/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/


#include "pool.h"
#include "threading.h"
#include "util.h"
#include "timefn.h"
#include <stddef.h>
#include <stdio.h>

#define ASSERT_TRUE(p)                                                       \
 do {                                                                       \
   if (!(p)) {                                                              \
     return 1;                                                              \
   }                                                                        \
 } while (0)
#define ASSERT_FALSE(p) ASSERT_TRUE(!(p))
#define ASSERT_EQ(lhs, rhs) ASSERT_TRUE((lhs) == (rhs))

struct data {
 ZSTD_pthread_mutex_t mutex;
 unsigned data[16];
 size_t i;
};

static void fn(void *opaque)
{
 struct data *data = (struct data *)opaque;
 ZSTD_pthread_mutex_lock(&data->mutex);
 data->data[data->i] = (unsigned)(data->i);
 ++data->i;
 ZSTD_pthread_mutex_unlock(&data->mutex);
}

static int testOrder(size_t numThreads, size_t queueSize)
{
 struct data data;
 POOL_ctx* const ctx = POOL_create(numThreads, queueSize);
 ASSERT_TRUE(ctx);
 data.i = 0;
 ASSERT_FALSE(ZSTD_pthread_mutex_init(&data.mutex, NULL));
 { size_t i;
   for (i = 0; i < 16; ++i) {
     POOL_add(ctx, &fn, &data);
   }
 }
 POOL_free(ctx);
 ASSERT_EQ(16, data.i);
 { size_t i;
   for (i = 0; i < data.i; ++i) {
     ASSERT_EQ(i, data.data[i]);
   }
 }
 ZSTD_pthread_mutex_destroy(&data.mutex);
 return 0;
}


/* --- test deadlocks --- */

static void waitFn(void *opaque) {
 (void)opaque;
 UTIL_sleepMilli(1);
}

/* Tests for deadlock */
static int testWait(size_t numThreads, size_t queueSize) {
 struct data data;
 POOL_ctx* const ctx = POOL_create(numThreads, queueSize);
 ASSERT_TRUE(ctx);
 { size_t i;
   for (i = 0; i < 16; ++i) {
       POOL_add(ctx, &waitFn, &data);
   }
 }
 POOL_free(ctx);
 return 0;
}


/* --- test POOL_resize() --- */

typedef struct {
   ZSTD_pthread_mutex_t mut;
   int countdown;
   int val;
   int max;
   ZSTD_pthread_cond_t cond;
} poolTest_t;

static void waitLongFn(void *opaque) {
 poolTest_t* const test = (poolTest_t*) opaque;
 ZSTD_pthread_mutex_lock(&test->mut);
 test->val++;
 if (test->val > test->max)
     test->max = test->val;
 ZSTD_pthread_mutex_unlock(&test->mut);

 UTIL_sleepMilli(10);

 ZSTD_pthread_mutex_lock(&test->mut);
 test->val--;
 test->countdown--;
 if (test->countdown == 0)
     ZSTD_pthread_cond_signal(&test->cond);
 ZSTD_pthread_mutex_unlock(&test->mut);
}

static int testThreadReduction_internal(POOL_ctx* ctx, poolTest_t test)
{
   int const nbWaits = 16;

   test.countdown = nbWaits;
   test.val = 0;
   test.max = 0;

   {   int i;
       for (i=0; i<nbWaits; i++)
           POOL_add(ctx, &waitLongFn, &test);
   }
   ZSTD_pthread_mutex_lock(&test.mut);
   while (test.countdown > 0)
       ZSTD_pthread_cond_wait(&test.cond, &test.mut);
   ASSERT_EQ(test.val, 0);
   ASSERT_EQ(test.max, 4);
   ZSTD_pthread_mutex_unlock(&test.mut);

