrp offset.
 void create_erratum_stub(
   AArch64_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   section_size_type erratum_insn_offset,
   Address erratum_address,
   typename Insn_utilities::Insntype erratum_insn,
   int erratum_type,
   unsigned int e843419_adrp_offset=0);

 // Return whether this is a 3-insn erratum sequence.
 bool is_erratum_843419_sequence(
     typename elfcpp::Swap<32,big_endian>::Valtype insn1,
     typename elfcpp::Swap<32,big_endian>::Valtype insn2,
     typename elfcpp::Swap<32,big_endian>::Valtype insn3);

 // Return whether this is a 835769 sequence.
 // (Similarly implemented as in elfnn-aarch64.c.)
 bool is_erratum_835769_sequence(
     typename elfcpp::Swap<32,big_endian>::Valtype,
     typename elfcpp::Swap<32,big_endian>::Valtype);

 // Get the dynamic reloc section, creating it if necessary.
 Reloc_section*
 rela_dyn_section(Layout*);

 // Get the section to use for TLSDESC relocations.
 Reloc_section*
 rela_tlsdesc_section(Layout*) const;

 // Get the section to use for IRELATIVE relocations.
 Reloc_section*
 rela_irelative_section(Layout*);

 // Add a potential copy relocation.
 void
 copy_reloc(Symbol_table* symtab, Layout* layout,
            Sized_relobj_file<size, big_endian>* object,
            unsigned int shndx, Output_section* output_section,
            Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
 {
   unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
   this->copy_relocs_.copy_reloc(symtab, layout,
                                 symtab->get_sized_symbol<size>(sym),
                                 object, shndx, output_section,
                                 r_type, reloc.get_r_offset(),
                                 reloc.get_r_addend(),
                                 this->rela_dyn_section(layout));
 }

 // Information about this specific target which we pass to the
 // general Target structure.
 static const Target::Target_info aarch64_info;

 // The types of GOT entries needed for this platform.
 // These values are exposed to the ABI in an incremental link.
 // Do not renumber existing values without changing the version
 // number of the .gnu_incremental_inputs section.
 enum Got_type
 {
   GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
   GOT_TYPE_TLS_OFFSET = 1,    // GOT entry for TLS offset
   GOT_TYPE_TLS_PAIR = 2,      // GOT entry for TLS module/offset pair
   GOT_TYPE_TLS_DESC = 3       // GOT entry for TLS_DESC pair
 };

 // This type is used as the argument to the target specific
 // relocation routines.  The only target specific reloc is
 // R_AARCh64_TLSDESC against a local symbol.
 struct Tlsdesc_info
 {
   Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
                unsigned int a_r_sym)
     : object(a_object), r_sym(a_r_sym)
   { }

   // The object in which the local symbol is defined.
   Sized_relobj_file<size, big_endian>* object;
   // The local symbol index in the object.
   unsigned int r_sym;
 };

 // The GOT section.
 Output_data_got_aarch64<size, big_endian>* got_;
 // The PLT section.
 Output_data_plt_aarch64<size, big_endian>* plt_;
 // The GOT PLT section.
 Output_data_space* got_plt_;
 // The GOT section for IRELATIVE relocations.
 Output_data_space* got_irelative_;
 // The GOT section for TLSDESC relocations.
 Output_data_got<size, big_endian>* got_tlsdesc_;
 // The _GLOBAL_OFFSET_TABLE_ symbol.
 Symbol* global_offset_table_;
 // The dynamic reloc section.
 Reloc_section* rela_dyn_;
 // The section to use for IRELATIVE relocs.
 Reloc_section* rela_irelative_;
 // Relocs saved to avoid a COPY reloc.
 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
 // Offset of the GOT entry for the TLS module index.
 unsigned int got_mod_index_offset_;
 // We handle R_AARCH64_TLSDESC against a local symbol as a target
 // specific relocation. Here we store the object and local symbol
 // index for the relocation.
 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
 // True if the _TLS_MODULE_BASE_ symbol has been defined.
 bool tls_base_symbol_defined_;
 // List of stub_tables
 Stub_table_list stub_tables_;
 // Actual stub group size
 section_size_type stub_group_size_;
 AArch64_input_section_map aarch64_input_section_map_;
};  // End of Target_aarch64


template<>
const Target::Target_info Target_aarch64<64, false>::aarch64_info =
{
 64,                   // size
 false,                // is_big_endian
 elfcpp::EM_AARCH64,   // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 false,                // is_default_stack_executable
 true,                 // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/lib/ld.so.1",       // program interpreter
 0x400000,             // default_text_segment_address
 0x10000,              // abi_pagesize (overridable by -z max-page-size)
 0x1000,               // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

template<>
const Target::Target_info Target_aarch64<32, false>::aarch64_info =
{
 32,                   // size
 false,                // is_big_endian
 elfcpp::EM_AARCH64,   // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 false,                // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/lib/ld.so.1",       // program interpreter
 0x400000,             // default_text_segment_address
 0x10000,              // abi_pagesize (overridable by -z max-page-size)
 0x1000,               // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

template<>
const Target::Target_info Target_aarch64<64, true>::aarch64_info =
{
 64,                   // size
 true,                 // is_big_endian
 elfcpp::EM_AARCH64,   // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 false,                // is_default_stack_executable
 true,                 // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/lib/ld.so.1",       // program interpreter
 0x400000,             // default_text_segment_address
 0x10000,              // abi_pagesize (overridable by -z max-page-size)
 0x1000,               // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

template<>
const Target::Target_info Target_aarch64<32, true>::aarch64_info =
{
 32,                   // size
 true,                 // is_big_endian
 elfcpp::EM_AARCH64,   // machine_code
 false,                // has_make_symbol
 false,                // has_resolve
 false,                // has_code_fill
 false,                // is_default_stack_executable
 false,                // can_icf_inline_merge_sections
 '\0',                 // wrap_char
 "/lib/ld.so.1",       // program interpreter
 0x400000,             // default_text_segment_address
 0x10000,              // abi_pagesize (overridable by -z max-page-size)
 0x1000,               // common_pagesize (overridable by -z common-page-size)
 false,                // isolate_execinstr
 0,                    // rosegment_gap
 elfcpp::SHN_UNDEF,    // small_common_shndx
 elfcpp::SHN_UNDEF,    // large_common_shndx
 0,                    // small_common_section_flags
 0,                    // large_common_section_flags
 NULL,                 // attributes_section
 NULL,                 // attributes_vendor
 "_start",             // entry_symbol_name
 32,                   // hash_entry_size
 elfcpp::SHT_PROGBITS, // unwind_section_type
};

// Get the GOT section, creating it if necessary.

template<int size, bool big_endian>
Output_data_got_aarch64<size, big_endian>*
Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
                                             Layout* layout)
{
 if (this->got_ == NULL)
   {
     gold_assert(symtab != NULL && layout != NULL);

     // When using -z now, we can treat .got.plt as a relro section.
     // Without -z now, it is modified after program startup by lazy
     // PLT relocations.
     bool is_got_plt_relro = parameters->options().now();
     Output_section_order got_order = (is_got_plt_relro
                                       ? ORDER_RELRO
                                       : ORDER_RELRO_LAST);
     Output_section_order got_plt_order = (is_got_plt_relro
                                           ? ORDER_RELRO
                                           : ORDER_NON_RELRO_FIRST);

     // Layout of .got and .got.plt sections.
     // .got[0] &_DYNAMIC                          <-_GLOBAL_OFFSET_TABLE_
     // ...
     // .gotplt[0] reserved for ld.so (&linkmap)   <--DT_PLTGOT
     // .gotplt[1] reserved for ld.so (resolver)
     // .gotplt[2] reserved

     // Generate .got section.
     this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
                                                                layout);
     layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
                                     this->got_, got_order, true);
     // The first word of GOT is reserved for the address of .dynamic.
     // We put 0 here now. The value will be replaced later in
     // Output_data_got_aarch64::do_write.
     this->got_->add_constant(0);

     // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
     // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
     // even if there is a .got.plt section.
     this->global_offset_table_ =
       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
                                     Symbol_table::PREDEFINED,
                                     this->got_,
                                     0, 0, elfcpp::STT_OBJECT,
                                     elfcpp::STB_LOCAL,
                                     elfcpp::STV_HIDDEN, 0,
                                     false, false);

     // Generate .got.plt section.
     this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
     layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_WRITE),
                                     this->got_plt_, got_plt_order,
                                     is_got_plt_relro);

     // The first three entries are reserved.
     this->got_plt_->set_current_data_size(
       AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));

     // If there are any IRELATIVE relocations, they get GOT entries
     // in .got.plt after the jump slot entries.
     this->got_irelative_ = new Output_data_space(size / 8,
                                                  "** GOT IRELATIVE PLT");
     layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_WRITE),
                                     this->got_irelative_,
                                     got_plt_order,
                                     is_got_plt_relro);

     // If there are any TLSDESC relocations, they get GOT entries in
     // .got.plt after the jump slot and IRELATIVE entries.
     this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
     layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_WRITE),
                                     this->got_tlsdesc_,
                                     got_plt_order,
                                     is_got_plt_relro);

     if (!is_got_plt_relro)
       {
         // Those bytes can go into the relro segment.
         layout->increase_relro(
           AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
       }

   }
 return this->got_;
}

// Get the dynamic reloc section, creating it if necessary.

template<int size, bool big_endian>
typename Target_aarch64<size, big_endian>::Reloc_section*
Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
{
 if (this->rela_dyn_ == NULL)
   {
     gold_assert(layout != NULL);
     this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
     layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->rela_dyn_,
                                     ORDER_DYNAMIC_RELOCS, false);
   }
 return this->rela_dyn_;
}

// Get the section to use for IRELATIVE relocs, creating it if
// necessary.  These go in .rela.dyn, but only after all other dynamic
// relocations.  They need to follow the other dynamic relocations so
// that they can refer to global variables initialized by those
// relocs.

template<int size, bool big_endian>
typename Target_aarch64<size, big_endian>::Reloc_section*
Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
{
 if (this->rela_irelative_ == NULL)
   {
     // Make sure we have already created the dynamic reloc section.
     this->rela_dyn_section(layout);
     this->rela_irelative_ = new Reloc_section(false);
     layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->rela_irelative_,
                                     ORDER_DYNAMIC_RELOCS, false);
     gold_assert(this->rela_dyn_->output_section()
                 == this->rela_irelative_->output_section());
   }
 return this->rela_irelative_;
}


// do_make_elf_object to override the same function in the base class.  We need
// to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
// store backend specific information. Hence we need to have our own ELF object
// creation.

template<int size, bool big_endian>
Object*
Target_aarch64<size, big_endian>::do_make_elf_object(
   const std::string& name,
   Input_file* input_file,
   off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
{
 int et = ehdr.get_e_type();
 // ET_EXEC files are valid input for --just-symbols/-R,
 // and we treat them as relocatable objects.
 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
   return Sized_target<size, big_endian>::do_make_elf_object(
       name, input_file, offset, ehdr);
 else if (et == elfcpp::ET_REL)
   {
     AArch64_relobj<size, big_endian>* obj =
       new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
     obj->setup();
     return obj;
   }
 else if (et == elfcpp::ET_DYN)
   {
     // Keep base implementation.
     Sized_dynobj<size, big_endian>* obj =
         new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
     obj->setup();
     return obj;
   }
 else
   {
     gold_error(_("%s: unsupported ELF file type %d"),
                name.c_str(), et);
     return NULL;
   }
}


// Scan a relocation for stub generation.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_reloc_for_stub(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int r_type,
   const Sized_symbol<size>* gsym,
   unsigned int r_sym,
   const Symbol_value<size>* psymval,
   typename elfcpp::Elf_types<size>::Elf_Swxword addend,
   Address address)
{
 const AArch64_relobj<size, big_endian>* aarch64_relobj =
     static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);

 Symbol_value<size> symval;
 if (gsym != NULL)
   {
     const AArch64_reloc_property* arp = aarch64_reloc_property_table->
       get_reloc_property(r_type);
     if (gsym->use_plt_offset(arp->reference_flags()))
       {
         // This uses a PLT, change the symbol value.
         symval.set_output_value(this->plt_address_for_global(gsym));
         psymval = &symval;
       }
     else if (gsym->is_undefined())
       {
         // There is no need to generate a stub symbol if the original symbol
         // is undefined.
         gold_debug(DEBUG_TARGET,
                    "stub: not creating a stub for undefined symbol %s in file %s",
                    gsym->name(), aarch64_relobj->name().c_str());
         return;
       }
   }

 // Get the symbol value.
 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);

 // Owing to pipelining, the PC relative branches below actually skip
 // two instructions when the branch offset is 0.
 Address destination = static_cast<Address>(-1);
 switch (r_type)
   {
   case elfcpp::R_AARCH64_CALL26:
   case elfcpp::R_AARCH64_JUMP26:
     destination = value + addend;
     break;
   default:
     gold_unreachable();
   }

 int stub_type = The_reloc_stub::
     stub_type_for_reloc(r_type, address, destination);
 if (stub_type == ST_NONE)
   return;

 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
 gold_assert(stub_table != NULL);

 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
 if (stub == NULL)
   {
     stub = new The_reloc_stub(stub_type);
     stub_table->add_reloc_stub(stub, key);
   }
 stub->set_destination_address(destination);
}  // End of Target_aarch64::scan_reloc_for_stub


// This function scans a relocation section for stub generation.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.

// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
// SHT_REL or SHT_RELA.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.

// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.

template<int size, bool big_endian>
template<int sh_type>
void inline
Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
   const Relocate_info<size, big_endian>* relinfo,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* /*output_section*/,
   bool /*needs_special_offset_handling*/,
   const unsigned char* /*view*/,
   Address view_address,
   section_size_type)
{
 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;

 const int reloc_size =
     Reloc_types<sh_type,size,big_endian>::reloc_size;
 AArch64_relobj<size, big_endian>* object =
     static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
 unsigned int local_count = object->local_symbol_count();

 gold::Default_comdat_behavior default_comdat_behavior;
 Comdat_behavior comdat_behavior = CB_UNDETERMINED;

 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
   {
     Reltype reloc(prelocs);
     typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
     unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
     unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
     if (r_type != elfcpp::R_AARCH64_CALL26
         && r_type != elfcpp::R_AARCH64_JUMP26)
       continue;

     section_offset_type offset =
         convert_to_section_size_type(reloc.get_r_offset());

     // Get the addend.
     typename elfcpp::Elf_types<size>::Elf_Swxword addend =
         reloc.get_r_addend();

     const Sized_symbol<size>* sym;
     Symbol_value<size> symval;
     const Symbol_value<size> *psymval;
     bool is_defined_in_discarded_section;
     unsigned int shndx;
     const Symbol* gsym = NULL;
     if (r_sym < local_count)
       {
         sym = NULL;
         psymval = object->local_symbol(r_sym);

         // If the local symbol belongs to a section we are discarding,
         // and that section is a debug section, try to find the
         // corresponding kept section and map this symbol to its
         // counterpart in the kept section.  The symbol must not
         // correspond to a section we are folding.
         bool is_ordinary;
         shndx = psymval->input_shndx(&is_ordinary);
         is_defined_in_discarded_section =
           (is_ordinary
            && shndx != elfcpp::SHN_UNDEF
            && !object->is_section_included(shndx)
            && !relinfo->symtab->is_section_folded(object, shndx));

         // We need to compute the would-be final value of this local
         // symbol.
         if (!is_defined_in_discarded_section)
           {
             typedef Sized_relobj_file<size, big_endian> ObjType;
             if (psymval->is_section_symbol())
               symval.set_is_section_symbol();
             typename ObjType::Compute_final_local_value_status status =
               object->compute_final_local_value(r_sym, psymval, &symval,
                                                 relinfo->symtab);
             if (status == ObjType::CFLV_OK)
               {
                 // Currently we cannot handle a branch to a target in
                 // a merged section.  If this is the case, issue an error
                 // and also free the merge symbol value.
                 if (!symval.has_output_value())
                   {
                     const std::string& section_name =
                       object->section_name(shndx);
                     object->error(_("cannot handle branch to local %u "
                                         "in a merged section %s"),
                                       r_sym, section_name.c_str());
                   }
                 psymval = &symval;
               }
             else
               {
                 // We cannot determine the final value.
                 continue;
               }
           }
       }
     else
       {
         gsym = object->global_symbol(r_sym);
         gold_assert(gsym != NULL);
         if (gsym->is_forwarder())
           gsym = relinfo->symtab->resolve_forwards(gsym);

         sym = static_cast<const Sized_symbol<size>*>(gsym);
         if (sym->has_symtab_index() && sym->symtab_index() != -1U)
           symval.set_output_symtab_index(sym->symtab_index());
         else
           symval.set_no_output_symtab_entry();

         // We need to compute the would-be final value of this global
         // symbol.
         const Symbol_table* symtab = relinfo->symtab;
         const Sized_symbol<size>* sized_symbol =
             symtab->get_sized_symbol<size>(gsym);
         Symbol_table::Compute_final_value_status status;
         typename elfcpp::Elf_types<size>::Elf_Addr value =
             symtab->compute_final_value<size>(sized_symbol, &status);

