/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/


/*_************************************
*  Includes
**************************************/
#define ZSTD_DISABLE_DEPRECATE_WARNINGS /* No deprecation warnings, we still bench some deprecated functions */
#include "util.h"        /* Compiler options, UTIL_GetFileSize */
#include <stdlib.h>      /* malloc */
#include <stdio.h>       /* fprintf, fopen, ftello64 */
#include <assert.h>

#include "timefn.h"      /* UTIL_clockSpanNano, UTIL_getTime */
#include "mem.h"         /* U32 */
#ifndef ZSTD_DLL_IMPORT
   #include "zstd_internal.h"   /* ZSTD_decodeSeqHeaders, ZSTD_blockHeaderSize, ZSTD_getcBlockSize, blockType_e, KB, MB */
   #include "decompress/zstd_decompress_internal.h"   /* ZSTD_DCtx struct */
#else
   #define KB *(1 <<10)
   #define MB *(1 <<20)
   #define GB *(1U<<30)
   typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#endif
#define ZSTD_STATIC_LINKING_ONLY  /* ZSTD_compressBegin, ZSTD_compressContinue, etc. */
#include "zstd.h"        /* ZSTD_versionString */
#include "util.h"        /* time functions */
#include "datagen.h"
#include "benchfn.h"     /* CustomBench */
#include "benchzstd.h"   /* MB_UNIT */


/*_************************************
*  Constants
**************************************/
#define PROGRAM_DESCRIPTION "Zstandard speed analyzer"
#define AUTHOR "Yann Collet"
#define WELCOME_MESSAGE "*** %s %s %i-bits, by %s (%s) ***\n", PROGRAM_DESCRIPTION, ZSTD_versionString(), (int)(sizeof(void*)*8), AUTHOR, __DATE__

#define NBLOOPS    6
#define TIMELOOP_S 2

#define MAX_MEM    (1984 MB)

#define DEFAULT_CLEVEL 1

#define COMPRESSIBILITY_DEFAULT 0.50
static const size_t kSampleSizeDefault = 10000000;

#define TIMELOOP_NANOSEC      (1*1000000000ULL) /* 1 second */


/*_************************************
*  Macros
**************************************/
#define DISPLAY(...)  fprintf(stderr, __VA_ARGS__)

#define CONTROL(c)  { if (!(c)) { abort(); } }   /* like assert(), but cannot be disabled */

/*_************************************
*  Benchmark Parameters
**************************************/
static unsigned g_nbIterations = NBLOOPS;


/*_*******************************************************
*  Private functions
*********************************************************/
static size_t BMK_findMaxMem(U64 requiredMem)
{
   size_t const step = 64 MB;
   void* testmem = NULL;

   requiredMem = (((requiredMem >> 26) + 1) << 26);
   if (requiredMem > MAX_MEM) requiredMem = MAX_MEM;

   requiredMem += step;
   do {
       testmem = malloc ((size_t)requiredMem);
       requiredMem -= step;
   } while (!testmem);

   free (testmem);
   return (size_t) requiredMem;
}


/*_*******************************************************
*  Benchmark wrappers
*********************************************************/

static ZSTD_CCtx* g_zcc = NULL;

static size_t
local_ZSTD_compress(const void* src, size_t srcSize,
                   void* dst, size_t dstSize,
                   void* payload)
{
   ZSTD_parameters p;
   ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
   p.fParams = f;
   p.cParams = *(ZSTD_compressionParameters*)payload;
   return ZSTD_compress_advanced (g_zcc, dst, dstSize, src, srcSize, NULL ,0, p);
}

static size_t
local_ZSTD_compress_freshCCtx(const void* src, size_t srcSize,
                   void* dst, size_t dstSize,
                   void* payload)
{
   ZSTD_parameters p;
   ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
   p.fParams = f;
   p.cParams = *(ZSTD_compressionParameters*)payload;
   if (g_zcc != NULL) ZSTD_freeCCtx(g_zcc);
   g_zcc = ZSTD_createCCtx();
   assert(g_zcc != NULL);
   {   size_t const r = ZSTD_compress_advanced (g_zcc, dst, dstSize, src, srcSize, NULL ,0, p);
       ZSTD_freeCCtx(g_zcc);
       g_zcc = NULL;
       return r;
   }
}

static size_t g_cSize = 0;
static size_t local_ZSTD_decompress(const void* src, size_t srcSize,
                                   void* dst, size_t dstSize,
                                   void* buff2)
{
   (void)src; (void)srcSize;
   return ZSTD_decompress(dst, dstSize, buff2, g_cSize);
}

static ZSTD_DCtx* g_zdc = NULL; /* will be initialized within benchMem */
static size_t local_ZSTD_decompressDCtx(const void* src, size_t srcSize,
                                   void* dst, size_t dstSize,
                                   void* buff2)
{
   (void)src; (void)srcSize;
   return ZSTD_decompressDCtx(g_zdc, dst, dstSize, buff2, g_cSize);
}