   ASSERT_EQ( POOL_resize(ctx, 2/*nbThreads*/) , 0 );
   test.countdown = nbWaits;
   test.val = 0;
   test.max = 0;
   {   int i;
       for (i=0; i<nbWaits; i++)
           POOL_add(ctx, &waitLongFn, &test);
   }
   ZSTD_pthread_mutex_lock(&test.mut);
   while (test.countdown > 0)
       ZSTD_pthread_cond_wait(&test.cond, &test.mut);
   ASSERT_EQ(test.val, 0);
   ASSERT_EQ(test.max, 2);
   ZSTD_pthread_mutex_unlock(&test.mut);

   return 0;
}

static int testThreadReduction(void) {
   int result;
   poolTest_t test;
   POOL_ctx* const ctx = POOL_create(4 /*nbThreads*/, 2 /*queueSize*/);

   ASSERT_TRUE(ctx);

   memset(&test, 0, sizeof(test));
   ASSERT_FALSE( ZSTD_pthread_mutex_init(&test.mut, NULL) );
   ASSERT_FALSE( ZSTD_pthread_cond_init(&test.cond, NULL) );

   result = testThreadReduction_internal(ctx, test);

   ZSTD_pthread_mutex_destroy(&test.mut);
   ZSTD_pthread_cond_destroy(&test.cond);
   POOL_free(ctx);

   return result;
}


/* --- test abrupt ending --- */

typedef struct {
   ZSTD_pthread_mutex_t mut;
   int val;
} abruptEndCanary_t;

static void waitIncFn(void *opaque) {
 abruptEndCanary_t* test = (abruptEndCanary_t*) opaque;
 UTIL_sleepMilli(10);
 ZSTD_pthread_mutex_lock(&test->mut);
 test->val = test->val + 1;
 ZSTD_pthread_mutex_unlock(&test->mut);
}

static int testAbruptEnding_internal(abruptEndCanary_t test)
{
   int const nbWaits = 16;

   POOL_ctx* const ctx = POOL_create(3 /*numThreads*/, nbWaits /*queueSize*/);
   ASSERT_TRUE(ctx);
   test.val = 0;

   {   int i;
       for (i=0; i<nbWaits; i++)
           POOL_add(ctx, &waitIncFn, &test);  /* all jobs pushed into queue */
   }
   ASSERT_EQ( POOL_resize(ctx, 1 /*numThreads*/) , 0 );   /* downsize numThreads, to try to break end condition */

   POOL_free(ctx);  /* must finish all jobs in queue before giving back control */
   ASSERT_EQ(test.val, nbWaits);
   return 0;
}

static int testAbruptEnding(void) {
   int result;
   abruptEndCanary_t test;

   memset(&test, 0, sizeof(test));
   ASSERT_FALSE( ZSTD_pthread_mutex_init(&test.mut, NULL) );

   result = testAbruptEnding_internal(test);

   ZSTD_pthread_mutex_destroy(&test.mut);
   return result;
}



/* --- test launcher --- */

int main(int argc, const char **argv) {
 size_t numThreads;
 (void)argc;
 (void)argv;

 if (POOL_create(0, 1)) {   /* should not be possible */
   printf("FAIL: should not create POOL with 0 threads\n");
   return 1;
 }

 for (numThreads = 1; numThreads <= 4; ++numThreads) {
   size_t queueSize;
   for (queueSize = 0; queueSize <= 2; ++queueSize) {
     printf("queueSize==%u, numThreads=%u \n",
           (unsigned)queueSize, (unsigned)numThreads);
     if (testOrder(numThreads, queueSize)) {
       printf("FAIL: testOrder\n");
       return 1;
     }
     printf("SUCCESS: testOrder\n");
     if (testWait(numThreads, queueSize)) {
       printf("FAIL: testWait\n");
       return 1;
     }
     printf("SUCCESS: testWait\n");
   }
 }

 if (testThreadReduction()) {
     printf("FAIL: thread reduction not effective \n");
     return 1;
 } else {
     printf("SUCCESS: thread reduction effective \n");
 }

 if (testAbruptEnding()) {
     printf("FAIL: jobs in queue not completed on early end \n");
     return 1;
 } else {
     printf("SUCCESS: all jobs in queue completed on early end \n");
 }

 printf("PASS: all POOL tests\n");

 return 0;
}