         // Skip this if the symbol has not output section.
         if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
           continue;
         symval.set_output_value(value);

         if (gsym->type() == elfcpp::STT_TLS)
           symval.set_is_tls_symbol();
         else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
           symval.set_is_ifunc_symbol();
         psymval = &symval;

         is_defined_in_discarded_section =
             (gsym->is_defined_in_discarded_section()
              && gsym->is_undefined());
         shndx = 0;
       }

     Symbol_value<size> symval2;
     if (is_defined_in_discarded_section)
       {
         std::string name = object->section_name(relinfo->data_shndx);

         if (comdat_behavior == CB_UNDETERMINED)
             comdat_behavior = default_comdat_behavior.get(name.c_str());

         if (comdat_behavior == CB_PRETEND)
           {
             bool found;
             typename elfcpp::Elf_types<size>::Elf_Addr value =
               object->map_to_kept_section(shndx, name, &found);
             if (found)
               symval2.set_output_value(value + psymval->input_value());
             else
               symval2.set_output_value(0);
           }
         else
           {
             if (comdat_behavior == CB_ERROR)
               issue_discarded_error(relinfo, i, offset, r_sym, gsym);
             symval2.set_output_value(0);
           }
         symval2.set_no_output_symtab_entry();
         psymval = &symval2;
       }

     this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
                               addend, view_address + offset);
   }  // End of iterating relocs in a section
}  // End of Target_aarch64::scan_reloc_section_for_stubs


// Scan an input section for stub generation.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_section_for_stubs(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   const unsigned char* view,
   Address view_address,
   section_size_type view_size)
{
 gold_assert(sh_type == elfcpp::SHT_RELA);
 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
     relinfo,
     prelocs,
     reloc_count,
     output_section,
     needs_special_offset_handling,
     view,
     view_address,
     view_size);
}


// Relocate a single reloc stub.

template<int size, bool big_endian>
void Target_aarch64<size, big_endian>::
relocate_reloc_stub(The_reloc_stub* stub,
                   const The_relocate_info*,
                   Output_section*,
                   unsigned char* view,
                   Address address,
                   section_size_type)
{
 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
 typedef typename The_reloc_functions::Status The_reloc_functions_status;
 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;

 Insntype* ip = reinterpret_cast<Insntype*>(view);
 int insn_number = stub->insn_num();
 const uint32_t* insns = stub->insns();
 // Check the insns are really those stub insns.
 for (int i = 0; i < insn_number; ++i)
   {
     Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
     gold_assert(((uint32_t)insn == insns[i]));
   }

 Address dest = stub->destination_address();

 switch(stub->type())
   {
   case ST_ADRP_BRANCH:
     {
       // 1st reloc is ADR_PREL_PG_HI21
       The_reloc_functions_status status =
           The_reloc_functions::adrp(view, dest, address);
       // An error should never arise in the above step. If so, please
       // check 'aarch64_valid_for_adrp_p'.
       gold_assert(status == The_reloc_functions::STATUS_OKAY);

       // 2nd reloc is ADD_ABS_LO12_NC
       const AArch64_reloc_property* arp =
           aarch64_reloc_property_table->get_reloc_property(
               elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
       gold_assert(arp != NULL);
       status = The_reloc_functions::template
           rela_general<32>(view + 4, dest, 0, arp);
       // An error should never arise, it is an "_NC" relocation.
       gold_assert(status == The_reloc_functions::STATUS_OKAY);
     }
     break;

   case ST_LONG_BRANCH_ABS:
     // 1st reloc is R_AARCH64_PREL64, at offset 8
     elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
     break;

   case ST_LONG_BRANCH_PCREL:
     {
       // "PC" calculation is the 2nd insn in the stub.
       uint64_t offset = dest - (address + 4);
       // Offset is placed at offset 4 and 5.
       elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
     }
     break;

   default:
     gold_unreachable();
   }
}


// A class to handle the PLT data.
// This is an abstract base class that handles most of the linker details
// but does not know the actual contents of PLT entries.  The derived
// classes below fill in those details.

template<int size, bool big_endian>
class Output_data_plt_aarch64 : public Output_section_data
{
public:
 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
     Reloc_section;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;

 Output_data_plt_aarch64(Layout* layout,
                         uint64_t addralign,
                         Output_data_got_aarch64<size, big_endian>* got,
                         Output_data_space* got_plt,
                         Output_data_space* got_irelative)
   : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
     got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
     count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
 { this->init(layout); }

 // Initialize the PLT section.
 void
 init(Layout* layout);

 // Add an entry to the PLT.
 void
 add_entry(Symbol_table*, Layout*, Symbol* gsym);

 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
 unsigned int
 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
                       Sized_relobj_file<size, big_endian>* relobj,
                       unsigned int local_sym_index);

 // Add the relocation for a PLT entry.
 void
 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
                unsigned int got_offset);

 // Add the reserved TLSDESC_PLT entry to the PLT.
 void
 reserve_tlsdesc_entry(unsigned int got_offset)
 { this->tlsdesc_got_offset_ = got_offset; }

 // Return true if a TLSDESC_PLT entry has been reserved.
 bool
 has_tlsdesc_entry() const
 { return this->tlsdesc_got_offset_ != -1U; }

 // Return the GOT offset for the reserved TLSDESC_PLT entry.
 unsigned int
 get_tlsdesc_got_offset() const
 { return this->tlsdesc_got_offset_; }

 // Return the PLT offset of the reserved TLSDESC_PLT entry.
 unsigned int
 get_tlsdesc_plt_offset() const
 {
   return (this->first_plt_entry_offset() +
           (this->count_ + this->irelative_count_)
           * this->get_plt_entry_size());
 }

 // Return the .rela.plt section data.
 Reloc_section*
 rela_plt()
 { return this->rel_; }

 // Return where the TLSDESC relocations should go.
 Reloc_section*
 rela_tlsdesc(Layout*);

 // Return where the IRELATIVE relocations should go in the PLT
 // relocations.
 Reloc_section*
 rela_irelative(Symbol_table*, Layout*);

 // Return whether we created a section for IRELATIVE relocations.
 bool
 has_irelative_section() const
 { return this->irelative_rel_ != NULL; }

 // Return the number of PLT entries.
 unsigned int
 entry_count() const
 { return this->count_ + this->irelative_count_; }

 // Return the offset of the first non-reserved PLT entry.
 unsigned int
 first_plt_entry_offset() const
 { return this->do_first_plt_entry_offset(); }

 // Return the size of a PLT entry.
 unsigned int
 get_plt_entry_size() const
 { return this->do_get_plt_entry_size(); }

 // Return the reserved tlsdesc entry size.
 unsigned int
 get_plt_tlsdesc_entry_size() const
 { return this->do_get_plt_tlsdesc_entry_size(); }

 // Return the PLT address to use for a global symbol.
 uint64_t
 address_for_global(const Symbol*);

 // Return the PLT address to use for a local symbol.
 uint64_t
 address_for_local(const Relobj*, unsigned int symndx);

protected:
 // Fill in the first PLT entry.
 void
 fill_first_plt_entry(unsigned char* pov,
                      Address got_address,
                      Address plt_address)
 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }

 // Fill in a normal PLT entry.
 void
 fill_plt_entry(unsigned char* pov,
                Address got_address,
                Address plt_address,
                unsigned int got_offset,
                unsigned int plt_offset)
 {
   this->do_fill_plt_entry(pov, got_address, plt_address,
                           got_offset, plt_offset);
 }

 // Fill in the reserved TLSDESC PLT entry.
 void
 fill_tlsdesc_entry(unsigned char* pov,
                    Address gotplt_address,
                    Address plt_address,
                    Address got_base,
                    unsigned int tlsdesc_got_offset,
                    unsigned int plt_offset)
 {
   this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
                               tlsdesc_got_offset, plt_offset);
 }

 virtual unsigned int
 do_first_plt_entry_offset() const = 0;

 virtual unsigned int
 do_get_plt_entry_size() const = 0;

 virtual unsigned int
 do_get_plt_tlsdesc_entry_size() const = 0;

 virtual void
 do_fill_first_plt_entry(unsigned char* pov,
                         Address got_addr,
                         Address plt_addr) = 0;

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Address got_address,
                   Address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset) = 0;

 virtual void
 do_fill_tlsdesc_entry(unsigned char* pov,
                       Address gotplt_address,
                       Address plt_address,
                       Address got_base,
                       unsigned int tlsdesc_got_offset,
                       unsigned int plt_offset) = 0;

 void
 do_adjust_output_section(Output_section* os);

 // Write to a map file.
 void
 do_print_to_mapfile(Mapfile* mapfile) const
 { mapfile->print_output_data(this, _("** PLT")); }

private:
 // Set the final size.
 void
 set_final_data_size();

 // Write out the PLT data.
 void
 do_write(Output_file*);

 // The reloc section.
 Reloc_section* rel_;

 // The TLSDESC relocs, if necessary.  These must follow the regular
 // PLT relocs.
 Reloc_section* tlsdesc_rel_;

 // The IRELATIVE relocs, if necessary.  These must follow the
 // regular PLT relocations.
 Reloc_section* irelative_rel_;

 // The .got section.
 Output_data_got_aarch64<size, big_endian>* got_;

 // The .got.plt section.
 Output_data_space* got_plt_;

 // The part of the .got.plt section used for IRELATIVE relocs.
 Output_data_space* got_irelative_;

 // The number of PLT entries.
 unsigned int count_;

 // Number of PLT entries with R_AARCH64_IRELATIVE relocs.  These
 // follow the regular PLT entries.
 unsigned int irelative_count_;

 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
 // indicates an offset is not allocated.
 unsigned int tlsdesc_got_offset_;
};

// Initialize the PLT section.

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
{
 this->rel_ = new Reloc_section(false);
 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                 elfcpp::SHF_ALLOC, this->rel_,
                                 ORDER_DYNAMIC_PLT_RELOCS, false);
}

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
   Output_section* os)
{
 os->set_entsize(this->get_plt_entry_size());
}

// Add an entry to the PLT.

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
   Layout* layout, Symbol* gsym)
{
 gold_assert(!gsym->has_plt_offset());

 unsigned int* pcount;
 unsigned int plt_reserved;
 Output_section_data_build* got;

 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     pcount = &this->irelative_count_;
     plt_reserved = 0;
     got = this->got_irelative_;
   }
 else
   {
     pcount = &this->count_;
     plt_reserved = this->first_plt_entry_offset();
     got = this->got_plt_;
   }

 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
                      + plt_reserved);

 ++*pcount;

 section_offset_type got_offset = got->current_data_size();

 // Every PLT entry needs a GOT entry which points back to the PLT
 // entry (this will be changed by the dynamic linker, normally
 // lazily when the function is called).
 got->set_current_data_size(got_offset + size / 8);

 // Every PLT entry needs a reloc.
 this->add_relocation(symtab, layout, gsym, got_offset);

 // Note that we don't need to save the symbol. The contents of the
 // PLT are independent of which symbols are used. The symbols only
 // appear in the relocations.
}

// Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return
// the PLT offset.

template<int size, bool big_endian>
unsigned int
Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* relobj,
   unsigned int local_sym_index)
{
 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
 ++this->irelative_count_;

 section_offset_type got_offset = this->got_irelative_->current_data_size();

 // Every PLT entry needs a GOT entry which points back to the PLT
 // entry.
 this->got_irelative_->set_current_data_size(got_offset + size / 8);

 // Every PLT entry needs a reloc.
 Reloc_section* rela = this->rela_irelative(symtab, layout);
 rela->add_symbolless_local_addend(relobj, local_sym_index,
                                   elfcpp::R_AARCH64_IRELATIVE,
                                   this->got_irelative_, got_offset, 0);

 return plt_offset;
}

// Add the relocation for a PLT entry.

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::add_relocation(
   Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
{
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   {
     Reloc_section* rela = this->rela_irelative(symtab, layout);
     rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
                                        this->got_irelative_, got_offset, 0);
   }
 else
   {
     gsym->set_needs_dynsym_entry();
     this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
                            got_offset, 0);
   }
}

// Return where the TLSDESC relocations should go, creating it if
// necessary.  These follow the JUMP_SLOT relocations.

template<int size, bool big_endian>
typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
{
 if (this->tlsdesc_rel_ == NULL)
   {
     this->tlsdesc_rel_ = new Reloc_section(false);
     layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
                                     ORDER_DYNAMIC_PLT_RELOCS, false);
     gold_assert(this->tlsdesc_rel_->output_section()
                 == this->rel_->output_section());
   }
 return this->tlsdesc_rel_;
}

// Return where the IRELATIVE relocations should go in the PLT.  These
// follow the JUMP_SLOT and the TLSDESC relocations.

template<int size, bool big_endian>
typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
                                                         Layout* layout)
{
 if (this->irelative_rel_ == NULL)
   {
     // Make sure we have a place for the TLSDESC relocations, in
     // case we see any later on.
     this->rela_tlsdesc(layout);
     this->irelative_rel_ = new Reloc_section(false);
     layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
                                     elfcpp::SHF_ALLOC, this->irelative_rel_,
                                     ORDER_DYNAMIC_PLT_RELOCS, false);
     gold_assert(this->irelative_rel_->output_section()
                 == this->rel_->output_section());

     if (parameters->doing_static_link())
       {
         // A statically linked executable will only have a .rela.plt
         // section to hold R_AARCH64_IRELATIVE relocs for
         // STT_GNU_IFUNC symbols.  The library will use these
         // symbols to locate the IRELATIVE relocs at program startup
         // time.
         symtab->define_in_output_data("__rela_iplt_start", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->irelative_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, false, true);
         symtab->define_in_output_data("__rela_iplt_end", NULL,
                                       Symbol_table::PREDEFINED,
                                       this->irelative_rel_, 0, 0,
                                       elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
                                       elfcpp::STV_HIDDEN, 0, true, true);
       }
   }
 return this->irelative_rel_;
}

// Return the PLT address to use for a global symbol.

template<int size, bool big_endian>
uint64_t
Output_data_plt_aarch64<size, big_endian>::address_for_global(
 const Symbol* gsym)
{
 uint64_t offset = 0;
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && gsym->can_use_relative_reloc(false))
   offset = (this->first_plt_entry_offset() +
             this->count_ * this->get_plt_entry_size());
 return this->address() + offset + gsym->plt_offset();
}

// Return the PLT address to use for a local symbol.  These are always
// IRELATIVE relocs.

template<int size, bool big_endian>
uint64_t
Output_data_plt_aarch64<size, big_endian>::address_for_local(
   const Relobj* object,
   unsigned int r_sym)
{
 return (this->address()
         + this->first_plt_entry_offset()
         + this->count_ * this->get_plt_entry_size()
         + object->local_plt_offset(r_sym));
}

// Set the final size.