#ifndef ZSTD_DLL_IMPORT

extern size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
                         const void* src, size_t srcSize,
                         void* dst, size_t dstCapacity);
static size_t local_ZSTD_decodeLiteralsBlock(const void* src, size_t srcSize, void* dst, size_t dstSize, void* buff2)
{
   (void)src; (void)srcSize; (void)dst; (void)dstSize;
   return ZSTD_decodeLiteralsBlock_wrapper(g_zdc, buff2, g_cSize, dst, dstSize);
}

static size_t local_ZSTD_decodeSeqHeaders(const void* src, size_t srcSize, void* dst, size_t dstSize, void* buff2)
{
   int nbSeq;
   (void)src; (void)srcSize; (void)dst; (void)dstSize;
   return ZSTD_decodeSeqHeaders(g_zdc, &nbSeq, buff2, g_cSize);
}

FORCE_NOINLINE size_t ZSTD_decodeLiteralsHeader(ZSTD_DCtx* dctx, void const* src, size_t srcSize)
{
   RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
   {
       BYTE const* istart = (BYTE const*)src;
       symbolEncodingType_e const litEncType = (symbolEncodingType_e)(istart[0] & 3);
       if (litEncType == set_compressed) {
           RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for case 3");
           {
               size_t lhSize, litSize, litCSize;
               U32 const lhlCode = (istart[0] >> 2) & 3;
               U32 const lhc = MEM_readLE32(istart);
               int const flags = ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0;
               switch(lhlCode)
               {
               case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
                   /* 2 - 2 - 10 - 10 */
                   lhSize = 3;
                   litSize  = (lhc >> 4) & 0x3FF;
                   litCSize = (lhc >> 14) & 0x3FF;
                   break;
               case 2:
                   /* 2 - 2 - 14 - 14 */
                   lhSize = 4;
                   litSize  = (lhc >> 4) & 0x3FFF;
                   litCSize = lhc >> 18;
                   break;
               case 3:
                   /* 2 - 2 - 18 - 18 */
                   lhSize = 5;
                   litSize  = (lhc >> 4) & 0x3FFFF;
                   litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
                   break;
               }
               RETURN_ERROR_IF(litSize > ZSTD_BLOCKSIZE_MAX, corruption_detected, "");
               RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
#ifndef HUF_FORCE_DECOMPRESS_X2
               return HUF_readDTableX1_wksp(
                       dctx->entropy.hufTable,
                       istart+lhSize, litCSize,
                       dctx->workspace, sizeof(dctx->workspace),
                       flags);
#else
               return HUF_readDTableX2_wksp(
                       dctx->entropy.hufTable,
                       istart+lhSize, litCSize,
                       dctx->workspace, sizeof(dctx->workspace), flags);
#endif
           }
       }
   }
   return 0;
}

static size_t local_ZSTD_decodeLiteralsHeader(const void* src, size_t srcSize, void* dst, size_t dstSize, void* buff2)
{
   (void)dst, (void)dstSize, (void)src, (void)srcSize;
   return ZSTD_decodeLiteralsHeader(g_zdc, buff2, g_cSize);
}
#endif

static ZSTD_CStream* g_cstream= NULL;
static size_t
local_ZSTD_compressStream(const void* src, size_t srcSize,
                         void* dst, size_t dstCapacity,
                         void* payload)
{
   ZSTD_outBuffer buffOut;
   ZSTD_inBuffer buffIn;
   ZSTD_parameters p;
   ZSTD_frameParameters f = {1 /* contentSizeHeader*/, 0, 0};
   p.fParams = f;
   p.cParams = *(ZSTD_compressionParameters*)payload;
   ZSTD_initCStream_advanced(g_cstream, NULL, 0, p, ZSTD_CONTENTSIZE_UNKNOWN);
   buffOut.dst = dst;
   buffOut.size = dstCapacity;
   buffOut.pos = 0;
   buffIn.src = src;
   buffIn.size = srcSize;
   buffIn.pos = 0;
   ZSTD_compressStream(g_cstream, &buffOut, &buffIn);
   ZSTD_endStream(g_cstream, &buffOut);
   return buffOut.pos;
}

static size_t
local_ZSTD_compressStream_freshCCtx(const void* src, size_t srcSize,
                         void* dst, size_t dstCapacity,
                         void* payload)
{
   if (g_cstream != NULL) ZSTD_freeCCtx(g_cstream);
   g_cstream = ZSTD_createCCtx();
   assert(g_cstream != NULL);