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
{
 unsigned int count = this->count_ + this->irelative_count_;
 unsigned int extra_size = 0;
 if (this->has_tlsdesc_entry())
   extra_size += this->get_plt_tlsdesc_entry_size();
 this->set_data_size(this->first_plt_entry_offset()
                     + count * this->get_plt_entry_size()
                     + extra_size);
}

template<int size, bool big_endian>
class Output_data_plt_aarch64_standard :
 public Output_data_plt_aarch64<size, big_endian>
{
public:
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 Output_data_plt_aarch64_standard(
     Layout* layout,
     Output_data_got_aarch64<size, big_endian>* got,
     Output_data_space* got_plt,
     Output_data_space* got_irelative)
   : Output_data_plt_aarch64<size, big_endian>(layout,
                                               size == 32 ? 4 : 8,
                                               got, got_plt,
                                               got_irelative)
 { }

protected:
 // Return the offset of the first non-reserved PLT entry.
 virtual unsigned int
 do_first_plt_entry_offset() const
 { return this->first_plt_entry_size; }

 // Return the size of a PLT entry
 virtual unsigned int
 do_get_plt_entry_size() const
 { return this->plt_entry_size; }

 // Return the size of a tlsdesc entry
 virtual unsigned int
 do_get_plt_tlsdesc_entry_size() const
 { return this->plt_tlsdesc_entry_size; }

 virtual void
 do_fill_first_plt_entry(unsigned char* pov,
                         Address got_address,
                         Address plt_address);

 virtual void
 do_fill_plt_entry(unsigned char* pov,
                   Address got_address,
                   Address plt_address,
                   unsigned int got_offset,
                   unsigned int plt_offset);

 virtual void
 do_fill_tlsdesc_entry(unsigned char* pov,
                       Address gotplt_address,
                       Address plt_address,
                       Address got_base,
                       unsigned int tlsdesc_got_offset,
                       unsigned int plt_offset);

private:
 // The size of the first plt entry size.
 static const int first_plt_entry_size = 32;
 // The size of the plt entry size.
 static const int plt_entry_size = 16;
 // The size of the plt tlsdesc entry size.
 static const int plt_tlsdesc_entry_size = 32;
 // Template for the first PLT entry.
 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
 // Template for subsequent PLT entries.
 static const uint32_t plt_entry[plt_entry_size / 4];
 // The reserved TLSDESC entry in the PLT for an executable.
 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
};

// The first entry in the PLT for an executable.

template<>
const uint32_t
Output_data_plt_aarch64_standard<32, false>::
   first_plt_entry[first_plt_entry_size / 4] =
{
 0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
 0x90000010,   /* adrp x16, PLT_GOT+0x8  */
 0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
 0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
 0xd61f0220,   /* br x17  */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<32, true>::
   first_plt_entry[first_plt_entry_size / 4] =
{
 0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
 0x90000010,   /* adrp x16, PLT_GOT+0x8  */
 0xb9400A11,   /* ldr w17, [x16, #PLT_GOT+0x8]  */
 0x11002210,   /* add w16, w16,#PLT_GOT+0x8   */
 0xd61f0220,   /* br x17  */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<64, false>::
   first_plt_entry[first_plt_entry_size / 4] =
{
 0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
 0x90000010,   /* adrp x16, PLT_GOT+16  */
 0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
 0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
 0xd61f0220,   /* br x17  */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<64, true>::
   first_plt_entry[first_plt_entry_size / 4] =
{
 0xa9bf7bf0,   /* stp x16, x30, [sp, #-16]!  */
 0x90000010,   /* adrp x16, PLT_GOT+16  */
 0xf9400A11,   /* ldr x17, [x16, #PLT_GOT+0x10]  */
 0x91004210,   /* add x16, x16,#PLT_GOT+0x10   */
 0xd61f0220,   /* br x17  */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<32, false>::
   plt_entry[plt_entry_size / 4] =
{
 0x90000010,   /* adrp x16, PLTGOT + n * 4  */
 0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
 0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
 0xd61f0220,   /* br x17.  */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<32, true>::
   plt_entry[plt_entry_size / 4] =
{
 0x90000010,   /* adrp x16, PLTGOT + n * 4  */
 0xb9400211,   /* ldr w17, [w16, PLTGOT + n * 4] */
 0x11000210,   /* add w16, w16, :lo12:PLTGOT + n * 4  */
 0xd61f0220,   /* br x17.  */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<64, false>::
   plt_entry[plt_entry_size / 4] =
{
 0x90000010,   /* adrp x16, PLTGOT + n * 8  */
 0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
 0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
 0xd61f0220,   /* br x17.  */
};


template<>
const uint32_t
Output_data_plt_aarch64_standard<64, true>::
   plt_entry[plt_entry_size / 4] =
{
 0x90000010,   /* adrp x16, PLTGOT + n * 8  */
 0xf9400211,   /* ldr x17, [x16, PLTGOT + n * 8] */
 0x91000210,   /* add x16, x16, :lo12:PLTGOT + n * 8  */
 0xd61f0220,   /* br x17.  */
};


template<int size, bool big_endian>
void
Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
   unsigned char* pov,
   Address got_address,
   Address plt_address)
{
 // PLT0 of the small PLT looks like this in ELF64 -
 // stp x16, x30, [sp, #-16]!          Save the reloc and lr on stack.
 // adrp x16, PLT_GOT + 16             Get the page base of the GOTPLT
 // ldr  x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
 //                                    symbol resolver
 // add  x16, x16, #:lo12:PLT_GOT+16   Load the lo12 bits of the
 //                                    GOTPLT entry for this.
 // br   x17
 // PLT0 will be slightly different in ELF32 due to different got entry
 // size.
 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
 Address gotplt_2nd_ent = got_address + (size / 8) * 2;

 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
 // ADRP:  (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
 // FIXME: This only works for 64bit
 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
     gotplt_2nd_ent, plt_address + 4);

 // Fill in R_AARCH64_LDST8_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 8,
     ((this->first_plt_entry[2] & 0xffc003ff)
      | ((gotplt_2nd_ent & 0xff8) << 7)));

 // Fill in R_AARCH64_ADD_ABS_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 12,
     ((this->first_plt_entry[3] & 0xffc003ff)
      | ((gotplt_2nd_ent & 0xfff) << 10)));
}


// Subsequent entries in the PLT for an executable.
// FIXME: This only works for 64bit

template<int size, bool big_endian>
void
Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
   unsigned char* pov,
   Address got_address,
   Address plt_address,
   unsigned int got_offset,
   unsigned int plt_offset)
{
 memcpy(pov, this->plt_entry, this->plt_entry_size);

 Address gotplt_entry_address = got_address + got_offset;
 Address plt_entry_address = plt_address + plt_offset;

 // Fill in R_AARCH64_PCREL_ADR_HI21
 AArch64_relocate_functions<size, big_endian>::adrp(
     pov,
     gotplt_entry_address,
     plt_entry_address);

 // Fill in R_AARCH64_LDST64_ABS_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 4,
     ((this->plt_entry[1] & 0xffc003ff)
      | ((gotplt_entry_address & 0xff8) << 7)));

 // Fill in R_AARCH64_ADD_ABS_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 8,
     ((this->plt_entry[2] & 0xffc003ff)
      | ((gotplt_entry_address & 0xfff) <<10)));

}


template<>
const uint32_t
Output_data_plt_aarch64_standard<32, false>::
   tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
{
 0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
 0x90000002,   /* adrp x2, 0 */
 0x90000003,   /* adrp x3, 0 */
 0xb9400042,   /* ldr w2, [w2, #0] */
 0x11000063,   /* add w3, w3, 0 */
 0xd61f0040,   /* br x2 */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};

template<>
const uint32_t
Output_data_plt_aarch64_standard<32, true>::
   tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
{
 0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
 0x90000002,   /* adrp x2, 0 */
 0x90000003,   /* adrp x3, 0 */
 0xb9400042,   /* ldr w2, [w2, #0] */
 0x11000063,   /* add w3, w3, 0 */
 0xd61f0040,   /* br x2 */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};

template<>
const uint32_t
Output_data_plt_aarch64_standard<64, false>::
   tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
{
 0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
 0x90000002,   /* adrp x2, 0 */
 0x90000003,   /* adrp x3, 0 */
 0xf9400042,   /* ldr x2, [x2, #0] */
 0x91000063,   /* add x3, x3, 0 */
 0xd61f0040,   /* br x2 */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};

template<>
const uint32_t
Output_data_plt_aarch64_standard<64, true>::
   tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
{
 0xa9bf0fe2,   /* stp x2, x3, [sp, #-16]!  */
 0x90000002,   /* adrp x2, 0 */
 0x90000003,   /* adrp x3, 0 */
 0xf9400042,   /* ldr x2, [x2, #0] */
 0x91000063,   /* add x3, x3, 0 */
 0xd61f0040,   /* br x2 */
 0xd503201f,   /* nop */
 0xd503201f,   /* nop */
};

template<int size, bool big_endian>
void
Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
   unsigned char* pov,
   Address gotplt_address,
   Address plt_address,
   Address got_base,
   unsigned int tlsdesc_got_offset,
   unsigned int plt_offset)
{
 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);

 // move DT_TLSDESC_GOT address into x2
 // move .got.plt address into x3
 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
 Address plt_entry_address = plt_address + plt_offset;

 // R_AARCH64_ADR_PREL_PG_HI21
 AArch64_relocate_functions<size, big_endian>::adrp(
     pov + 4,
     tlsdesc_got_entry,
     plt_entry_address + 4);

 // R_AARCH64_ADR_PREL_PG_HI21
 AArch64_relocate_functions<size, big_endian>::adrp(
     pov + 8,
     gotplt_address,
     plt_entry_address + 8);

 // R_AARCH64_LDST64_ABS_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 12,
     ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
      | ((tlsdesc_got_entry & 0xff8) << 7)));

 // R_AARCH64_ADD_ABS_LO12
 elfcpp::Swap<32, big_endian>::writeval(
     pov + 16,
     ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
      | ((gotplt_address & 0xfff) << 10)));
}

// Write out the PLT.  This uses the hand-coded instructions above,
// and adjusts them as needed.  This is specified by the AMD64 ABI.

template<int size, bool big_endian>
void
Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
{
 const off_t offset = this->offset();
 const section_size_type oview_size =
   convert_to_section_size_type(this->data_size());
 unsigned char* const oview = of->get_output_view(offset, oview_size);

 const off_t got_file_offset = this->got_plt_->offset();
 gold_assert(got_file_offset + this->got_plt_->data_size()
             == this->got_irelative_->offset());

 const section_size_type got_size =
     convert_to_section_size_type(this->got_plt_->data_size()
                                  + this->got_irelative_->data_size());
 unsigned char* const got_view = of->get_output_view(got_file_offset,
                                                     got_size);

 unsigned char* pov = oview;

 // The base address of the .plt section.
 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
 // The base address of the PLT portion of the .got section.
 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
     = this->got_plt_->address();

 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
 pov += this->first_plt_entry_offset();

 // The first three entries in .got.plt are reserved.
 unsigned char* got_pov = got_view;
 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;

 unsigned int plt_offset = this->first_plt_entry_offset();
 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
 const unsigned int count = this->count_ + this->irelative_count_;
 for (unsigned int plt_index = 0;
      plt_index < count;
      ++plt_index,
        pov += this->get_plt_entry_size(),
        got_pov += size / 8,
        plt_offset += this->get_plt_entry_size(),
        got_offset += size / 8)
   {
     // Set and adjust the PLT entry itself.
     this->fill_plt_entry(pov, gotplt_address, plt_address,
                          got_offset, plt_offset);

     // Set the entry in the GOT, which points to plt0.
     elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
   }

 if (this->has_tlsdesc_entry())
   {
     // Set and adjust the reserved TLSDESC PLT entry.
     unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
     // The base address of the .base section.
     typename elfcpp::Elf_types<size>::Elf_Addr got_base =
         this->got_->address();
     this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
                              tlsdesc_got_offset, plt_offset);
     pov += this->get_plt_tlsdesc_entry_size();
   }

 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);

 of->write_output_view(offset, oview_size, oview);
 of->write_output_view(got_file_offset, got_size, got_view);
}

// Telling how to update the immediate field of an instruction.
struct AArch64_howto
{
 // The immediate field mask.
 elfcpp::Elf_Xword dst_mask;

 // The offset to apply relocation immediate
 int doffset;

 // The second part offset, if the immediate field has two parts.
 // -1 if the immediate field has only one part.
 int doffset2;
};

static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
{
 {0, -1, -1},          // DATA
 {0x1fffe0, 5, -1},    // MOVW  [20:5]-imm16
 {0xffffe0, 5, -1},    // LD    [23:5]-imm19
 {0x60ffffe0, 29, 5},  // ADR   [30:29]-immlo  [23:5]-immhi
 {0x60ffffe0, 29, 5},  // ADRP  [30:29]-immlo  [23:5]-immhi
 {0x3ffc00, 10, -1},   // ADD   [21:10]-imm12
 {0x3ffc00, 10, -1},   // LDST  [21:10]-imm12
 {0x7ffe0, 5, -1},     // TBZNZ [18:5]-imm14
 {0xffffe0, 5, -1},    // CONDB [23:5]-imm19
 {0x3ffffff, 0, -1},   // B     [25:0]-imm26
 {0x3ffffff, 0, -1},   // CALL  [25:0]-imm26
};

// AArch64 relocate function class

template<int size, bool big_endian>
class AArch64_relocate_functions
{
public:
 typedef enum
 {
   STATUS_OKAY,        // No error during relocation.
   STATUS_OVERFLOW,    // Relocation overflow.
   STATUS_BAD_RELOC,   // Relocation cannot be applied.
 } Status;

 typedef AArch64_relocate_functions<size, big_endian> This;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef Relocate_info<size, big_endian> The_relocate_info;
 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
 typedef Reloc_stub<size, big_endian> The_reloc_stub;
 typedef Stub_table<size, big_endian> The_stub_table;
 typedef elfcpp::Rela<size, big_endian> The_rela;
 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;

 // Return the page address of the address.
 // Page(address) = address & ~0xFFF

 static inline AArch64_valtype
 Page(Address address)
 {
   return (address & (~static_cast<Address>(0xFFF)));
 }

private:
 // Update instruction (pointed by view) with selected bits (immed).
 // val = (val & ~dst_mask) | (immed << doffset)

 template<int valsize>
 static inline void
 update_view(unsigned char* view,
             AArch64_valtype immed,
             elfcpp::Elf_Xword doffset,
             elfcpp::Elf_Xword dst_mask)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);

   // Clear immediate fields.
   val &= ~dst_mask;
   elfcpp::Swap<valsize, big_endian>::writeval(wv,
     static_cast<Valtype>(val | (immed << doffset)));
 }

 // Update two parts of an instruction (pointed by view) with selected
 // bits (immed1 and immed2).
 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)

 template<int valsize>
 static inline void
 update_view_two_parts(
   unsigned char* view,
   AArch64_valtype immed1,
   AArch64_valtype immed2,
   elfcpp::Elf_Xword doffset1,
   elfcpp::Elf_Xword doffset2,
   elfcpp::Elf_Xword dst_mask)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
   val &= ~dst_mask;
   elfcpp::Swap<valsize, big_endian>::writeval(wv,
     static_cast<Valtype>(val | (immed1 << doffset1) |
                          (immed2 << doffset2)));
 }

 // Update adr or adrp instruction with immed.
 // In adr and adrp: [30:29] immlo   [23:5] immhi

 static inline void
 update_adr(unsigned char* view, AArch64_valtype immed)
 {
   elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
   This::template update_view_two_parts<32>(
     view,
     immed & 0x3,
     (immed & 0x1ffffc) >> 2,
     29,
     5,
     dst_mask);
 }

 // Update movz/movn instruction with bits immed.
 // Set instruction to movz if is_movz is true, otherwise set instruction
 // to movn.

 static inline void
 update_movnz(unsigned char* view,
              AArch64_valtype immed,
              bool is_movz)
 {
   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);

   const elfcpp::Elf_Xword doffset =
       aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
   const elfcpp::Elf_Xword dst_mask =
       aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;

   // Clear immediate fields and opc code.
   val &= ~(dst_mask | (0x3 << 29));

   // Set instruction to movz or movn.
   // movz: [30:29] is 10   movn: [30:29] is 00
   if (is_movz)
     val |= (0x2 << 29);

   elfcpp::Swap<32, big_endian>::writeval(wv,
     static_cast<Valtype>(val | (immed << doffset)));
 }

public:

 // Update selected bits in text.

 template<int valsize>
 static inline typename This::Status
 reloc_common(unsigned char* view, Address x,
               const AArch64_reloc_property* reloc_property)
 {
   // Select bits from X.
   Address immed = reloc_property->select_x_value(x);

   // Update view.
   const AArch64_reloc_property::Reloc_inst inst =
     reloc_property->reloc_inst();
   // If it is a data relocation or instruction has 2 parts of immediate
   // fields, you should not call pcrela_general.
   gold_assert(aarch64_howto[inst].doffset2 == -1 &&
               aarch64_howto[inst].doffset != -1);
   This::template update_view<valsize>(view, immed,
                                       aarch64_howto[inst].doffset,
                                       aarch64_howto[inst].dst_mask);

   // Do check overflow or alignment if needed.
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 // Construct a B insn. Note, although we group it here with other relocation
 // operation, there is actually no 'relocation' involved here.
 static inline void
 construct_b(unsigned char* view, unsigned int branch_offset)
 {
   update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
                             26, 0, 0xffffffff);
 }

 // Do a simple rela relocation at unaligned addresses.

 template<int valsize>
 static inline typename This::Status
 rela_ua(unsigned char* view,
         const Sized_relobj_file<size, big_endian>* object,
         const Symbol_value<size>* psymval,
         AArch64_valtype addend,
         const AArch64_reloc_property* reloc_property)
 {
   typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
     Valtype;
   typename elfcpp::Elf_types<size>::Elf_Addr x =
       psymval->value(object, addend);
   elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
     static_cast<Valtype>(x));
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 // Do a simple pc-relative relocation at unaligned addresses.

 template<int valsize>
 static inline typename This::Status
 pcrela_ua(unsigned char* view,
           const Sized_relobj_file<size, big_endian>* object,
           const Symbol_value<size>* psymval,
           AArch64_valtype addend,
           Address address,
           const AArch64_reloc_property* reloc_property)
 {
   typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
     Valtype;
   Address x = psymval->value(object, addend) - address;
   elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
     static_cast<Valtype>(x));
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 // Do a simple rela relocation at aligned addresses.

 template<int valsize>
 static inline typename This::Status
 rela(
   unsigned char* view,
   const Sized_relobj_file<size, big_endian>* object,
   const Symbol_value<size>* psymval,
   AArch64_valtype addend,
   const AArch64_reloc_property* reloc_property)
 {
   typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
   Valtype* wv = reinterpret_cast<Valtype*>(view);
   Address x = psymval->value(object, addend);
   elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 // Do relocate. Update selected bits in text.
 // new_val = (val & ~dst_mask) | (immed << doffset)

 template<int valsize>
 static inline typename This::Status
 rela_general(unsigned char* view,
              const Sized_relobj_file<size, big_endian>* object,
              const Symbol_value<size>* psymval,
              AArch64_valtype addend,
              const AArch64_reloc_property* reloc_property)
 {
   // Calculate relocation.
   Address x = psymval->value(object, addend);
   return This::template reloc_common<valsize>(view, x, reloc_property);
 }

 // Do relocate. Update selected bits in text.
 // new val = (val & ~dst_mask) | (immed << doffset)

 template<int valsize>
 static inline typename This::Status
 rela_general(
   unsigned char* view,
   AArch64_valtype s,
   AArch64_valtype addend,
   const AArch64_reloc_property* reloc_property)
 {
   // Calculate relocation.
   Address x = s + addend;
   return This::template reloc_common<valsize>(view, x, reloc_property);
 }