   {   size_t const r = local_ZSTD_compressStream(src, srcSize, dst, dstCapacity, payload);
       ZSTD_freeCCtx(g_cstream);
       g_cstream = NULL;
       return r;
   }
}

static size_t
local_ZSTD_compress2(const void* src, size_t srcSize,
                          void* dst, size_t dstCapacity,
                          void* payload)
{
   (void)payload;
   return ZSTD_compress2(g_cstream, dst, dstCapacity, src, srcSize);
}

static size_t
local_ZSTD_compressStream2_end(const void* src, size_t srcSize,
   void* dst, size_t dstCapacity,
   void* payload)
{
   ZSTD_outBuffer buffOut;
   ZSTD_inBuffer buffIn;
   (void)payload;
   buffOut.dst = dst;
   buffOut.size = dstCapacity;
   buffOut.pos = 0;
   buffIn.src = src;
   buffIn.size = srcSize;
   buffIn.pos = 0;
   ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end);
   return buffOut.pos;
}

static size_t
local_ZSTD_compressStream2_continue(const void* src, size_t srcSize,
                                void* dst, size_t dstCapacity,
                                void* payload)
{
   ZSTD_outBuffer buffOut;
   ZSTD_inBuffer buffIn;
   (void)payload;
   buffOut.dst = dst;
   buffOut.size = dstCapacity;
   buffOut.pos = 0;
   buffIn.src = src;
   buffIn.size = srcSize;
   buffIn.pos = 0;
   ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_continue);
   ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end);
   return buffOut.pos;
}

static size_t
local_ZSTD_compress_generic_T2_end(const void* src, size_t srcSize,
                                  void* dst, size_t dstCapacity,
                                  void* payload)
{
   (void)payload;
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_nbWorkers, 2);
   return ZSTD_compress2(g_cstream, dst, dstCapacity, src, srcSize);
}

static size_t
local_ZSTD_compress_generic_T2_continue(const void* src, size_t srcSize,
                                       void* dst, size_t dstCapacity,
                                       void* payload)
{
   ZSTD_outBuffer buffOut;
   ZSTD_inBuffer buffIn;
   (void)payload;
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_nbWorkers, 2);
   buffOut.dst = dst;
   buffOut.size = dstCapacity;
   buffOut.pos = 0;
   buffIn.src = src;
   buffIn.size = srcSize;
   buffIn.pos = 0;
   ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_continue);
   while(ZSTD_compressStream2(g_cstream, &buffOut, &buffIn, ZSTD_e_end)) {}
   return buffOut.pos;
}

static ZSTD_DStream* g_dstream= NULL;
static size_t
local_ZSTD_decompressStream(const void* src, size_t srcSize,
                           void* dst, size_t dstCapacity,
                           void* buff2)
{
   ZSTD_outBuffer buffOut;
   ZSTD_inBuffer buffIn;
   (void)src; (void)srcSize;
   ZSTD_initDStream(g_dstream);
   buffOut.dst = dst;
   buffOut.size = dstCapacity;
   buffOut.pos = 0;
   buffIn.src = buff2;
   buffIn.size = g_cSize;
   buffIn.pos = 0;
   ZSTD_decompressStream(g_dstream, &buffOut, &buffIn);
   return buffOut.pos;
}

#ifndef ZSTD_DLL_IMPORT
static size_t local_ZSTD_compressContinue(const void* src, size_t srcSize,
                                         void* dst, size_t dstCapacity,
                                         void* payload)
{
   ZSTD_parameters p;
   ZSTD_frameParameters f = { 1 /* contentSizeHeader*/, 0, 0 };
   p.fParams = f;
   p.cParams = *(ZSTD_compressionParameters*)payload;
   ZSTD_compressBegin_advanced(g_zcc, NULL, 0, p, srcSize);
   return ZSTD_compressEnd(g_zcc, dst, dstCapacity, src, srcSize);
}

#define FIRST_BLOCK_SIZE 8
static size_t
local_ZSTD_compressContinue_extDict(const void* src, size_t srcSize,
                                   void* dst, size_t dstCapacity,
                                   void* payload)
{
   BYTE firstBlockBuf[FIRST_BLOCK_SIZE];

   ZSTD_parameters p;
   ZSTD_frameParameters const f = { 1, 0, 0 };
   p.fParams = f;
   p.cParams = *(ZSTD_compressionParameters*)payload;
   ZSTD_compressBegin_advanced(g_zcc, NULL, 0, p, srcSize);
   memcpy(firstBlockBuf, src, FIRST_BLOCK_SIZE);

   {   size_t const compressResult = ZSTD_compressContinue(g_zcc,
                                           dst, dstCapacity,
                                           firstBlockBuf, FIRST_BLOCK_SIZE);
       if (ZSTD_isError(compressResult)) {
           DISPLAY("local_ZSTD_compressContinue_extDict error : %s\n",
                   ZSTD_getErrorName(compressResult));
           return compressResult;
       }
       dst = (BYTE*)dst + compressResult;
       dstCapacity -= compressResult;
   }
   return ZSTD_compressEnd(g_zcc, dst, dstCapacity,
                           (const BYTE*)src + FIRST_BLOCK_SIZE,
                           srcSize - FIRST_BLOCK_SIZE);
}

static size_t local_ZSTD_decompressContinue(const void* src, size_t srcSize,
                                           void* dst, size_t dstCapacity,
                                           void* buff2)
{
   size_t regeneratedSize = 0;
   const BYTE* ip = (const BYTE*)buff2;
   const BYTE* const iend = ip + g_cSize;
   BYTE* op = (BYTE*)dst;
   size_t remainingCapacity = dstCapacity;

   (void)src; (void)srcSize;  /* unused */
   ZSTD_decompressBegin(g_zdc);
   while (ip < iend) {
       size_t const iSize = ZSTD_nextSrcSizeToDecompress(g_zdc);
       size_t const decodedSize = ZSTD_decompressContinue(g_zdc, op, remainingCapacity, ip, iSize);
       ip += iSize;
       regeneratedSize += decodedSize;
       op += decodedSize;
       remainingCapacity -= decodedSize;
   }

   return regeneratedSize;
}
#endif


/*_*******************************************************
*  Bench functions
*********************************************************/
static int benchMem(unsigned benchNb,
                   const void* src, size_t srcSize,
                   int cLevel, ZSTD_compressionParameters cparams)
{
   size_t dstBuffSize = ZSTD_compressBound(srcSize);
   BYTE*  dstBuff;
   void*  dstBuff2;
   void*  payload;
   const char* benchName;
   BMK_benchFn_t benchFunction;
   int errorcode = 0;

   /* Selection */
   switch(benchNb)
   {
   case 1:
       benchFunction = local_ZSTD_compress; benchName = "compress";
       break;
   case 2:
       benchFunction = local_ZSTD_decompress; benchName = "decompress";
       break;
   case 3:
       benchFunction = local_ZSTD_compress_freshCCtx; benchName = "compress_freshCCtx";
       break;
   case 4:
       benchFunction = local_ZSTD_decompressDCtx; benchName = "decompressDCtx";
       break;
#ifndef ZSTD_DLL_IMPORT
   case 11:
       benchFunction = local_ZSTD_compressContinue; benchName = "compressContinue";
       break;
   case 12:
       benchFunction = local_ZSTD_compressContinue_extDict; benchName = "compressContinue_extDict";
       break;
   case 13:
       benchFunction = local_ZSTD_decompressContinue; benchName = "decompressContinue";
       break;
   case 30:
       benchFunction = local_ZSTD_decodeLiteralsHeader; benchName = "decodeLiteralsHeader";
       break;
   case 31:
       benchFunction = local_ZSTD_decodeLiteralsBlock; benchName = "decodeLiteralsBlock";
       break;
   case 32:
       benchFunction = local_ZSTD_decodeSeqHeaders; benchName = "decodeSeqHeaders";
       break;
#endif
   case 41:
       benchFunction = local_ZSTD_compressStream; benchName = "compressStream";
       break;
   case 42:
       benchFunction = local_ZSTD_decompressStream; benchName = "decompressStream";
       break;
   case 43:
       benchFunction = local_ZSTD_compressStream_freshCCtx; benchName = "compressStream_freshCCtx";
       break;
   case 50:
       benchFunction = local_ZSTD_compress2; benchName = "compress2";
       break;
   case 51:
       benchFunction = local_ZSTD_compressStream2_end; benchName = "compressStream2, end";
       break;
   case 52:
       benchFunction = local_ZSTD_compressStream2_end; benchName = "compressStream2, end & short";
       break;
   case 53:
       benchFunction = local_ZSTD_compressStream2_continue; benchName = "compressStream2, continue";
       break;
   case 61:
       benchFunction = local_ZSTD_compress_generic_T2_continue; benchName = "compress_generic, -T2, continue";
       break;
   case 62:
       benchFunction = local_ZSTD_compress_generic_T2_end; benchName = "compress_generic, -T2, end";
       break;
   default :
       return 0;
   }