 // Do address relative relocate. Update selected bits in text.
 // new val = (val & ~dst_mask) | (immed << doffset)

 template<int valsize>
 static inline typename This::Status
 pcrela_general(
   unsigned char* view,
   const Sized_relobj_file<size, big_endian>* object,
   const Symbol_value<size>* psymval,
   AArch64_valtype addend,
   Address address,
   const AArch64_reloc_property* reloc_property)
 {
   // Calculate relocation.
   Address x = psymval->value(object, addend) - address;
   return This::template reloc_common<valsize>(view, x, reloc_property);
 }


 // Calculate (S + A) - address, update adr instruction.

 static inline typename This::Status
 adr(unsigned char* view,
     const Sized_relobj_file<size, big_endian>* object,
     const Symbol_value<size>* psymval,
     Address addend,
     Address address,
     const AArch64_reloc_property* /* reloc_property */)
 {
   AArch64_valtype x = psymval->value(object, addend) - address;
   // Pick bits [20:0] of X.
   AArch64_valtype immed = x & 0x1fffff;
   update_adr(view, immed);
   // Check -2^20 <= X < 2^20
   return (size == 64 && Bits<21>::has_overflow((x))
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // Calculate PG(S+A) - PG(address), update adrp instruction.
 // R_AARCH64_ADR_PREL_PG_HI21

 static inline typename This::Status
 adrp(
   unsigned char* view,
   Address sa,
   Address address)
 {
   AArch64_valtype x = This::Page(sa) - This::Page(address);
   // Pick [32:12] of X.
   AArch64_valtype immed = (x >> 12) & 0x1fffff;
   update_adr(view, immed);
   // Check -2^32 <= X < 2^32
   return (size == 64 && Bits<33>::has_overflow((x))
           ? This::STATUS_OVERFLOW
           : This::STATUS_OKAY);
 }

 // Calculate PG(S+A) - PG(address), update adrp instruction.
 // R_AARCH64_ADR_PREL_PG_HI21

 static inline typename This::Status
 adrp(unsigned char* view,
      const Sized_relobj_file<size, big_endian>* object,
      const Symbol_value<size>* psymval,
      Address addend,
      Address address,
      const AArch64_reloc_property* reloc_property)
 {
   Address sa = psymval->value(object, addend);
   AArch64_valtype x = This::Page(sa) - This::Page(address);
   // Pick [32:12] of X.
   AArch64_valtype immed = (x >> 12) & 0x1fffff;
   update_adr(view, immed);
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 // Update mov[n/z] instruction. Check overflow if needed.
 // If X >=0, set the instruction to movz and its immediate value to the
 // selected bits S.
 // If X < 0, set the instruction to movn and its immediate value to
 // NOT (selected bits of).

 static inline typename This::Status
 movnz(unsigned char* view,
       AArch64_valtype x,
       const AArch64_reloc_property* reloc_property)
 {
   // Select bits from X.
   Address immed;
   bool is_movz;
   typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
   if (static_cast<SignedW>(x) >= 0)
     {
       immed = reloc_property->select_x_value(x);
       is_movz = true;
     }
   else
     {
       immed = reloc_property->select_x_value(~x);;
       is_movz = false;
     }

   // Update movnz instruction.
   update_movnz(view, immed, is_movz);

   // Do check overflow or alignment if needed.
   return (reloc_property->checkup_x_value(x)
           ? This::STATUS_OKAY
           : This::STATUS_OVERFLOW);
 }

 static inline bool
 maybe_apply_stub(unsigned int,
                  const The_relocate_info*,
                  const The_rela&,
                  unsigned char*,
                  Address,
                  const Sized_symbol<size>*,
                  const Symbol_value<size>*,
                  const Sized_relobj_file<size, big_endian>*,
                  section_size_type);

};  // End of AArch64_relocate_functions


// For a certain relocation type (usually jump/branch), test to see if the
// destination needs a stub to fulfil. If so, re-route the destination of the
// original instruction to the stub, note, at this time, the stub has already
// been generated.

template<int size, bool big_endian>
bool
AArch64_relocate_functions<size, big_endian>::
maybe_apply_stub(unsigned int r_type,
                const The_relocate_info* relinfo,
                const The_rela& rela,
                unsigned char* view,
                Address address,
                const Sized_symbol<size>* gsym,
                const Symbol_value<size>* psymval,
                const Sized_relobj_file<size, big_endian>* object,
                section_size_type current_group_size)
{
 if (parameters->options().relocatable())
   return false;

 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
 Address branch_target = psymval->value(object, 0) + addend;
 int stub_type =
   The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
 if (stub_type == ST_NONE)
   return false;

 const The_aarch64_relobj* aarch64_relobj =
     static_cast<const The_aarch64_relobj*>(object);
 const AArch64_reloc_property* arp =
   aarch64_reloc_property_table->get_reloc_property(r_type);
 gold_assert(arp != NULL);

 // We don't create stubs for undefined symbols, but do for weak.
 if (gsym
     && !gsym->use_plt_offset(arp->reference_flags())
     && gsym->is_undefined())
   {
     gold_debug(DEBUG_TARGET,
                "stub: looking for a stub for undefined symbol %s in file %s",
                gsym->name(), aarch64_relobj->name().c_str());
     return false;
   }

 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
 gold_assert(stub_table != NULL);

 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
 gold_assert(stub != NULL);

 Address new_branch_target = stub_table->address() + stub->offset();
 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
     new_branch_target - address;
 typename This::Status status = This::template
     rela_general<32>(view, branch_offset, 0, arp);
 if (status != This::STATUS_OKAY)
   gold_error(_("Stub is too far away, try a smaller value "
                "for '--stub-group-size'. The current value is 0x%lx."),
              static_cast<unsigned long>(current_group_size));
 return true;
}


// Group input sections for stub generation.
//
// We group input sections in an output section so that the total size,
// including any padding space due to alignment is smaller than GROUP_SIZE
// unless the only input section in group is bigger than GROUP_SIZE already.
// Then an ARM stub table is created to follow the last input section
// in group.  For each group an ARM stub table is created an is placed
// after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further
// extend the group after the stub table.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::group_sections(
   Layout* layout,
   section_size_type group_size,
   bool stubs_always_after_branch,
   const Task* task)
{
 // Group input sections and insert stub table
 Layout::Section_list section_list;
 layout->get_executable_sections(&section_list);
 for (Layout::Section_list::const_iterator p = section_list.begin();
      p != section_list.end();
      ++p)
   {
     AArch64_output_section<size, big_endian>* output_section =
         static_cast<AArch64_output_section<size, big_endian>*>(*p);
     output_section->group_sections(group_size, stubs_always_after_branch,
                                    this, task);
   }
}


// Find the AArch64_input_section object corresponding to the SHNDX-th input
// section of RELOBJ.

template<int size, bool big_endian>
AArch64_input_section<size, big_endian>*
Target_aarch64<size, big_endian>::find_aarch64_input_section(
   Relobj* relobj, unsigned int shndx) const
{
 Section_id sid(relobj, shndx);
 typename AArch64_input_section_map::const_iterator p =
   this->aarch64_input_section_map_.find(sid);
 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
}


// Make a new AArch64_input_section object.

template<int size, bool big_endian>
AArch64_input_section<size, big_endian>*
Target_aarch64<size, big_endian>::new_aarch64_input_section(
   Relobj* relobj, unsigned int shndx)
{
 Section_id sid(relobj, shndx);

 AArch64_input_section<size, big_endian>* input_section =
     new AArch64_input_section<size, big_endian>(relobj, shndx);
 input_section->init();

 // Register new AArch64_input_section in map for look-up.
 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
     this->aarch64_input_section_map_.insert(
         std::make_pair(sid, input_section));

 // Make sure that it we have not created another AArch64_input_section
 // for this input section already.
 gold_assert(ins.second);

 return input_section;
}


// Relaxation hook.  This is where we do stub generation.

template<int size, bool big_endian>
bool
Target_aarch64<size, big_endian>::do_relax(
   int pass,
   const Input_objects* input_objects,
   Symbol_table* symtab,
   Layout* layout ,
   const Task* task)
{
 gold_assert(!parameters->options().relocatable());
 if (pass == 1)
   {
     // We don't handle negative stub_group_size right now.
     this->stub_group_size_ = abs(parameters->options().stub_group_size());
     if (this->stub_group_size_ == 1)
       {
         // Leave room for 4096 4-byte stub entries. If we exceed that, then we
         // will fail to link.  The user will have to relink with an explicit
         // group size option.
         this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
                                  4096 * 4;
       }
     group_sections(layout, this->stub_group_size_, true, task);
   }
 else
   {
     // If this is not the first pass, addresses and file offsets have
     // been reset at this point, set them here.
     for (Stub_table_iterator sp = this->stub_tables_.begin();
          sp != this->stub_tables_.end(); ++sp)
       {
         The_stub_table* stt = *sp;
         The_aarch64_input_section* owner = stt->owner();
         off_t off = align_address(owner->original_size(),
                                   stt->addralign());
         stt->set_address_and_file_offset(owner->address() + off,
                                          owner->offset() + off);
       }
   }

 // Scan relocs for relocation stubs
 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
      op != input_objects->relobj_end();
      ++op)
   {
     The_aarch64_relobj* aarch64_relobj =
         static_cast<The_aarch64_relobj*>(*op);
     // Lock the object so we can read from it.  This is only called
     // single-threaded from Layout::finalize, so it is OK to lock.
     Task_lock_obj<Object> tl(task, aarch64_relobj);
     aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
   }

 bool any_stub_table_changed = false;
 for (Stub_table_iterator siter = this->stub_tables_.begin();
      siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
   {
     The_stub_table* stub_table = *siter;
     if (stub_table->update_data_size_changed_p())
       {
         The_aarch64_input_section* owner = stub_table->owner();
         uint64_t address = owner->address();
         off_t offset = owner->offset();
         owner->reset_address_and_file_offset();
         owner->set_address_and_file_offset(address, offset);

         any_stub_table_changed = true;
       }
   }

 // Do not continue relaxation.
 bool continue_relaxation = any_stub_table_changed;
 if (!continue_relaxation)
   for (Stub_table_iterator sp = this->stub_tables_.begin();
        (sp != this->stub_tables_.end());
        ++sp)
     (*sp)->finalize_stubs();

 return continue_relaxation;
}


// Make a new Stub_table.

template<int size, bool big_endian>
Stub_table<size, big_endian>*
Target_aarch64<size, big_endian>::new_stub_table(
   AArch64_input_section<size, big_endian>* owner)
{
 Stub_table<size, big_endian>* stub_table =
     new Stub_table<size, big_endian>(owner);
 stub_table->set_address(align_address(
     owner->address() + owner->data_size(), 8));
 stub_table->set_file_offset(owner->offset() + owner->data_size());
 stub_table->finalize_data_size();

 this->stub_tables_.push_back(stub_table);

 return stub_table;
}


template<int size, bool big_endian>
uint64_t
Target_aarch64<size, big_endian>::do_reloc_addend(
   void* arg, unsigned int r_type, uint64_t) const
{
 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
 gold_assert(psymval->is_tls_symbol());
 // The value of a TLS symbol is the offset in the TLS segment.
 return psymval->value(ti.object, 0);
}

// Return the number of entries in the PLT.

template<int size, bool big_endian>
unsigned int
Target_aarch64<size, big_endian>::plt_entry_count() const
{
 if (this->plt_ == NULL)
   return 0;
 return this->plt_->entry_count();
}

// Return the offset of the first non-reserved PLT entry.

template<int size, bool big_endian>
unsigned int
Target_aarch64<size, big_endian>::first_plt_entry_offset() const
{
 return this->plt_->first_plt_entry_offset();
}

// Return the size of each PLT entry.

template<int size, bool big_endian>
unsigned int
Target_aarch64<size, big_endian>::plt_entry_size() const
{
 return this->plt_->get_plt_entry_size();
}

// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::define_tls_base_symbol(
   Symbol_table* symtab, Layout* layout)
{
 if (this->tls_base_symbol_defined_)
   return;

 Output_segment* tls_segment = layout->tls_segment();
 if (tls_segment != NULL)
   {
     // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
     symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
                                      Symbol_table::PREDEFINED,
                                      tls_segment, 0, 0,
                                      elfcpp::STT_TLS,
                                      elfcpp::STB_LOCAL,
                                      elfcpp::STV_HIDDEN, 0,
                                      Symbol::SEGMENT_START,
                                      true);
   }
 this->tls_base_symbol_defined_ = true;
}

// Create the reserved PLT and GOT entries for the TLS descriptor resolver.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
   Symbol_table* symtab, Layout* layout)
{
 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);

 if (!this->plt_->has_tlsdesc_entry())
   {
     // Allocate the TLSDESC_GOT entry.
     Output_data_got_aarch64<size, big_endian>* got =
         this->got_section(symtab, layout);
     unsigned int got_offset = got->add_constant(0);

     // Allocate the TLSDESC_PLT entry.
     this->plt_->reserve_tlsdesc_entry(got_offset);
   }
}

// Create a GOT entry for the TLS module index.

template<int size, bool big_endian>
unsigned int
Target_aarch64<size, big_endian>::got_mod_index_entry(
   Symbol_table* symtab, Layout* layout,
   Sized_relobj_file<size, big_endian>* object)
{
 if (this->got_mod_index_offset_ == -1U)
   {
     gold_assert(symtab != NULL && layout != NULL && object != NULL);
     Reloc_section* rela_dyn = this->rela_dyn_section(layout);
     Output_data_got_aarch64<size, big_endian>* got =
         this->got_section(symtab, layout);
     unsigned int got_offset = got->add_constant(0);
     rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
                         got_offset, 0);
     got->add_constant(0);
     this->got_mod_index_offset_ = got_offset;
   }
 return this->got_mod_index_offset_;
}

// Optimize the TLS relocation type based on what we know about the
// symbol.  IS_FINAL is true if the final address of this symbol is
// known at link time.

template<int size, bool big_endian>
tls::Tls_optimization
Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
                                                    int r_type)
{
 // If we are generating a shared library, then we can't do anything
 // in the linker
 if (parameters->options().shared())
   return tls::TLSOPT_NONE;

 switch (r_type)
   {
   case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
   case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
   case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
   case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
   case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
   case elfcpp::R_AARCH64_TLSDESC_LDR:
   case elfcpp::R_AARCH64_TLSDESC_ADD:
   case elfcpp::R_AARCH64_TLSDESC_CALL:
     // These are General-Dynamic which permits fully general TLS
     // access.  Since we know that we are generating an executable,
     // we can convert this to Initial-Exec.  If we also know that
     // this is a local symbol, we can further switch to Local-Exec.
     if (is_final)
       return tls::TLSOPT_TO_LE;
     return tls::TLSOPT_TO_IE;

   case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
     // These are Local-Dynamic, which refer to local symbols in the
     // dynamic TLS block. Since we know that we generating an
     // executable, we can switch to Local-Exec.
     return tls::TLSOPT_TO_LE;

   case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
   case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
   case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
     // These are Initial-Exec relocs which get the thread offset
     // from the GOT. If we know that we are linking against the
     // local symbol, we can switch to Local-Exec, which links the
     // thread offset into the instruction.
     if (is_final)
       return tls::TLSOPT_TO_LE;
     return tls::TLSOPT_NONE;

   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
     // When we already have Local-Exec, there is nothing further we
     // can do.
     return tls::TLSOPT_NONE;

   default:
     gold_unreachable();
   }
}

// Returns true if this relocation type could be that of a function pointer.

template<int size, bool big_endian>
inline bool
Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
 unsigned int r_type)
{
 switch (r_type)
   {
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
   case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
   case elfcpp::R_AARCH64_ADR_GOT_PAGE:
   case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
     {
       return true;
     }
   }
 return false;
}

// For safe ICF, scan a relocation for a local symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.

template<int size, bool big_endian>
inline bool
Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
 Symbol_table* ,
 Layout* ,
 Target_aarch64<size, big_endian>* ,
 Sized_relobj_file<size, big_endian>* ,
 unsigned int ,
 Output_section* ,
 const elfcpp::Rela<size, big_endian>& ,
 unsigned int r_type,
 const elfcpp::Sym<size, big_endian>&)
{
 // When building a shared library, do not fold any local symbols.
 return (parameters->options().shared()
         || possible_function_pointer_reloc(r_type));
}

// For safe ICF, scan a relocation for a global symbol to check if it
// corresponds to a function pointer being taken.  In that case mark
// the function whose pointer was taken as not foldable.

template<int size, bool big_endian>
inline bool
Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
 Symbol_table* ,
 Layout* ,
 Target_aarch64<size, big_endian>* ,
 Sized_relobj_file<size, big_endian>* ,
 unsigned int ,
 Output_section* ,
 const elfcpp::Rela<size, big_endian>& ,
 unsigned int r_type,
 Symbol* gsym)
{
 // When building a shared library, do not fold symbols whose visibility
 // is hidden, internal or protected.
 return ((parameters->options().shared()
          && (gsym->visibility() == elfcpp::STV_INTERNAL
              || gsym->visibility() == elfcpp::STV_PROTECTED
              || gsym->visibility() == elfcpp::STV_HIDDEN))
         || possible_function_pointer_reloc(r_type));
}