   /* Allocation */
   dstBuff = (BYTE*)malloc(dstBuffSize);
   dstBuff2 = malloc(dstBuffSize);
   if ((!dstBuff) || (!dstBuff2)) {
       DISPLAY("\nError: not enough memory!\n");
       free(dstBuff); free(dstBuff2);
       return 12;
   }
   payload = dstBuff2;
   if (g_zcc==NULL) g_zcc = ZSTD_createCCtx();
   if (g_zdc==NULL) g_zdc = ZSTD_createDCtx();
   if (g_cstream==NULL) g_cstream = ZSTD_createCStream();
   if (g_dstream==NULL) g_dstream = ZSTD_createDStream();

   /* DISPLAY("params: cLevel %d, wlog %d hlog %d clog %d slog %d mml %d tlen %d strat %d \n",
         cLevel, cparams->windowLog, cparams->hashLog, cparams->chainLog, cparams->searchLog,
         cparams->minMatch, cparams->targetLength, cparams->strategy); */

   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_compressionLevel, cLevel);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_windowLog, (int)cparams.windowLog);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_hashLog, (int)cparams.hashLog);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_chainLog, (int)cparams.chainLog);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_searchLog, (int)cparams.searchLog);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_minMatch, (int)cparams.minMatch);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_targetLength, (int)cparams.targetLength);
   ZSTD_CCtx_setParameter(g_zcc, ZSTD_c_strategy, cparams.strategy);

   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_compressionLevel, cLevel);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_windowLog, (int)cparams.windowLog);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_hashLog, (int)cparams.hashLog);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_chainLog, (int)cparams.chainLog);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_searchLog, (int)cparams.searchLog);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_minMatch, (int)cparams.minMatch);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_targetLength, (int)cparams.targetLength);
   ZSTD_CCtx_setParameter(g_cstream, ZSTD_c_strategy, cparams.strategy);

   /* Preparation */
   switch(benchNb)
   {
   case 1:
       payload = &cparams;
       break;
   case 2:
       g_cSize = ZSTD_compress(dstBuff2, dstBuffSize, src, srcSize, cLevel);
       break;
   case 3:
       payload = &cparams;
       break;
   case 4:
       g_cSize = ZSTD_compress(dstBuff2, dstBuffSize, src, srcSize, cLevel);
       break;
#ifndef ZSTD_DLL_IMPORT
   case 11:
       payload = &cparams;
       break;
   case 12:
       payload = &cparams;
       break;
   case 13 :
       g_cSize = ZSTD_compress(dstBuff2, dstBuffSize, src, srcSize, cLevel);
       break;
   case 30:  /* ZSTD_decodeLiteralsHeader */
       /* fall-through */
   case 31:  /* ZSTD_decodeLiteralsBlock : starts literals block in dstBuff2 */
       {   size_t frameHeaderSize;
           g_cSize = ZSTD_compress(dstBuff, dstBuffSize, src, srcSize, cLevel);
           frameHeaderSize = ZSTD_frameHeaderSize(dstBuff, ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
           CONTROL(!ZSTD_isError(frameHeaderSize));
           /* check block is compressible, hence contains a literals section */
           {   blockProperties_t bp;
               ZSTD_getcBlockSize(dstBuff+frameHeaderSize, dstBuffSize, &bp);  /* Get 1st block type */
               if (bp.blockType != bt_compressed) {
                   DISPLAY("ZSTD_decodeLiteralsBlock : impossible to test on this sample (not compressible)\n");
                   goto _cleanOut;
           }   }
           {   size_t const skippedSize = frameHeaderSize + ZSTD_blockHeaderSize;
               memcpy(dstBuff2, dstBuff+skippedSize, g_cSize-skippedSize);
           }
           srcSize = srcSize > 128 KB ? 128 KB : srcSize;    /* speed relative to block */
           ZSTD_decompressBegin(g_zdc);
           break;
       }
   case 32:   /* ZSTD_decodeSeqHeaders */
       {   blockProperties_t bp;
           const BYTE* ip = dstBuff;
           const BYTE* iend;
           {   size_t const cSize = ZSTD_compress(dstBuff, dstBuffSize, src, srcSize, cLevel);
               CONTROL(cSize > ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
           }
           /* Skip frame Header */
           {   size_t const frameHeaderSize = ZSTD_frameHeaderSize(dstBuff, ZSTD_FRAMEHEADERSIZE_PREFIX(ZSTD_f_zstd1));
               CONTROL(!ZSTD_isError(frameHeaderSize));
               ip += frameHeaderSize;
           }
           /* Find end of block */
           {   size_t const cBlockSize = ZSTD_getcBlockSize(ip, dstBuffSize, &bp);   /* Get 1st block type */
               if (bp.blockType != bt_compressed) {
                   DISPLAY("ZSTD_decodeSeqHeaders : impossible to test on this sample (not compressible)\n");
                   goto _cleanOut;
               }
               iend = ip + ZSTD_blockHeaderSize + cBlockSize;   /* End of first block */
           }
           ip += ZSTD_blockHeaderSize;    /* skip block header */
           ZSTD_decompressBegin(g_zdc);
           CONTROL(iend > ip);
           ip += ZSTD_decodeLiteralsBlock_wrapper(g_zdc, ip, (size_t)(iend-ip), dstBuff, dstBuffSize);   /* skip literal segment */
           g_cSize = (size_t)(iend-ip);
           memcpy(dstBuff2, ip, g_cSize);   /* copy rest of block (it starts by SeqHeader) */
           srcSize = srcSize > 128 KB ? 128 KB : srcSize;   /* speed relative to block */
           break;
       }
#else
   case 31:
       goto _cleanOut;
#endif
   case 41 :
       payload = &cparams;
       break;
   case 42 :
       g_cSize = ZSTD_compress(payload, dstBuffSize, src, srcSize, cLevel);
       break;
   case 43 :
       payload = &cparams;
       break;

   case 52 :
       /* compressStream2, short dstCapacity */
       dstBuffSize--;
       break;

   /* test functions */
   /* convention: test functions have ID > 100 */

   default : ;
   }

    /* warming up dstBuff */
   { size_t i; for (i=0; i<dstBuffSize; i++) dstBuff[i]=(BYTE)i; }

   /* benchmark loop */
   {   BMK_timedFnState_t* const tfs = BMK_createTimedFnState(g_nbIterations * 1000, 1000);
       void* const avoidStrictAliasingPtr = &dstBuff;
       BMK_benchParams_t bp;
       BMK_runTime_t bestResult;
       bestResult.sumOfReturn = 0;
       bestResult.nanoSecPerRun = (double)TIMELOOP_NANOSEC * 2000000000;  /* hopefully large enough : must be larger than any potential measurement */
       CONTROL(tfs != NULL);

       bp.benchFn = benchFunction;
       bp.benchPayload = payload;
       bp.initFn = NULL;
       bp.initPayload = NULL;
       bp.errorFn = ZSTD_isError;
       bp.blockCount = 1;
       bp.srcBuffers = &src;
       bp.srcSizes = &srcSize;
       bp.dstBuffers = (void* const*) avoidStrictAliasingPtr;  /* circumvent strict aliasing warning on gcc-8,
                                                                * because gcc considers that `void* const *`  and `void**` are 2 different types */
       bp.dstCapacities = &dstBuffSize;
       bp.blockResults = NULL;

       for (;;) {
           BMK_runOutcome_t const bOutcome = BMK_benchTimedFn(tfs, bp);

           if (!BMK_isSuccessful_runOutcome(bOutcome)) {
               DISPLAY("ERROR benchmarking function ! ! \n");
               errorcode = 1;
               goto _cleanOut;
           }

           {   BMK_runTime_t const newResult = BMK_extract_runTime(bOutcome);
               if (newResult.nanoSecPerRun < bestResult.nanoSecPerRun )
                   bestResult.nanoSecPerRun = newResult.nanoSecPerRun;
               DISPLAY("\r%2u#%-29.29s:%8.1f MB/s  (%8u) ",
                       benchNb, benchName,
                       (double)srcSize * TIMELOOP_NANOSEC / bestResult.nanoSecPerRun / MB_UNIT,
                       (unsigned)newResult.sumOfReturn );
           }

           if ( BMK_isCompleted_TimedFn(tfs) ) break;
       }
       BMK_freeTimedFnState(tfs);
   }
   DISPLAY("\n");

_cleanOut:
   free(dstBuff);
   free(dstBuff2);
   ZSTD_freeCCtx(g_zcc); g_zcc=NULL;
   ZSTD_freeDCtx(g_zdc); g_zdc=NULL;
   ZSTD_freeCStream(g_cstream); g_cstream=NULL;
   ZSTD_freeDStream(g_dstream); g_dstream=NULL;
   return errorcode;
}


static int benchSample(U32 benchNb,
                      size_t benchedSize, double compressibility,
                      int cLevel, ZSTD_compressionParameters cparams)
{
   /* Allocation */
   void* const origBuff = malloc(benchedSize);
   if (!origBuff) { DISPLAY("\nError: not enough memory!\n"); return 12; }

   /* Fill buffer */
   RDG_genBuffer(origBuff, benchedSize, compressibility, 0.0, 0);