// Report an unsupported relocation against a local symbol.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
    Sized_relobj_file<size, big_endian>* object,
    unsigned int r_type)
{
 gold_error(_("%s: unsupported reloc %u against local symbol"),
            object->name().c_str(), r_type);
}

// We are about to emit a dynamic relocation of type R_TYPE.  If the
// dynamic linker does not support it, issue an error.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
                                                     unsigned int r_type)
{
 gold_assert(r_type != elfcpp::R_AARCH64_NONE);

 switch (r_type)
   {
   // These are the relocation types supported by glibc for AARCH64.
   case elfcpp::R_AARCH64_NONE:
   case elfcpp::R_AARCH64_COPY:
   case elfcpp::R_AARCH64_GLOB_DAT:
   case elfcpp::R_AARCH64_JUMP_SLOT:
   case elfcpp::R_AARCH64_RELATIVE:
   case elfcpp::R_AARCH64_TLS_DTPREL64:
   case elfcpp::R_AARCH64_TLS_DTPMOD64:
   case elfcpp::R_AARCH64_TLS_TPREL64:
   case elfcpp::R_AARCH64_TLSDESC:
   case elfcpp::R_AARCH64_IRELATIVE:
   case elfcpp::R_AARCH64_ABS32:
   case elfcpp::R_AARCH64_ABS64:
     return;

   default:
     break;
   }

 // This prevents us from issuing more than one error per reloc
 // section. But we can still wind up issuing more than one
 // error per object file.
 if (this->issued_non_pic_error_)
   return;
 gold_assert(parameters->options().output_is_position_independent());
 object->error(_("requires unsupported dynamic reloc; "
                 "recompile with -fPIC"));
 this->issued_non_pic_error_ = true;
 return;
}

// Return whether we need to make a PLT entry for a relocation of the
// given type against a STT_GNU_IFUNC symbol.

template<int size, bool big_endian>
bool
Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
   Sized_relobj_file<size, big_endian>* object,
   unsigned int r_type)
{
 const AArch64_reloc_property* arp =
     aarch64_reloc_property_table->get_reloc_property(r_type);
 gold_assert(arp != NULL);

 int flags = arp->reference_flags();
 if (flags & Symbol::TLS_REF)
   {
     gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
                object->name().c_str(), arp->name().c_str());
     return false;
   }
 return flags != 0;
}

// Scan a relocation for a local symbol.

template<int size, bool big_endian>
inline void
Target_aarch64<size, big_endian>::Scan::local(
   Symbol_table* symtab,
   Layout* layout,
   Target_aarch64<size, big_endian>* target,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   Output_section* output_section,
   const elfcpp::Rela<size, big_endian>& rela,
   unsigned int r_type,
   const elfcpp::Sym<size, big_endian>& lsym,
   bool is_discarded)
{
 if (is_discarded)
   return;

 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
     Reloc_section;
 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());

 // A local STT_GNU_IFUNC symbol may require a PLT entry.
 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
   target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);

 switch (r_type)
   {
   case elfcpp::R_AARCH64_NONE:
     break;

   case elfcpp::R_AARCH64_ABS32:
   case elfcpp::R_AARCH64_ABS16:
     if (parameters->options().output_is_position_independent())
       {
         gold_error(_("%s: unsupported reloc %u in pos independent link."),
                    object->name().c_str(), r_type);
       }
     break;

   case elfcpp::R_AARCH64_ABS64:
     // If building a shared library or pie, we need to mark this as a dynmic
     // reloction, so that the dynamic loader can relocate it.
     if (parameters->options().output_is_position_independent())
       {
         Reloc_section* rela_dyn = target->rela_dyn_section(layout);
         rela_dyn->add_local_relative(object, r_sym,
                                      elfcpp::R_AARCH64_RELATIVE,
                                      output_section,
                                      data_shndx,
                                      rela.get_r_offset(),
                                      rela.get_r_addend(),
                                      is_ifunc);
       }
     break;

   case elfcpp::R_AARCH64_PREL64:
   case elfcpp::R_AARCH64_PREL32:
   case elfcpp::R_AARCH64_PREL16:
     break;

   case elfcpp::R_AARCH64_ADR_GOT_PAGE:
   case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
   case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
     // The above relocations are used to access GOT entries.
     {
       Output_data_got_aarch64<size, big_endian>* got =
           target->got_section(symtab, layout);
       bool is_new = false;
       // This symbol requires a GOT entry.
       if (is_ifunc)
         is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
       else
         is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
       if (is_new && parameters->options().output_is_position_independent())
         target->rela_dyn_section(layout)->
           add_local_relative(object,
                              r_sym,
                              elfcpp::R_AARCH64_RELATIVE,
                              got,
                              object->local_got_offset(r_sym,
                                                       GOT_TYPE_STANDARD),
                              0,
                              false);
     }
     break;

   case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
   case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
   case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
   case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
   case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
   case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
   case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
   case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
   case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
   case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
     if (parameters->options().output_is_position_independent())
       {
         gold_error(_("%s: unsupported reloc %u in pos independent link."),
                    object->name().c_str(), r_type);
       }
     break;

   case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
   case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
   case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
   case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
   case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
   case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
   case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
   case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
      break;

   // Control flow, pc-relative. We don't need to do anything for a relative
   // addressing relocation against a local symbol if it does not reference
   // the GOT.
   case elfcpp::R_AARCH64_TSTBR14:
   case elfcpp::R_AARCH64_CONDBR19:
   case elfcpp::R_AARCH64_JUMP26:
   case elfcpp::R_AARCH64_CALL26:
     break;

   case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
   case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
         optimize_tls_reloc(!parameters->options().shared(), r_type);
       if (tlsopt == tls::TLSOPT_TO_LE)
         break;

       layout->set_has_static_tls();
       // Create a GOT entry for the tp-relative offset.
       if (!parameters->doing_static_link())
         {
           Output_data_got_aarch64<size, big_endian>* got =
               target->got_section(symtab, layout);
           got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
                                   target->rela_dyn_section(layout),
                                   elfcpp::R_AARCH64_TLS_TPREL64);
         }
       else if (!object->local_has_got_offset(r_sym,
                                              GOT_TYPE_TLS_OFFSET))
         {
           Output_data_got_aarch64<size, big_endian>* got =
               target->got_section(symtab, layout);
           got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
           unsigned int got_offset =
               object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
           const elfcpp::Elf_Xword addend = rela.get_r_addend();
           gold_assert(addend == 0);
           got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
                                 object, r_sym);
         }
     }
     break;

   case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(!parameters->options().shared(), r_type);
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           layout->set_has_static_tls();
           break;
         }
       gold_assert(tlsopt == tls::TLSOPT_NONE);

       Output_data_got_aarch64<size, big_endian>* got =
           target->got_section(symtab, layout);
       got->add_local_pair_with_rel(object,r_sym, data_shndx,
                                    GOT_TYPE_TLS_PAIR,
                                    target->rela_dyn_section(layout),
                                    elfcpp::R_AARCH64_TLS_DTPMOD64);
     }
     break;

   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
     {
       layout->set_has_static_tls();
       bool output_is_shared = parameters->options().shared();
       if (output_is_shared)
         gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
                    object->name().c_str(), r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(!parameters->options().shared(), r_type);
       if (tlsopt == tls::TLSOPT_NONE)
         {
           // Create a GOT entry for the module index.
           target->got_mod_index_entry(symtab, layout, object);
         }
       else if (tlsopt != tls::TLSOPT_TO_LE)
         unsupported_reloc_local(object, r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
     break;

   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(!parameters->options().shared(), r_type);
       target->define_tls_base_symbol(symtab, layout);
       if (tlsopt == tls::TLSOPT_NONE)
         {
           // Create reserved PLT and GOT entries for the resolver.
           target->reserve_tlsdesc_entries(symtab, layout);

           // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
           // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
           // entry needs to be in an area in .got.plt, not .got. Call
           // got_section to make sure the section has been created.
           target->got_section(symtab, layout);
           Output_data_got<size, big_endian>* got =
               target->got_tlsdesc_section();
           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
           if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
             {
               unsigned int got_offset = got->add_constant(0);
               got->add_constant(0);
               object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
                                            got_offset);
               Reloc_section* rt = target->rela_tlsdesc_section(layout);
               // We store the arguments we need in a vector, and use
               // the index into the vector as the parameter to pass
               // to the target specific routines.
               uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
               void* arg = reinterpret_cast<void*>(intarg);
               rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
                                       got, got_offset, 0);
             }
         }
       else if (tlsopt != tls::TLSOPT_TO_LE)
         unsupported_reloc_local(object, r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSDESC_CALL:
     break;

   default:
     unsupported_reloc_local(object, r_type);
   }
}


// Report an unsupported relocation against a global symbol.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
   Sized_relobj_file<size, big_endian>* object,
   unsigned int r_type,
   Symbol* gsym)
{
 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
            object->name().c_str(), r_type, gsym->demangled_name().c_str());
}

template<int size, bool big_endian>
inline void
Target_aarch64<size, big_endian>::Scan::global(
   Symbol_table* symtab,
   Layout* layout,
   Target_aarch64<size, big_endian>* target,
   Sized_relobj_file<size, big_endian> * object,
   unsigned int data_shndx,
   Output_section* output_section,
   const elfcpp::Rela<size, big_endian>& rela,
   unsigned int r_type,
   Symbol* gsym)
{
 // A STT_GNU_IFUNC symbol may require a PLT entry.
 if (gsym->type() == elfcpp::STT_GNU_IFUNC
     && this->reloc_needs_plt_for_ifunc(object, r_type))
   target->make_plt_entry(symtab, layout, gsym);

 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
   Reloc_section;
 const AArch64_reloc_property* arp =
     aarch64_reloc_property_table->get_reloc_property(r_type);
 gold_assert(arp != NULL);

 switch (r_type)
   {
   case elfcpp::R_AARCH64_NONE:
     break;

   case elfcpp::R_AARCH64_ABS16:
   case elfcpp::R_AARCH64_ABS32:
   case elfcpp::R_AARCH64_ABS64:
     {
       // Make a PLT entry if necessary.
       if (gsym->needs_plt_entry())
         {
           target->make_plt_entry(symtab, layout, gsym);
           // Since this is not a PC-relative relocation, we may be
           // taking the address of a function. In that case we need to
           // set the entry in the dynamic symbol table to the address of
           // the PLT entry.
           if (gsym->is_from_dynobj() && !parameters->options().shared())
             gsym->set_needs_dynsym_value();
         }
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(arp->reference_flags()))
         {
           if (!parameters->options().output_is_position_independent()
               && gsym->may_need_copy_reloc())
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym, rela);
             }
           else if (r_type == elfcpp::R_AARCH64_ABS64
                    && gsym->type() == elfcpp::STT_GNU_IFUNC
                    && gsym->can_use_relative_reloc(false)
                    && !gsym->is_from_dynobj()
                    && !gsym->is_undefined()
                    && !gsym->is_preemptible())
             {
               // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
               // symbol. This makes a function address in a PIE executable
               // match the address in a shared library that it links against.
               Reloc_section* rela_dyn =
                   target->rela_irelative_section(layout);
               unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
               rela_dyn->add_symbolless_global_addend(gsym, r_type,
                                                      output_section, object,
                                                      data_shndx,
                                                      rela.get_r_offset(),
                                                      rela.get_r_addend());
             }
           else if (r_type == elfcpp::R_AARCH64_ABS64
                    && gsym->can_use_relative_reloc(false))
             {
               Reloc_section* rela_dyn = target->rela_dyn_section(layout);
               rela_dyn->add_global_relative(gsym,
                                             elfcpp::R_AARCH64_RELATIVE,
                                             output_section,
                                             object,
                                             data_shndx,
                                             rela.get_r_offset(),
                                             rela.get_r_addend(),
                                             false);
             }
           else
             {
               check_non_pic(object, r_type);
               Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
                   rela_dyn = target->rela_dyn_section(layout);
               rela_dyn->add_global(
                 gsym, r_type, output_section, object,
                 data_shndx, rela.get_r_offset(),rela.get_r_addend());
             }
         }
     }
     break;

   case elfcpp::R_AARCH64_PREL16:
   case elfcpp::R_AARCH64_PREL32:
   case elfcpp::R_AARCH64_PREL64:
     // This is used to fill the GOT absolute address.
     if (gsym->needs_plt_entry())
       {
         target->make_plt_entry(symtab, layout, gsym);
       }
     break;

   case elfcpp::R_AARCH64_MOVW_UABS_G0:        // 263
   case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:     // 264
   case elfcpp::R_AARCH64_MOVW_UABS_G1:        // 265
   case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:     // 266
   case elfcpp::R_AARCH64_MOVW_UABS_G2:        // 267
   case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:     // 268
   case elfcpp::R_AARCH64_MOVW_UABS_G3:        // 269
   case elfcpp::R_AARCH64_MOVW_SABS_G0:        // 270
   case elfcpp::R_AARCH64_MOVW_SABS_G1:        // 271
   case elfcpp::R_AARCH64_MOVW_SABS_G2:        // 272
     if (parameters->options().output_is_position_independent())
       {
         gold_error(_("%s: unsupported reloc %u in pos independent link."),
                    object->name().c_str(), r_type);
       }
     // Make a PLT entry if necessary.
     if (gsym->needs_plt_entry())
       {
         target->make_plt_entry(symtab, layout, gsym);
         // Since this is not a PC-relative relocation, we may be
         // taking the address of a function. In that case we need to
         // set the entry in the dynamic symbol table to the address of
         // the PLT entry.
         if (gsym->is_from_dynobj() && !parameters->options().shared())
           gsym->set_needs_dynsym_value();
       }
     break;

   case elfcpp::R_AARCH64_LD_PREL_LO19:        // 273
   case elfcpp::R_AARCH64_ADR_PREL_LO21:       // 274
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:    // 275
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
   case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:     // 277
   case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:   // 278
   case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:  // 284
   case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:  // 285
   case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:  // 286
   case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
     {
       if (gsym->needs_plt_entry())
         target->make_plt_entry(symtab, layout, gsym);
       // Make a dynamic relocation if necessary.
       if (gsym->needs_dynamic_reloc(arp->reference_flags()))
         {
           if (parameters->options().output_is_executable()
               && gsym->may_need_copy_reloc())
             {
               target->copy_reloc(symtab, layout, object,
                                  data_shndx, output_section, gsym, rela);
             }
         }
       break;
     }

   case elfcpp::R_AARCH64_ADR_GOT_PAGE:
   case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
   case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
     {
       // The above relocations are used to access GOT entries.
       // Note a GOT entry is an *address* to a symbol.
       // The symbol requires a GOT entry
       Output_data_got_aarch64<size, big_endian>* got =
         target->got_section(symtab, layout);
       if (gsym->final_value_is_known())
         {
           // For a STT_GNU_IFUNC symbol we want the PLT address.
           if (gsym->type() == elfcpp::STT_GNU_IFUNC)
             got->add_global_plt(gsym, GOT_TYPE_STANDARD);
           else
             got->add_global(gsym, GOT_TYPE_STANDARD);
         }
       else
         {
           // If this symbol is not fully resolved, we need to add a dynamic
           // relocation for it.
           Reloc_section* rela_dyn = target->rela_dyn_section(layout);

           // Use a GLOB_DAT rather than a RELATIVE reloc if:
           //
           // 1) The symbol may be defined in some other module.
           // 2) We are building a shared library and this is a protected
           // symbol; using GLOB_DAT means that the dynamic linker can use
           // the address of the PLT in the main executable when appropriate
           // so that function address comparisons work.
           // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
           // again so that function address comparisons work.
           if (gsym->is_from_dynobj()
               || gsym->is_undefined()
               || gsym->is_preemptible()
               || (gsym->visibility() == elfcpp::STV_PROTECTED
                   && parameters->options().shared())
               || (gsym->type() == elfcpp::STT_GNU_IFUNC
                   && parameters->options().output_is_position_independent()))
             got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
                                      rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
           else
             {
               // For a STT_GNU_IFUNC symbol we want to write the PLT
               // offset into the GOT, so that function pointer
               // comparisons work correctly.
               bool is_new;
               if (gsym->type() != elfcpp::STT_GNU_IFUNC)
                 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
               else
                 {
                   is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
                   // Tell the dynamic linker to use the PLT address
                   // when resolving relocations.
                   if (gsym->is_from_dynobj()
                       && !parameters->options().shared())
                     gsym->set_needs_dynsym_value();
                 }
               if (is_new)
                 {
                   rela_dyn->add_global_relative(
                       gsym, elfcpp::R_AARCH64_RELATIVE,
                       got,
                       gsym->got_offset(GOT_TYPE_STANDARD),
                       0,
                       false);
                 }
             }
         }
       break;
     }

   case elfcpp::R_AARCH64_TSTBR14:
   case elfcpp::R_AARCH64_CONDBR19:
   case elfcpp::R_AARCH64_JUMP26:
   case elfcpp::R_AARCH64_CALL26:
     {
       if (gsym->final_value_is_known())
         break;

       if (gsym->is_defined() &&
           !gsym->is_from_dynobj() &&
           !gsym->is_preemptible())
         break;