   /* bench */
   DISPLAY("\r%70s\r", "");
   DISPLAY(" Sample %u bytes : \n", (unsigned)benchedSize);
   if (benchNb) {
       benchMem(benchNb, origBuff, benchedSize, cLevel, cparams);
   } else {  /* 0 == run all tests */
       for (benchNb=0; benchNb<100; benchNb++) {
           benchMem(benchNb, origBuff, benchedSize, cLevel, cparams);
   }   }

   free(origBuff);
   return 0;
}


static int benchFiles(U32 benchNb,
                     const char** fileNamesTable, const int nbFiles,
                     int cLevel, ZSTD_compressionParameters cparams)
{
   /* Loop for each file */
   int fileIdx;
   for (fileIdx=0; fileIdx<nbFiles; fileIdx++) {
       const char* const inFileName = fileNamesTable[fileIdx];
       FILE* const inFile = fopen( inFileName, "rb" );
       size_t benchedSize;

       /* Check file existence */
       if (inFile==NULL) { DISPLAY( "Pb opening %s\n", inFileName); return 11; }

       /* Memory allocation & restrictions */
       {   U64 const inFileSize = UTIL_getFileSize(inFileName);
           if (inFileSize == UTIL_FILESIZE_UNKNOWN) {
               DISPLAY( "Cannot measure size of %s\n", inFileName);
               fclose(inFile);
               return 11;
           }
           benchedSize = BMK_findMaxMem(inFileSize*3) / 3;
           if ((U64)benchedSize > inFileSize)
               benchedSize = (size_t)inFileSize;
           if ((U64)benchedSize < inFileSize) {
               DISPLAY("Not enough memory for '%s' full size; testing %u MB only... \n",
                       inFileName, (unsigned)(benchedSize>>20));
       }   }

       /* Alloc */
       {   void* const origBuff = malloc(benchedSize);
           if (!origBuff) { DISPLAY("\nError: not enough memory!\n"); fclose(inFile); return 12; }

           /* Fill input buffer */
           DISPLAY("Loading %s...       \r", inFileName);
           {   size_t const readSize = fread(origBuff, 1, benchedSize, inFile);
               fclose(inFile);
               if (readSize != benchedSize) {
                   DISPLAY("\nError: problem reading file '%s' !!    \n", inFileName);
                   free(origBuff);
                   return 13;
           }   }

           /* bench */
           DISPLAY("\r%70s\r", "");   /* blank line */
           DISPLAY(" %s : \n", inFileName);
           if (benchNb) {
               benchMem(benchNb, origBuff, benchedSize, cLevel, cparams);
           } else {
               for (benchNb=0; benchNb<100; benchNb++) {
                   benchMem(benchNb, origBuff, benchedSize, cLevel, cparams);
               }
               benchNb = 0;
           }

           free(origBuff);
   }   }

   return 0;
}



/*_*******************************************************
*  Argument Parsing
*********************************************************/

#define ERROR_OUT(msg) { DISPLAY("%s \n", msg); exit(1); }

static unsigned readU32FromChar(const char** stringPtr)
{
   const char errorMsg[] = "error: numeric value too large";
   unsigned result = 0;
   while ((**stringPtr >='0') && (**stringPtr <='9')) {
       unsigned const max = (((unsigned)(-1)) / 10) - 1;
       if (result > max) ERROR_OUT(errorMsg);
       result *= 10;
       result += (unsigned)(**stringPtr - '0');
       (*stringPtr)++ ;
   }
   if ((**stringPtr=='K') || (**stringPtr=='M')) {
       unsigned const maxK = ((unsigned)(-1)) >> 10;
       if (result > maxK) ERROR_OUT(errorMsg);
       result <<= 10;
       if (**stringPtr=='M') {
           if (result > maxK) ERROR_OUT(errorMsg);
           result <<= 10;
       }
       (*stringPtr)++;  /* skip `K` or `M` */
       if (**stringPtr=='i') (*stringPtr)++;
       if (**stringPtr=='B') (*stringPtr)++;
   }
   return result;
}

static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
   size_t const comSize = strlen(longCommand);
   int const result = !strncmp(*stringPtr, longCommand, comSize);
   if (result) *stringPtr += comSize;
   return result;
}


/*_*******************************************************
*  Command line
*********************************************************/

static int usage(const char* exename)
{
   DISPLAY( "Usage :\n");
   DISPLAY( "      %s [arg] file1 file2 ... fileX\n", exename);
   DISPLAY( "Arguments :\n");
   DISPLAY( " -H/-h  : Help (this text + advanced options)\n");
   return 0;
}

static int usage_advanced(const char* exename)
{
   usage(exename);
   DISPLAY( "\nAdvanced options :\n");
   DISPLAY( " -b#    : test only function # \n");
   DISPLAY( " -l#    : benchmark functions at that compression level (default : %i)\n", DEFAULT_CLEVEL);
   DISPLAY( "--zstd= : custom parameter selection. Format same as zstdcli \n");
   DISPLAY( " -P#    : sample compressibility (default : %.1f%%)\n", COMPRESSIBILITY_DEFAULT * 100);
   DISPLAY( " -B#    : sample size (default : %u)\n", (unsigned)kSampleSizeDefault);
   DISPLAY( " -i#    : iteration loops [1-9](default : %i)\n", NBLOOPS);
   return 0;
}

static int badusage(const char* exename)
{
   DISPLAY("Wrong parameters\n");
   usage(exename);
   return 1;
}

int main(int argc, const char** argv)
{
   int argNb, filenamesStart=0, result;
   const char* const exename = argv[0];
   const char* input_filename = NULL;
   U32 benchNb = 0, main_pause = 0;
   int cLevel = DEFAULT_CLEVEL;
   ZSTD_compressionParameters cparams = ZSTD_getCParams(cLevel, 0, 0);
   size_t sampleSize = kSampleSizeDefault;
   double compressibility = COMPRESSIBILITY_DEFAULT;

   DISPLAY(WELCOME_MESSAGE);
   if (argc<1) return badusage(exename);

   for (argNb=1; argNb<argc; argNb++) {
       const char* argument = argv[argNb];
       CONTROL(argument != NULL);

       if (longCommandWArg(&argument, "--zstd=")) {
           for ( ; ;) {
               if (longCommandWArg(&argument, "windowLog=") || longCommandWArg(&argument, "wlog=")) { cparams.windowLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "chainLog=") || longCommandWArg(&argument, "clog=")) { cparams.chainLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "hashLog=") || longCommandWArg(&argument, "hlog=")) { cparams.hashLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "searchLog=") || longCommandWArg(&argument, "slog=")) { cparams.searchLog = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "minMatch=") || longCommandWArg(&argument, "mml=")) { cparams.minMatch = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "targetLength=") || longCommandWArg(&argument, "tlen=")) { cparams.targetLength = readU32FromChar(&argument); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "strategy=") || longCommandWArg(&argument, "strat=")) { cparams.strategy = (ZSTD_strategy)(readU32FromChar(&argument)); if (argument[0]==',') { argument++; continue; } else break; }
               if (longCommandWArg(&argument, "level=") || longCommandWArg(&argument, "lvl=")) { cLevel = (int)readU32FromChar(&argument); cparams = ZSTD_getCParams(cLevel, 0, 0); if (argument[0]==',') { argument++; continue; } else break; }
               DISPLAY("invalid compression parameter \n");
               return 1;
           }

           /* check end of string */
           if (argument[0] != 0) {
               DISPLAY("invalid --zstd= format \n");
               return 1;
           } else {
               continue;
           }

       } else if (argument[0]=='-') { /* Commands (note : aggregated commands are allowed) */
           argument++;
           while (argument[0]!=0) {

               switch(argument[0])
               {
                   /* Display help on usage */
               case 'h':
               case 'H': return usage_advanced(exename);

                   /* Pause at the end (hidden option) */
               case 'p': main_pause = 1; break;

                   /* Select specific algorithm to bench */
               case 'b':
                   argument++;
                   benchNb = readU32FromChar(&argument);
                   break;

                   /* Select compression level to use */
               case 'l':
                   argument++;
                   cLevel = (int)readU32FromChar(&argument);
                   cparams = ZSTD_getCParams(cLevel, 0, 0);
                   break;

                   /* Select compressibility of synthetic sample */
               case 'P':
                   argument++;
                   compressibility = (double)readU32FromChar(&argument) / 100.;
                   break;

                   /* Select size of synthetic sample */
               case 'B':
                   argument++;
                   sampleSize = (size_t)readU32FromChar(&argument);
                   break;

                   /* Modify Nb Iterations */
               case 'i':
                   argument++;
                   g_nbIterations = readU32FromChar(&argument);
                   break;

                   /* Unknown command */
               default : return badusage(exename);
               }
           }
           continue;
       }

       /* first provided filename is input */
       if (!input_filename) { input_filename=argument; filenamesStart=argNb; continue; }
   }



   if (filenamesStart==0)   /* no input file */
       result = benchSample(benchNb, sampleSize, compressibility, cLevel, cparams);
   else
       result = benchFiles(benchNb, argv+filenamesStart, argc-filenamesStart, cLevel, cparams);

   if (main_pause) { int unused; printf("press enter...\n"); unused = getchar(); (void)unused; }

   return result;
}