       // Make plt entry for function call.
       target->make_plt_entry(symtab, layout, gsym);
       break;
     }

   case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // General dynamic
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           layout->set_has_static_tls();
           break;
         }
       gold_assert(tlsopt == tls::TLSOPT_NONE);

       // General dynamic.
       Output_data_got_aarch64<size, big_endian>* got =
           target->got_section(symtab, layout);
       // Create 2 consecutive entries for module index and offset.
       got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
                                     target->rela_dyn_section(layout),
                                     elfcpp::R_AARCH64_TLS_DTPMOD64,
                                     elfcpp::R_AARCH64_TLS_DTPREL64);
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local dynamic
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(!parameters->options().shared(), r_type);
       if (tlsopt == tls::TLSOPT_NONE)
         {
           // Create a GOT entry for the module index.
           target->got_mod_index_entry(symtab, layout, object);
         }
       else if (tlsopt != tls::TLSOPT_TO_LE)
         unsupported_reloc_local(object, r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local dynamic
     break;

   case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
   case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial executable
     {
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
         optimize_tls_reloc(gsym->final_value_is_known(), r_type);
       if (tlsopt == tls::TLSOPT_TO_LE)
         break;

       layout->set_has_static_tls();
       // Create a GOT entry for the tp-relative offset.
       Output_data_got_aarch64<size, big_endian>* got
         = target->got_section(symtab, layout);
       if (!parameters->doing_static_link())
         {
           got->add_global_with_rel(
             gsym, GOT_TYPE_TLS_OFFSET,
             target->rela_dyn_section(layout),
             elfcpp::R_AARCH64_TLS_TPREL64);
         }
       if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
         {
           got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
           unsigned int got_offset =
             gsym->got_offset(GOT_TYPE_TLS_OFFSET);
           const elfcpp::Elf_Xword addend = rela.get_r_addend();
           gold_assert(addend == 0);
           got->add_static_reloc(got_offset,
                                 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
         }
     }
     break;

   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:  // Local executable
     layout->set_has_static_tls();
     if (parameters->options().shared())
       gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
                  object->name().c_str(), r_type);
     break;

   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:  // TLS descriptor
     {
       target->define_tls_base_symbol(symtab, layout);
       tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
           optimize_tls_reloc(gsym->final_value_is_known(), r_type);
       if (tlsopt == tls::TLSOPT_NONE)
         {
           // Create reserved PLT and GOT entries for the resolver.
           target->reserve_tlsdesc_entries(symtab, layout);

           // Create a double GOT entry with an R_AARCH64_TLSDESC
           // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
           // entry needs to be in an area in .got.plt, not .got. Call
           // got_section to make sure the section has been created.
           target->got_section(symtab, layout);
           Output_data_got<size, big_endian>* got =
               target->got_tlsdesc_section();
           Reloc_section* rt = target->rela_tlsdesc_section(layout);
           got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
                                         elfcpp::R_AARCH64_TLSDESC, 0);
         }
       else if (tlsopt == tls::TLSOPT_TO_IE)
         {
           // Create a GOT entry for the tp-relative offset.
           Output_data_got<size, big_endian>* got
               = target->got_section(symtab, layout);
           got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
                                    target->rela_dyn_section(layout),
                                    elfcpp::R_AARCH64_TLS_TPREL64);
         }
       else if (tlsopt != tls::TLSOPT_TO_LE)
         unsupported_reloc_global(object, r_type, gsym);
     }
     break;

   case elfcpp::R_AARCH64_TLSDESC_CALL:
     break;

   default:
     gold_error(_("%s: unsupported reloc type in global scan"),
                aarch64_reloc_property_table->
                reloc_name_in_error_message(r_type).c_str());
   }
 return;
}  // End of Scan::global


// Create the PLT section.
template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::make_plt_section(
 Symbol_table* symtab, Layout* layout)
{
 if (this->plt_ == NULL)
   {
     // Create the GOT section first.
     this->got_section(symtab, layout);

     this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
                                      this->got_irelative_);

     layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                     (elfcpp::SHF_ALLOC
                                      | elfcpp::SHF_EXECINSTR),
                                     this->plt_, ORDER_PLT, false);

     // Make the sh_info field of .rela.plt point to .plt.
     Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
     rela_plt_os->set_info_section(this->plt_->output_section());
   }
}

// Return the section for TLSDESC relocations.

template<int size, bool big_endian>
typename Target_aarch64<size, big_endian>::Reloc_section*
Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
{
 return this->plt_section()->rela_tlsdesc(layout);
}

// Create a PLT entry for a global symbol.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::make_plt_entry(
   Symbol_table* symtab,
   Layout* layout,
   Symbol* gsym)
{
 if (gsym->has_plt_offset())
   return;

 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);

 this->plt_->add_entry(symtab, layout, gsym);
}

// Make a PLT entry for a local STT_GNU_IFUNC symbol.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
   Symbol_table* symtab, Layout* layout,
   Sized_relobj_file<size, big_endian>* relobj,
   unsigned int local_sym_index)
{
 if (relobj->local_has_plt_offset(local_sym_index))
   return;
 if (this->plt_ == NULL)
   this->make_plt_section(symtab, layout);
 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
                                                             relobj,
                                                             local_sym_index);
 relobj->set_local_plt_offset(local_sym_index, plt_offset);
}

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::gc_process_relocs(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_symbols)
{
 typedef Target_aarch64<size, big_endian> Aarch64;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 if (sh_type == elfcpp::SHT_REL)
   {
     return;
   }

 gold::gc_process_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Scan relocations for a section.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_relocs(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_symbols)
{
 typedef Target_aarch64<size, big_endian> Aarch64;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 if (sh_type == elfcpp::SHT_REL)
   {
     gold_error(_("%s: unsupported REL reloc section"),
                object->name().c_str());
     return;
   }

 gold::scan_relocs<size, big_endian, Aarch64, Scan, Classify_reloc>(
   symtab,
   layout,
   this,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols);
}

// Return the value to use for a dynamic which requires special
// treatment.  This is how we support equality comparisons of function
// pointers across shared library boundaries, as described in the
// processor specific ABI supplement.

template<int size, bool big_endian>
uint64_t
Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
{
 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
 return this->plt_address_for_global(gsym);
}


// Finalize the sections.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::do_finalize_sections(
   Layout* layout,
   const Input_objects*,
   Symbol_table* symtab)
{
 const Reloc_section* rel_plt = (this->plt_ == NULL
                                 ? NULL
                                 : this->plt_->rela_plt());
 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
                                 this->rela_dyn_, true, false, false);

 // Emit any relocs we saved in an attempt to avoid generating COPY
 // relocs.
 if (this->copy_relocs_.any_saved_relocs())
   this->copy_relocs_.emit(this->rela_dyn_section(layout));

 // Fill in some more dynamic tags.
 Output_data_dynamic* const odyn = layout->dynamic_data();
 if (odyn != NULL)
   {
     if (this->plt_ != NULL
         && this->plt_->output_section() != NULL
         && this->plt_ ->has_tlsdesc_entry())
       {
         unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
         unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
         this->got_->finalize_data_size();
         odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
                                       this->plt_, plt_offset);
         odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
                                       this->got_, got_offset);
       }
   }

 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
 // the .got section.
 Symbol* sym = this->global_offset_table_;
 if (sym != NULL)
   {
     uint64_t data_size = this->got_->current_data_size();
     symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);

     // If the .got section is more than 0x8000 bytes, we add
     // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
     // bit relocations have a greater chance of working.
     if (data_size >= 0x8000)
       symtab->get_sized_symbol<size>(sym)->set_value(
         symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
   }

 if (parameters->doing_static_link()
     && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
   {
     // If linking statically, make sure that the __rela_iplt symbols
     // were defined if necessary, even if we didn't create a PLT.
     static const Define_symbol_in_segment syms[] =
       {
         {
           "__rela_iplt_start",        // name
           elfcpp::PT_LOAD,            // segment_type
           elfcpp::PF_W,               // segment_flags_set
           elfcpp::PF(0),              // segment_flags_clear
           0,                          // value
           0,                          // size
           elfcpp::STT_NOTYPE,         // type
           elfcpp::STB_GLOBAL,         // binding
           elfcpp::STV_HIDDEN,         // visibility
           0,                          // nonvis
           Symbol::SEGMENT_START,      // offset_from_base
           true                        // only_if_ref
         },
         {
           "__rela_iplt_end",          // name
           elfcpp::PT_LOAD,            // segment_type
           elfcpp::PF_W,               // segment_flags_set
           elfcpp::PF(0),              // segment_flags_clear
           0,                          // value
           0,                          // size
           elfcpp::STT_NOTYPE,         // type
           elfcpp::STB_GLOBAL,         // binding
           elfcpp::STV_HIDDEN,         // visibility
           0,                          // nonvis
           Symbol::SEGMENT_START,      // offset_from_base
           true                        // only_if_ref
         }
       };

     symtab->define_symbols(layout, 2, syms,
                            layout->script_options()->saw_sections_clause());
   }

 return;
}

// Perform a relocation.

template<int size, bool big_endian>
inline bool
Target_aarch64<size, big_endian>::Relocate::relocate(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int,
   Target_aarch64<size, big_endian>* target,
   Output_section* ,
   size_t relnum,
   const unsigned char* preloc,
   const Sized_symbol<size>* gsym,
   const Symbol_value<size>* psymval,
   unsigned char* view,
   typename elfcpp::Elf_types<size>::Elf_Addr address,
   section_size_type /* view_size */)
{
 if (view == NULL)
   return true;

 typedef AArch64_relocate_functions<size, big_endian> Reloc;

 const elfcpp::Rela<size, big_endian> rela(preloc);
 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
 const AArch64_reloc_property* reloc_property =
     aarch64_reloc_property_table->get_reloc_property(r_type);

 if (reloc_property == NULL)
   {
     std::string reloc_name =
         aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("cannot relocate %s in object file"),
                            reloc_name.c_str());
     return true;
   }

 const Sized_relobj_file<size, big_endian>* object = relinfo->object;

 // Pick the value to use for symbols defined in the PLT.
 Symbol_value<size> symval;
 if (gsym != NULL
     && gsym->use_plt_offset(reloc_property->reference_flags()))
   {
     symval.set_output_value(target->plt_address_for_global(gsym));
     psymval = &symval;
   }
 else if (gsym == NULL && psymval->is_ifunc_symbol())
   {
     unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
     if (object->local_has_plt_offset(r_sym))
       {
         symval.set_output_value(target->plt_address_for_local(object, r_sym));
         psymval = &symval;
       }
   }

 const elfcpp::Elf_Xword addend = rela.get_r_addend();

 // Get the GOT offset if needed.
 // For aarch64, the GOT pointer points to the start of the GOT section.
 bool have_got_offset = false;
 int got_offset = 0;
 int got_base = (target->got_ != NULL
                 ? (target->got_->current_data_size() >= 0x8000
                    ? 0x8000 : 0)
                 : 0);
 switch (r_type)
   {
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
   case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
   case elfcpp::R_AARCH64_GOTREL64:
   case elfcpp::R_AARCH64_GOTREL32:
   case elfcpp::R_AARCH64_GOT_LD_PREL19:
   case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
   case elfcpp::R_AARCH64_ADR_GOT_PAGE:
   case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
   case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
     if (gsym != NULL)
       {
         gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
         got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
       }
     else
       {
         unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
         gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
         got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
                       - got_base);
       }
     have_got_offset = true;
     break;

   default:
     break;
   }

 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
 typename elfcpp::Elf_types<size>::Elf_Addr value;
 switch (r_type)
   {
   case elfcpp::R_AARCH64_NONE:
     break;

   case elfcpp::R_AARCH64_ABS64:
     if (!parameters->options().apply_dynamic_relocs()
         && parameters->options().output_is_position_independent()
         && gsym != NULL
         && gsym->needs_dynamic_reloc(reloc_property->reference_flags())
         && !gsym->can_use_relative_reloc(false))
       // We have generated an absolute dynamic relocation, so do not
       // apply the relocation statically. (Works around bugs in older
       // Android dynamic linkers.)
       break;
     reloc_status = Reloc::template rela_ua<64>(
       view, object, psymval, addend, reloc_property);
     break;

   case elfcpp::R_AARCH64_ABS32:
     if (!parameters->options().apply_dynamic_relocs()
         && parameters->options().output_is_position_independent()
         && gsym != NULL
         && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
       // We have generated an absolute dynamic relocation, so do not
       // apply the relocation statically. (Works around bugs in older
       // Android dynamic linkers.)
       break;
     reloc_status = Reloc::template rela_ua<32>(
       view, object, psymval, addend, reloc_property);
     break;

   case elfcpp::R_AARCH64_ABS16:
     if (!parameters->options().apply_dynamic_relocs()
         && parameters->options().output_is_position_independent()
         && gsym != NULL
         && gsym->needs_dynamic_reloc(reloc_property->reference_flags()))
       // We have generated an absolute dynamic relocation, so do not
       // apply the relocation statically. (Works around bugs in older
       // Android dynamic linkers.)
       break;
     reloc_status = Reloc::template rela_ua<16>(
       view, object, psymval, addend, reloc_property);
     break;

   case elfcpp::R_AARCH64_PREL64:
     reloc_status = Reloc::template pcrela_ua<64>(
       view, object, psymval, addend, address, reloc_property);
     break;

   case elfcpp::R_AARCH64_PREL32:
     reloc_status = Reloc::template pcrela_ua<32>(
       view, object, psymval, addend, address, reloc_property);
     break;

   case elfcpp::R_AARCH64_PREL16:
     reloc_status = Reloc::template pcrela_ua<16>(
       view, object, psymval, addend, address, reloc_property);
     break;

   case elfcpp::R_AARCH64_MOVW_UABS_G0:
   case elfcpp::R_AARCH64_MOVW_UABS_G0_NC:
   case elfcpp::R_AARCH64_MOVW_UABS_G1:
   case elfcpp::R_AARCH64_MOVW_UABS_G1_NC:
   case elfcpp::R_AARCH64_MOVW_UABS_G2:
   case elfcpp::R_AARCH64_MOVW_UABS_G2_NC:
   case elfcpp::R_AARCH64_MOVW_UABS_G3:
     reloc_status = Reloc::template rela_general<32>(
       view, object, psymval, addend, reloc_property);
     break;
   case elfcpp::R_AARCH64_MOVW_SABS_G0:
   case elfcpp::R_AARCH64_MOVW_SABS_G1:
   case elfcpp::R_AARCH64_MOVW_SABS_G2:
     reloc_status = Reloc::movnz(view, psymval->value(object, addend),
                                 reloc_property);
     break;

   case elfcpp::R_AARCH64_LD_PREL_LO19:
     reloc_status = Reloc::template pcrela_general<32>(
         view, object, psymval, addend, address, reloc_property);
     break;

   case elfcpp::R_AARCH64_ADR_PREL_LO21:
     reloc_status = Reloc::adr(view, object, psymval, addend,
                               address, reloc_property);
     break;

   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
   case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
     reloc_status = Reloc::adrp(view, object, psymval, addend, address,
                                reloc_property);
     break;

   case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
   case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
   case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
   case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
   case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
   case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
     reloc_status = Reloc::template rela_general<32>(
       view, object, psymval, addend, reloc_property);
     break;

   case elfcpp::R_AARCH64_CALL26:
     if (this->skip_call_tls_get_addr_)
       {
         // Double check that the TLSGD insn has been optimized away.
         typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
         Insntype insn = elfcpp::Swap<32, big_endian>::readval(
             reinterpret_cast<Insntype*>(view));
         gold_assert((insn & 0xff000000) == 0x91000000);

         reloc_status = Reloc::STATUS_OKAY;
         this->skip_call_tls_get_addr_ = false;
         // Return false to stop further processing this reloc.
         return false;
       }
     // Fall through.
   case elfcpp::R_AARCH64_JUMP26:
     if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
                                 gsym, psymval, object,
                                 target->stub_group_size_))
       break;
     // Fall through.
   case elfcpp::R_AARCH64_TSTBR14:
   case elfcpp::R_AARCH64_CONDBR19:
     reloc_status = Reloc::template pcrela_general<32>(
       view, object, psymval, addend, address, reloc_property);
     break;

   case elfcpp::R_AARCH64_ADR_GOT_PAGE:
     gold_assert(have_got_offset);
     value = target->got_->address() + got_base + got_offset;
     reloc_status = Reloc::adrp(view, value + addend, address);
     break;

   case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
     gold_assert(have_got_offset);
     value = target->got_->address() + got_base + got_offset;
     reloc_status = Reloc::template rela_general<32>(
       view, value, addend, reloc_property);
     break;

   case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
     {
       gold_assert(have_got_offset);
       value = target->got_->address() + got_base + got_offset + addend -
         Reloc::Page(target->got_->address() + got_base);
       if ((value & 7) != 0)
         reloc_status = Reloc::STATUS_OVERFLOW;
       else
         reloc_status = Reloc::template reloc_common<32>(
           view, value, reloc_property);
       break;
     }

   case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
   case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
   case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
   case elfcpp::R_AARCH64_TLSDESC_CALL:
     reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
                                 gsym, psymval, view, address);
     break;

   // These are dynamic relocations, which are unexpected when linking.
   case elfcpp::R_AARCH64_COPY:
   case elfcpp::R_AARCH64_GLOB_DAT:
   case elfcpp::R_AARCH64_JUMP_SLOT:
   case elfcpp::R_AARCH64_RELATIVE:
   case elfcpp::R_AARCH64_IRELATIVE:
   case elfcpp::R_AARCH64_TLS_DTPREL64:
   case elfcpp::R_AARCH64_TLS_DTPMOD64:
   case elfcpp::R_AARCH64_TLS_TPREL64:
   case elfcpp::R_AARCH64_TLSDESC:
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unexpected reloc %u in object file"),
                            r_type);
     break;

   default:
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("unsupported reloc %s"),
                            reloc_property->name().c_str());
     break;
   }

 // Report any errors.
 switch (reloc_status)
   {
   case Reloc::STATUS_OKAY:
     break;
   case Reloc::STATUS_OVERFLOW:
     gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                            _("relocation overflow in %s"),
                            reloc_property->name().c_str());
     break;
   case Reloc::STATUS_BAD_RELOC:
     gold_error_at_location(
         relinfo,
         relnum,
         rela.get_r_offset(),
         _("unexpected opcode while processing relocation %s"),
         reloc_property->name().c_str());
     break;
   default:
     gold_unreachable();
   }

 return true;
}


template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::relocate_tls(
   const Relocate_info<size, big_endian>* relinfo,
   Target_aarch64<size, big_endian>* target,
   size_t relnum,
   const elfcpp::Rela<size, big_endian>& rela,
   unsigned int r_type, const Sized_symbol<size>* gsym,
   const Symbol_value<size>* psymval,
   unsigned char* view,
   typename elfcpp::Elf_types<size>::Elf_Addr address)
{
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;

 Output_segment* tls_segment = relinfo->layout->tls_segment();
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 const AArch64_reloc_property* reloc_property =
     aarch64_reloc_property_table->get_reloc_property(r_type);
 gold_assert(reloc_property != NULL);

 const bool is_final = (gsym == NULL
                        ? !parameters->options().shared()
                        : gsym->final_value_is_known());
 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
     optimize_tls_reloc(is_final, r_type);

 Sized_relobj_file<size, big_endian>* object = relinfo->object;
 int tls_got_offset_type;
 switch (r_type)
   {
   case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:  // Global-dynamic
     {
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           if (tls_segment == NULL)
             {
               gold_assert(parameters->errors()->error_count() > 0
                           || issue_undefined_symbol_error(gsym));
               return aarch64_reloc_funcs::STATUS_BAD_RELOC;
             }
           return tls_gd_to_le(relinfo, target, rela, r_type, view,
                               psymval);
         }
       else if (tlsopt == tls::TLSOPT_NONE)
         {
           tls_got_offset_type = GOT_TYPE_TLS_PAIR;
           // Firstly get the address for the got entry.
           typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
           if (gsym != NULL)
             {
               gold_assert(gsym->has_got_offset(tls_got_offset_type));
               got_entry_address = target->got_->address() +
                                   gsym->got_offset(tls_got_offset_type);
             }
           else
             {
               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
               gold_assert(
                 object->local_has_got_offset(r_sym, tls_got_offset_type));
               got_entry_address = target->got_->address() +
                 object->local_got_offset(r_sym, tls_got_offset_type);
             }

           // Relocate the address into adrp/ld, adrp/add pair.
           switch (r_type)
             {
             case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
               return aarch64_reloc_funcs::adrp(
                 view, got_entry_address + addend, address);

               break;

             case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
               return aarch64_reloc_funcs::template rela_general<32>(
                 view, got_entry_address, addend, reloc_property);
               break;

             default:
               gold_unreachable();
             }
         }
       gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
                              _("unsupported gd_to_ie relaxation on %u"),
                              r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:  // Local-dynamic
     {
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           if (tls_segment == NULL)
             {
               gold_assert(parameters->errors()->error_count() > 0
                           || issue_undefined_symbol_error(gsym));
               return aarch64_reloc_funcs::STATUS_BAD_RELOC;
             }
           return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
                                     psymval);
         }

       gold_assert(tlsopt == tls::TLSOPT_NONE);
       // Relocate the field with the offset of the GOT entry for
       // the module index.
       typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
       got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
                            target->got_->address());

       switch (r_type)
         {
         case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
           return aarch64_reloc_funcs::adrp(
             view, got_entry_address + addend, address);
           break;

         case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
           return aarch64_reloc_funcs::template rela_general<32>(
             view, got_entry_address, addend, reloc_property);
           break;

         default:
           gold_unreachable();
         }
     }
     break;

   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
   case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
   case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:  // Other local-dynamic
     {
       AArch64_address value = psymval->value(object, 0);
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           if (tls_segment == NULL)
             {
               gold_assert(parameters->errors()->error_count() > 0
                           || issue_undefined_symbol_error(gsym));
               return aarch64_reloc_funcs::STATUS_BAD_RELOC;
             }
         }
       switch (r_type)
         {
         case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
           return aarch64_reloc_funcs::movnz(view, value + addend,
                                             reloc_property);
           break;

         case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
         case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
         case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
           return aarch64_reloc_funcs::template rela_general<32>(
               view, value, addend, reloc_property);
           break;

         default:
           gold_unreachable();
         }
       // We should never reach here.
     }
     break;

   case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
   case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:  // Initial-exec
     {
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           if (tls_segment == NULL)
             {
               gold_assert(parameters->errors()->error_count() > 0
                           || issue_undefined_symbol_error(gsym));
               return aarch64_reloc_funcs::STATUS_BAD_RELOC;
             }
           return tls_ie_to_le(relinfo, target, rela, r_type, view,
                               psymval);
         }
       tls_got_offset_type = GOT_TYPE_TLS_OFFSET;

       // Firstly get the address for the got entry.
       typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
       if (gsym != NULL)
         {
           gold_assert(gsym->has_got_offset(tls_got_offset_type));
           got_entry_address = target->got_->address() +
                               gsym->got_offset(tls_got_offset_type);
         }
       else
         {
           unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
           gold_assert(
               object->local_has_got_offset(r_sym, tls_got_offset_type));
           got_entry_address = target->got_->address() +
               object->local_got_offset(r_sym, tls_got_offset_type);
         }
       // Relocate the address into adrp/ld, adrp/add pair.
       switch (r_type)
         {
         case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
           return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
                                            address);
           break;
         case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
           return aarch64_reloc_funcs::template rela_general<32>(
             view, got_entry_address, addend, reloc_property);
         default:
           gold_unreachable();
         }
     }
     // We shall never reach here.
     break;

   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
   case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12:
   case elfcpp::R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
     {
       gold_assert(tls_segment != NULL);
       AArch64_address value = psymval->value(object, 0);

       if (!parameters->options().shared())
         {
           AArch64_address aligned_tcb_size =
               align_address(target->tcb_size(),
                             tls_segment->maximum_alignment());
           value += aligned_tcb_size;
           switch (r_type)
             {
             case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
             case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
             case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
               return aarch64_reloc_funcs::movnz(view, value + addend,
                                                 reloc_property);
             default:
               return aarch64_reloc_funcs::template
                 rela_general<32>(view,
                                  value,
                                  addend,
                                  reloc_property);
             }
         }
       else
         gold_error(_("%s: unsupported reloc %u "
                      "in non-static TLSLE mode."),
                    object->name().c_str(), r_type);
     }
     break;

   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
   case elfcpp::R_AARCH64_TLSDESC_CALL:
     {
       if (tlsopt == tls::TLSOPT_TO_LE)
         {
           if (tls_segment == NULL)
             {
               gold_assert(parameters->errors()->error_count() > 0
                           || issue_undefined_symbol_error(gsym));
               return aarch64_reloc_funcs::STATUS_BAD_RELOC;
             }
           return tls_desc_gd_to_le(relinfo, target, rela, r_type,
                                    view, psymval);
         }
       else
         {
           tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
                                  ? GOT_TYPE_TLS_OFFSET
                                  : GOT_TYPE_TLS_DESC);
           int got_tlsdesc_offset = 0;
           if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
               && tlsopt == tls::TLSOPT_NONE)
             {
               // We created GOT entries in the .got.tlsdesc portion of the
               // .got.plt section, but the offset stored in the symbol is the
               // offset within .got.tlsdesc.
               got_tlsdesc_offset = (target->got_tlsdesc_->address()
                                     - target->got_->address());
             }
           typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
           if (gsym != NULL)
             {
               gold_assert(gsym->has_got_offset(tls_got_offset_type));
               got_entry_address = target->got_->address()
                                   + got_tlsdesc_offset
                                   + gsym->got_offset(tls_got_offset_type);
             }
           else
             {
               unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
               gold_assert(
                   object->local_has_got_offset(r_sym, tls_got_offset_type));
               got_entry_address = target->got_->address() +
                 got_tlsdesc_offset +
                 object->local_got_offset(r_sym, tls_got_offset_type);
             }
           if (tlsopt == tls::TLSOPT_TO_IE)
             {
               return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
                                        view, psymval, got_entry_address,
                                        address);
             }

           // Now do tlsdesc relocation.
           switch (r_type)
             {
             case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
               return aarch64_reloc_funcs::adrp(view,
                                                got_entry_address + addend,
                                                address);
               break;
             case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
             case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
               return aarch64_reloc_funcs::template rela_general<32>(
                 view, got_entry_address, addend, reloc_property);
               break;
             case elfcpp::R_AARCH64_TLSDESC_CALL:
               return aarch64_reloc_funcs::STATUS_OKAY;
               break;
             default:
               gold_unreachable();
             }
         }
       }
     break;

   default:
     gold_error(_("%s: unsupported TLS reloc %u."),
                object->name().c_str(), r_type);
   }
 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
}  // End of relocate_tls.


template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
            const Relocate_info<size, big_endian>* relinfo,
            Target_aarch64<size, big_endian>* target,
            const elfcpp::Rela<size, big_endian>& rela,
            unsigned int r_type,
            unsigned char* view,
            const Symbol_value<size>* psymval)
{
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;

 Insntype* ip = reinterpret_cast<Insntype*>(view);
 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);

 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
   {
     // This is the 2nd relocs, optimization should already have been
     // done.
     gold_assert((insn1 & 0xfff00000) == 0x91400000);
     return aarch64_reloc_funcs::STATUS_OKAY;
   }

 // The original sequence is -
 //   90000000        adrp    x0, 0 <main>
 //   91000000        add     x0, x0, #0x0
 //   94000000        bl      0 <__tls_get_addr>
 // optimized to sequence -
 //   d53bd040        mrs     x0, tpidr_el0
 //   91400000        add     x0, x0, #0x0, lsl #12
 //   91000000        add     x0, x0, #0x0

 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
 // have to change "bl tls_get_addr", which does not have a corresponding tls
 // relocation type. So before proceeding, we need to make sure compiler
 // does not change the sequence.
 if(!(insn1 == 0x90000000      // adrp x0,0
      && insn2 == 0x91000000   // add x0, x0, #0x0
      && insn3 == 0x94000000)) // bl 0
   {
     // Ideally we should give up gd_to_le relaxation and do gd access.
     // However the gd_to_le relaxation decision has been made early
     // in the scan stage, where we did not allocate any GOT entry for
     // this symbol. Therefore we have to exit and report error now.
     gold_error(_("unexpected reloc insn sequence while relaxing "
                  "tls gd to le for reloc %u."), r_type);
     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
   }

 // Write new insns.
 insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
 insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
 insn3 = 0x91000000;  // add x0, x0, #0x0
 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);

 // Calculate tprel value.
 Output_segment* tls_segment = relinfo->layout->tls_segment();
 gold_assert(tls_segment != NULL);
 AArch64_address value = psymval->value(relinfo->object, 0);
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 AArch64_address aligned_tcb_size =
     align_address(target->tcb_size(), tls_segment->maximum_alignment());
 AArch64_address x = value + aligned_tcb_size;

 // After new insns are written, apply TLSLE relocs.
 const AArch64_reloc_property* rp1 =
     aarch64_reloc_property_table->get_reloc_property(
         elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
 const AArch64_reloc_property* rp2 =
     aarch64_reloc_property_table->get_reloc_property(
         elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
 gold_assert(rp1 != NULL && rp2 != NULL);

 typename aarch64_reloc_funcs::Status s1 =
     aarch64_reloc_funcs::template rela_general<32>(view + 4,
                                                    x,
                                                    addend,
                                                    rp1);
 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
   return s1;

 typename aarch64_reloc_funcs::Status s2 =
     aarch64_reloc_funcs::template rela_general<32>(view + 8,
                                                    x,
                                                    addend,
                                                    rp2);

 this->skip_call_tls_get_addr_ = true;
 return s2;
}  // End of tls_gd_to_le


template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
            const Relocate_info<size, big_endian>* relinfo,
            Target_aarch64<size, big_endian>* target,
            const elfcpp::Rela<size, big_endian>& rela,
            unsigned int r_type,
            unsigned char* view,
            const Symbol_value<size>* psymval)
{
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;

 Insntype* ip = reinterpret_cast<Insntype*>(view);
 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);

 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
   {
     // This is the 2nd relocs, optimization should already have been
     // done.
     gold_assert((insn1 & 0xfff00000) == 0x91400000);
     return aarch64_reloc_funcs::STATUS_OKAY;
   }

 // The original sequence is -
 //   90000000        adrp    x0, 0 <main>
 //   91000000        add     x0, x0, #0x0
 //   94000000        bl      0 <__tls_get_addr>
 // optimized to sequence -
 //   d53bd040        mrs     x0, tpidr_el0
 //   91400000        add     x0, x0, #0x0, lsl #12
 //   91000000        add     x0, x0, #0x0

 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
 // have to change "bl tls_get_addr", which does not have a corresponding tls
 // relocation type. So before proceeding, we need to make sure compiler
 // does not change the sequence.
 if(!(insn1 == 0x90000000      // adrp x0,0
      && insn2 == 0x91000000   // add x0, x0, #0x0
      && insn3 == 0x94000000)) // bl 0
   {
     // Ideally we should give up gd_to_le relaxation and do gd access.
     // However the gd_to_le relaxation decision has been made early
     // in the scan stage, where we did not allocate a GOT entry for
     // this symbol. Therefore we have to exit and report an error now.
     gold_error(_("unexpected reloc insn sequence while relaxing "
                  "tls gd to le for reloc %u."), r_type);
     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
   }

 // Write new insns.
 insn1 = 0xd53bd040;  // mrs x0, tpidr_el0
 insn2 = 0x91400000;  // add x0, x0, #0x0, lsl #12
 insn3 = 0x91000000;  // add x0, x0, #0x0
 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);

 // Calculate tprel value.
 Output_segment* tls_segment = relinfo->layout->tls_segment();
 gold_assert(tls_segment != NULL);
 AArch64_address value = psymval->value(relinfo->object, 0);
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 AArch64_address aligned_tcb_size =
     align_address(target->tcb_size(), tls_segment->maximum_alignment());
 AArch64_address x = value + aligned_tcb_size;

 // After new insns are written, apply TLSLE relocs.
 const AArch64_reloc_property* rp1 =
     aarch64_reloc_property_table->get_reloc_property(
         elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
 const AArch64_reloc_property* rp2 =
     aarch64_reloc_property_table->get_reloc_property(
         elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
 gold_assert(rp1 != NULL && rp2 != NULL);

 typename aarch64_reloc_funcs::Status s1 =
     aarch64_reloc_funcs::template rela_general<32>(view + 4,
                                                    x,
                                                    addend,
                                                    rp1);
 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
   return s1;

 typename aarch64_reloc_funcs::Status s2 =
     aarch64_reloc_funcs::template rela_general<32>(view + 8,
                                                    x,
                                                    addend,
                                                    rp2);

 this->skip_call_tls_get_addr_ = true;
 return s2;

}  // End of tls_ld_to_le

template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
            const Relocate_info<size, big_endian>* relinfo,
            Target_aarch64<size, big_endian>* target,
            const elfcpp::Rela<size, big_endian>& rela,
            unsigned int r_type,
            unsigned char* view,
            const Symbol_value<size>* psymval)
{
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;

 AArch64_address value = psymval->value(relinfo->object, 0);
 Output_segment* tls_segment = relinfo->layout->tls_segment();
 AArch64_address aligned_tcb_address =
     align_address(target->tcb_size(), tls_segment->maximum_alignment());
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 AArch64_address x = value + addend + aligned_tcb_address;
 // "x" is the offset to tp, we can only do this if x is within
 // range [0, 2^32-1]
 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
   {
     gold_error(_("TLS variable referred by reloc %u is too far from TP."),
                r_type);
     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
   }

 Insntype* ip = reinterpret_cast<Insntype*>(view);
 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
 unsigned int regno;
 Insntype newinsn;
 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
   {
     // Generate movz.
     regno = (insn & 0x1f);
     newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
   }
 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
   {
     // Generate movk.
     regno = (insn & 0x1f);
     gold_assert(regno == ((insn >> 5) & 0x1f));
     newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
   }
 else
   gold_unreachable();

 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
 return aarch64_reloc_funcs::STATUS_OKAY;
}  // End of tls_ie_to_le


template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
            const Relocate_info<size, big_endian>* relinfo,
            Target_aarch64<size, big_endian>* target,
            const elfcpp::Rela<size, big_endian>& rela,
            unsigned int r_type,
            unsigned char* view,
            const Symbol_value<size>* psymval)
{
 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;

 // TLSDESC-GD sequence is like:
 //   adrp  x0, :tlsdesc:v1
 //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
 //   add   x0, x0, :tlsdesc_lo12:v1
 //   .tlsdesccall    v1
 //   blr   x1
 // After desc_gd_to_le optimization, the sequence will be like:
 //   movz  x0, #0x0, lsl #16
 //   movk  x0, #0x10
 //   nop
 //   nop

 // Calculate tprel value.
 Output_segment* tls_segment = relinfo->layout->tls_segment();
 gold_assert(tls_segment != NULL);
 Insntype* ip = reinterpret_cast<Insntype*>(view);
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 AArch64_address value = psymval->value(relinfo->object, addend);
 AArch64_address aligned_tcb_size =
     align_address(target->tcb_size(), tls_segment->maximum_alignment());
 AArch64_address x = value + aligned_tcb_size;
 // x is the offset to tp, we can only do this if x is within range
 // [0, 2^32-1]. If x is out of range, fail and exit.
 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
   {
     gold_error(_("TLS variable referred by reloc %u is too far from TP. "
                  "We Can't do gd_to_le relaxation.\n"), r_type);
     return aarch64_reloc_funcs::STATUS_BAD_RELOC;
   }
 Insntype newinsn;
 switch (r_type)
   {
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
   case elfcpp::R_AARCH64_TLSDESC_CALL:
     // Change to nop
     newinsn = 0xd503201f;
     break;

   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
     // Change to movz.
     newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
     break;

   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
     // Change to movk.
     newinsn = 0xf2800000 | ((x & 0xffff) << 5);
     break;

   default:
     gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
                r_type);
     gold_unreachable();
   }
 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
 return aarch64_reloc_funcs::STATUS_OKAY;
}  // End of tls_desc_gd_to_le


template<int size, bool big_endian>
inline
typename AArch64_relocate_functions<size, big_endian>::Status
Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
            const Relocate_info<size, big_endian>* /* relinfo */,
            Target_aarch64<size, big_endian>* /* target */,
            const elfcpp::Rela<size, big_endian>& rela,
            unsigned int r_type,
            unsigned char* view,
            const Symbol_value<size>* /* psymval */,
            typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
            typename elfcpp::Elf_types<size>::Elf_Addr address)
{
 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;

 // TLSDESC-GD sequence is like:
 //   adrp  x0, :tlsdesc:v1
 //   ldr   x1, [x0, #:tlsdesc_lo12:v1]
 //   add   x0, x0, :tlsdesc_lo12:v1
 //   .tlsdesccall    v1
 //   blr   x1
 // After desc_gd_to_ie optimization, the sequence will be like:
 //   adrp  x0, :tlsie:v1
 //   ldr   x0, [x0, :tlsie_lo12:v1]
 //   nop
 //   nop

 Insntype* ip = reinterpret_cast<Insntype*>(view);
 const elfcpp::Elf_Xword addend = rela.get_r_addend();
 Insntype newinsn;
 switch (r_type)
   {
   case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
   case elfcpp::R_AARCH64_TLSDESC_CALL:
     // Change to nop
     newinsn = 0xd503201f;
     elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
     break;

   case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
     {
       return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
                                        address);
     }
     break;

   case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
     {
      // Set ldr target register to be x0.
      Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
      insn &= 0xffffffe0;
      elfcpp::Swap<32, big_endian>::writeval(ip, insn);
      // Do relocation.
       const AArch64_reloc_property* reloc_property =
           aarch64_reloc_property_table->get_reloc_property(
             elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
       return aarch64_reloc_funcs::template rela_general<32>(
                view, got_entry_address, addend, reloc_property);
     }
     break;

   default:
     gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
                r_type);
     gold_unreachable();
   }
 return aarch64_reloc_funcs::STATUS_OKAY;
}  // End of tls_desc_gd_to_ie

// Relocate section data.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::relocate_section(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   unsigned char* view,
   typename elfcpp::Elf_types<size>::Elf_Addr address,
   section_size_type view_size,
   const Reloc_symbol_changes* reloc_symbol_changes)
{
 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
 typedef Target_aarch64<size, big_endian> Aarch64;
 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 // See if we are relocating a relaxed input section.  If so, the view
 // covers the whole output section and we need to adjust accordingly.
 if (needs_special_offset_handling)
   {
     const Output_relaxed_input_section* poris =
       output_section->find_relaxed_input_section(relinfo->object,
                                                  relinfo->data_shndx);
     if (poris != NULL)
       {
         Address section_address = poris->address();
         section_size_type section_size = poris->data_size();

         gold_assert((section_address >= address)
                     && ((section_address + section_size)
                         <= (address + view_size)));

         off_t offset = section_address - address;
         view += offset;
         address += offset;
         view_size = section_size;
       }
   }

 gold::relocate_section<size, big_endian, Aarch64, AArch64_relocate,
                        gold::Default_comdat_behavior, Classify_reloc>(
   relinfo,
   this,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   view,
   address,
   view_size,
   reloc_symbol_changes);
}

// Scan the relocs during a relocatable link.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_relocatable_relocs(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_symbols,
   Relocatable_relocs* rr)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;
 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
     Scan_relocatable_relocs;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::scan_relocatable_relocs<size, big_endian, Scan_relocatable_relocs>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_symbols,
   rr);
}

// Scan the relocs for --emit-relocs.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::emit_relocs_scan(
   Symbol_table* symtab,
   Layout* layout,
   Sized_relobj_file<size, big_endian>* object,
   unsigned int data_shndx,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   bool needs_special_offset_handling,
   size_t local_symbol_count,
   const unsigned char* plocal_syms,
   Relocatable_relocs* rr)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;
 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
     Emit_relocs_strategy;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 gold::scan_relocatable_relocs<size, big_endian, Emit_relocs_strategy>(
   symtab,
   layout,
   object,
   data_shndx,
   prelocs,
   reloc_count,
   output_section,
   needs_special_offset_handling,
   local_symbol_count,
   plocal_syms,
   rr);
}

// Relocate a section during a relocatable link.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::relocate_relocs(
   const Relocate_info<size, big_endian>* relinfo,
   unsigned int sh_type,
   const unsigned char* prelocs,
   size_t reloc_count,
   Output_section* output_section,
   typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
   unsigned char* view,
   typename elfcpp::Elf_types<size>::Elf_Addr view_address,
   section_size_type view_size,
   unsigned char* reloc_view,
   section_size_type reloc_view_size)
{
 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, big_endian>
     Classify_reloc;

 gold_assert(sh_type == elfcpp::SHT_RELA);

 if (offset_in_output_section == this->invalid_address)
   {
     const Output_relaxed_input_section *poris
       = output_section->find_relaxed_input_section(relinfo->object,
                                                    relinfo->data_shndx);
     if (poris != NULL)
       {
         Address section_address = poris->address();
         section_size_type section_size = poris->data_size();

         gold_assert(section_address >= view_address
                     && (section_address + section_size
                         <= view_address + view_size));

         off_t offset = section_address - view_address;
         view += offset;
         view_address += offset;
         view_size = section_size;
       }
   }

 gold::relocate_relocs<size, big_endian, Classify_reloc>(
   relinfo,
   prelocs,
   reloc_count,
   output_section,
   offset_in_output_section,
   view,
   view_address,
   view_size,
   reloc_view,
   reloc_view_size);
}


// Return whether this is a 3-insn erratum sequence.

template<int size, bool big_endian>
bool
Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
   typename elfcpp::Swap<32,big_endian>::Valtype insn1,
   typename elfcpp::Swap<32,big_endian>::Valtype insn2,
   typename elfcpp::Swap<32,big_endian>::Valtype insn3)
{
 unsigned rt1, rt2;
 bool load, pair;

 // The 2nd insn is a single register load or store; or register pair
 // store.
 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
     && (!pair || (pair && !load)))
   {
     // The 3rd insn is a load or store instruction from the "Load/store
     // register (unsigned immediate)" encoding class, using Rn as the
     // base address register.
     if (Insn_utilities::aarch64_ldst_uimm(insn3)
         && (Insn_utilities::aarch64_rn(insn3)
             == Insn_utilities::aarch64_rd(insn1)))
       return true;
   }
 return false;
}


// Return whether this is a 835769 sequence.
// (Similarly implemented as in elfnn-aarch64.c.)

template<int size, bool big_endian>
bool
Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
   typename elfcpp::Swap<32,big_endian>::Valtype insn1,
   typename elfcpp::Swap<32,big_endian>::Valtype insn2)
{
 uint32_t rt;
 uint32_t rt2 = 0;
 uint32_t rn;
 uint32_t rm;
 uint32_t ra;
 bool pair;
 bool load;

 if (Insn_utilities::aarch64_mlxl(insn2)
     && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
   {
     /* Any SIMD memory op is independent of the subsequent MLA
        by definition of the erratum.  */
     if (Insn_utilities::aarch64_bit(insn1, 26))
       return true;

     /* If not SIMD, check for integer memory ops and MLA relationship.  */
     rn = Insn_utilities::aarch64_rn(insn2);
     ra = Insn_utilities::aarch64_ra(insn2);
     rm = Insn_utilities::aarch64_rm(insn2);

     /* If this is a load and there's a true(RAW) dependency, we are safe
        and this is not an erratum sequence.  */
     if (load &&
         (rt == rn || rt == rm || rt == ra
          || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
       return false;

     /* We conservatively put out stubs for all other cases (including
        writebacks).  */
     return true;
   }

 return false;
}


// Helper method to create erratum stub for ST_E_843419 and ST_E_835769.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::create_erratum_stub(
   AArch64_relobj<size, big_endian>* relobj,
   unsigned int shndx,
   section_size_type erratum_insn_offset,
   Address erratum_address,
   typename Insn_utilities::Insntype erratum_insn,
   int erratum_type,
   unsigned int e843419_adrp_offset)
{
 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
 The_stub_table* stub_table = relobj->stub_table(shndx);
 gold_assert(stub_table != NULL);
 if (stub_table->find_erratum_stub(relobj,
                                   shndx,
                                   erratum_insn_offset) == NULL)
   {
     const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
     The_erratum_stub* stub;
     if (erratum_type == ST_E_835769)
       stub = new The_erratum_stub(relobj, erratum_type, shndx,
                                   erratum_insn_offset);
     else if (erratum_type == ST_E_843419)
       stub = new E843419_stub<size, big_endian>(
           relobj, shndx, erratum_insn_offset, e843419_adrp_offset);
     else
       gold_unreachable();
     stub->set_erratum_insn(erratum_insn);
     stub->set_erratum_address(erratum_address);
     // For erratum ST_E_843419 and ST_E_835769, the destination address is
     // always the next insn after erratum insn.
     stub->set_destination_address(erratum_address + BPI);
     stub_table->add_erratum_stub(stub);
   }
}


// Scan erratum for section SHNDX range [output_address + span_start,
// output_address + span_end). Note here we do not share the code with
// scan_erratum_843419_span function, because for 843419 we optimize by only
// scanning the last few insns of a page, whereas for 835769, we need to scan
// every insn.

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_erratum_835769_span(
   AArch64_relobj<size, big_endian>*  relobj,
   unsigned int shndx,
   const section_size_type span_start,
   const section_size_type span_end,
   unsigned char* input_view,
   Address output_address)
{
 typedef typename Insn_utilities::Insntype Insntype;

 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;

 // Adjust output_address and view to the start of span.
 output_address += span_start;
 input_view += span_start;

 section_size_type span_length = span_end - span_start;
 section_size_type offset = 0;
 for (offset = 0; offset + BPI < span_length; offset += BPI)
   {
     Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
     Insntype insn1 = ip[0];
     Insntype insn2 = ip[1];
     if (is_erratum_835769_sequence(insn1, insn2))
       {
         Insntype erratum_insn = insn2;
         // "span_start + offset" is the offset for insn1. So for insn2, it is
         // "span_start + offset + BPI".
         section_size_type erratum_insn_offset = span_start + offset + BPI;
         Address erratum_address = output_address + offset + BPI;
         gold_info(_("Erratum 835769 found and fixed at \"%s\", "
                        "section %d, offset 0x%08x."),
                      relobj->name().c_str(), shndx,
                      (unsigned int)(span_start + offset));

         this->create_erratum_stub(relobj, shndx,
                                   erratum_insn_offset, erratum_address,
                                   erratum_insn, ST_E_835769);
         offset += BPI;  // Skip mac insn.
       }
   }
}  // End of "Target_aarch64::scan_erratum_835769_span".


// Scan erratum for section SHNDX range
// [output_address + span_start, output_address + span_end).

template<int size, bool big_endian>
void
Target_aarch64<size, big_endian>::scan_erratum_843419_span(
   AArch64_relobj<size, big_endian>*  relobj,
   unsigned int shndx,
   const section_size_type span_start,
   const section_size_type span_end,
   unsigned char* input_view,
   Address output_address)
{
 typedef typename Insn_utilities::Insntype Insntype;

 // Adjust output_address and view to the start of span.
 output_address += span_start;
 input_view += span_start;

 if ((output_address & 0x03) != 0)
   return;

 section_size_type offset = 0;
 section_size_type span_length = span_end - span_start;
 // The first instruction must be ending at 0xFF8 or 0xFFC.
 unsigned int page_offset = output_address & 0xFFF;
 // Make sure starting position, that is "output_address+offset",
 // starts at page position 0xff8 or 0xffc.
 if (page_offset < 0xff8)
   offset = 0xff8 - page_offset;
 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
   {
     Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
     Insntype insn1 = ip[0];
     if (Insn_utilities::is_adrp(insn1))
       {
         Insntype insn2 = ip[1];
         Insntype insn3 = ip[2];
         Insntype erratum_insn;
         unsigned insn_offset;
         bool do_report = false;
         if (is_erratum_843419_sequence(insn1, insn2, insn3))
           {
             do_report = true;
             erratum_insn = insn3;
             insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
           }
         else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
           {
             // Optionally we can have an insn between ins2 and ins3
             Insntype insn_opt = ip[2];
             // And insn_opt must not be a branch.
             if (!Insn_utilities::aarch64_b(insn_opt)
                 && !Insn_utilities::aarch64_bl(insn_opt)
                 && !Insn_utilities::aarch64_blr(insn_opt)
                 && !Insn_utilities::aarch64_br(insn_opt))
               {
                 // And insn_opt must not write to dest reg in insn1. However
                 // we do a conservative scan, which means we may fix/report
                 // more than necessary, but it doesn't hurt.

                 Insntype insn4 = ip[3];
                 if (is_erratum_843419_sequence(insn1, insn2, insn4))
                   {
                     do_report = true;
                     erratum_insn = insn4;
                     insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
                   }
               }
           }
         if (do_report)
           {
             unsigned int erratum_insn_offset =
               span_start + offset + insn_offset;
             Address erratum_address =
               output_address + offset + insn_offset;
             create_erratum_stub(relobj, shndx,
                                 erratum_insn_offset, erratum_address,
                                 erratum_insn, ST_E_843419,
                                 span_start + offset);
           }
       }

     // Advance to next candidate instruction. We only consider instruction
     // sequences starting at a page offset of 0xff8 or 0xffc.
     page_offset = (output_address + offset) & 0xfff;
     if (page_offset == 0xff8)
       offset += 4;
     else  // (page_offset == 0xffc), we move to next page's 0xff8.
       offset += 0xffc;
   }
}  // End of "Target_aarch64::scan_erratum_843419_span".


// The selector for aarch64 object files.

template<int size, bool big_endian>
class Target_selector_aarch64 : public Target_selector
{
public:
 Target_selector_aarch64();

 virtual Target*
 do_instantiate_target()
 { return new Target_aarch64<size, big_endian>(); }
};

template<>
Target_selector_aarch64<32, true>::Target_selector_aarch64()
 : Target_selector(elfcpp::EM_AARCH64, 32, true,
                   "elf32-bigaarch64", "aarch64_elf32_be_vec")
{ }

template<>
Target_selector_aarch64<32, false>::Target_selector_aarch64()
 : Target_selector(elfcpp::EM_AARCH64, 32, false,
                   "elf32-littleaarch64", "aarch64_elf32_le_vec")
{ }

template<>
Target_selector_aarch64<64, true>::Target_selector_aarch64()
 : Target_selector(elfcpp::EM_AARCH64, 64, true,
                   "elf64-bigaarch64", "aarch64_elf64_be_vec")
{ }

template<>
Target_selector_aarch64<64, false>::Target_selector_aarch64()
 : Target_selector(elfcpp::EM_AARCH64, 64, false,
                   "elf64-littleaarch64", "aarch64_elf64_le_vec")
{ }

Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
Target_selector_aarch64<32, false> target_selector_aarch64elf32;
Target_selector_aarch64<64, true> target_selector_aarch64elfb;
Target_selector_aarch64<64, false> target_selector_aarch64elf;

} // End anonymous namespace.